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Abstract

In this paper, the series solution for unsteady flow for an incompressible viscous
electrically conducting fluid of second grad over a stretching sheet subject to a
transverse magnetic field is presented by using homotopy analysis method (HAM).
Also we examines the effects of viscoelastic parameter, magnetic parameter and
time which they control the equation of motion.
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Introduction

There are many mathematical models which
describing some properties, but not all, of non-
Newtonian fluids, as ketchup, custard, paint,
liquid detergent, liquid polymers and a variety
of other liquids. Among these models, the fluids
of differential type, for example, fluids of
second grade and tired grade, have been
received much attention in the past due to their
elegance and simplicity [1].

The studies of boundary layer flow of non-
Newtonian fluids over a stretching became more
important because of the development in the
industry Fox et al. [2]

Examine the boundary layer flow of a
viscoelastic fluid characterized using both exact
and approximate methods with a power law
model. Vajravelu and Rollins [3] investigated
the heat transfer of the boundary layer flow of a
second grade fluid whose constitutive equation
is given by
T=—-pl+uA + A, +a,A? (1)
Here T is the Cauchy stress tensor, pis the
indeterminate pressure constrained by the
incompressibility, s is the viscosity, ¢, and «,
are the moduli of the viscoelastic fluid, A, and

A,are the first two Rivilin-Ericksen tensors
defined by [4]

A =L+L"
A, = dcﬁl +AL+L'A,, )

Where d/dt is the material derivative and
L=VV . If the fluid of second grade is to
satisfy the Clausius-Dehum inequality for all
motions and the assumption that the specific
Helmholtz free energy of the fluid is a minimum
when it is locally at rest, Then the requirements
for the moduli of the second grad fluid are
u20, o >0,and o +a,=0 (3)
Though the sign of ¢, has been a subject of
much controversy.

If the second grade fluid is electrically
conducting, the Lorentz force J x B where J
is the electrical current and B is the magnetic
field, must be included in the momentum
equation when a transverse uniform magnetic
field B =(0,B,,0)is applied to the fluid layer.
The terms due to Lorentz force can be simplified

if the following assumption are made: (i) all
physical quantities are constant; (ii) the
magnetic field B is perpendicular to the
velocity V and the induced magnetic field is
small compared with the applied magnetic field;
(iii) the electrical field is assumed to be zero.
These assumptions are valid when the magnetic
Reynolds number is small and there is no
displacement current [5]. Thus, in the boundary
layer approximation the Lorentz force is simply

the term —oBZU, where o is the electrical

conductivity, B, is the uniform magnetic field in
the y-direction, and uisthe x-component of

the velocity v .

The flow problem of non-Newtonian fluids,
characterized by Bingham plastic and the power
law models, in a magnetic field has been
investigated by Sarpkaya [6]. Sarpkaya also
pointed out that some non-Newtonian fluids
such as nuclear fuel slurries, liquid metals,
mercury amalgams, biological fluids, plastic
extrusions, paper coating, lubrication oils and
greases, have applications in many areas in the
absence as well as in the presence of magnetic
field.

In this paper, using homotopy analysis
method (HAM), one of the most effective
methods [7, 8]. We present a general solution
for unsteady velocity equation of a laminar
boundary layer flow of an electrically
conducting second grad fluid subject to a
transverse uniform magnetic field over a
stretching sheet with prescribed power-law
surface temperature and prescribed power-law

surface heat flux, the viscoelastic modulus ¢

of the second grad fluid is taken to be positive to
satisfy thermodynamic restriction equation. 3

Mathematical Description

Consider the unsteady, two dimensional
laminar flow of electrically conducting fluid
caused by an impulsive stretching flat surface in
two lateral direction in an otherwise quiescent
fluid in the presence of transverse magnetic
field. It is assumed that the contribution due to
the normal stress is of the same order of
magnetic as that due to shear stress.

The basic boundary layer equations for the
unsteady flow are:


http://en.wikipedia.org/wiki/Ketchup
http://en.wikipedia.org/wiki/Custard
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Where u and v are velocity component in the
X and Yy direction respectivelly, pis the
density, v = u/p is kinematic viscosity. The
last term in (1) is the Lorentz Force. The gravity
force assumed to be neglected and the modified
pressure gradient is absent since the flow is

driven by the stretching sheet.
The boundary conditions for velocity field are

u=Bx,v=0aty=0, B>0 ©)
u—0, du/oy—>0aty—» o

Non-Dimensional form of Velocity Equation

We can write down the Velocity Equation in
non-dimensional form through using the
transformations:

u=Bxf'(n),0=—(Bv)"* f (17)&"'?
n=-(Blv)'?y&™? =Bt )
&=1-e"

The substitution of these quantities into (5)
gives:

%Bzxf = EY) + BAX(F')2 — BXF f =
2
BZX§—lfm O-Bo Bxfl a]_B X|:2 g_lffm
P P
—Blfl(f")z—Biflf”'f} (8)
14 14
Dividing the above byB?x, the above
equation became
1 " - i
S FmA-&)+ ()"~ f
gflfm_M f/
Ké;—l[zf fm (fl!) fIV ] (9)

Where a prime denotes the differentiation with
respect torp, K=a,B/y is the viscoelastic

parameter and M is the magnetic parameter.

The corresponding boundary conditions 6

became:
f.£)=0, f(n,§)=1atf7=0} )

f(né)=0at n—oo

Basic ideas of HAM
Consider a non-linear equation governed by
A(u)+ f(N=0 (11)
where A is a non-linear operator, f(r) is a

known function and u is a unknown function. By
means of homotopy analysis method, one first
constructs a family of equations

(1-p)LLv(r, p) —u, ()] =
ph{A[v(r, p) - F ()]} (12)

where L is an auxiliary linear operator,
Uy(r) is an initial guess, h is an auxiliary
parameter, pe[01] is an embedding
parameter, v(r, p) is an unknown function of r
and p. Liao [9,10] expanded o(r, p) in Taylor
series about the embedding parameter

o(r, p) = Uy () + 3 U, (1)p” 13)

where _

(1) == L am”(rm P) (14)
op 0o

The convergence of the series (13) depends
upon the auxiliary parameter h. If it is
convergent at p=1, one has

u(r) = Uy (1) + 3 U, () (15)

Differentiating the zeroth order deformation
equation (12) m-times with respect to p and then
dividing them by m! and finally setting p=0 we
obtain the following mth-order deformation
problem:

L[uy, () = ZnUp_ (N]1=hR; (1) (16)
in which

B 0, m<l1 17
zm_ 1, m>1 ( )

(18)

R,(N) = {d A[u(r)+2u np" ]}

k
(m-1)t|d p* iy

There are many different ways to get the
higher order deformation equations. However,
according to the fundamental theorems in

calculus [11], the term u_ (r) in the series (13)
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is unigue. Note that the HAM contains an
auxiliary parameter h, which provides us with a
simple way to control and adjust the
convergence of the series solution (15).

Homotopy Analysis Solution
In order to solve equation 9 we select

fo(.8)=@1-e"")1y (19)
as initial approximation of f, where
y=40+M,)/(1+K) is a

parameter relating the effects of viscoelasticity
of the second grad fluid and the magnetic field.
Besides to choose

3
g o= - 22 20)
n on
as the auxiliary linear operator with the property
L[C, +C,exp(-yn) + Ceexp(yn)] =0 (21)
f,(r7) Satisfy the linear operator and the
corresponding boundary conditions.

combined

Zero-order deformation equation
Based on equation 9 we define the
nonlinear operator

NI E, D =29 - £ ) + 4

_¢¢n_§—l¢w+ Mn¢r
_ Ké—l[2¢!¢ln _ ¢I!2 _ ¢IV¢] (22)
Let h denote the non-zero auxiliary
parameter. We construct the zero-order
deformation equation,
(1-a) Lg(n.&,0) - f(17.5)]1=
qhH(r.t) N[¢(n,¢,0)] (23)
Subject to the boundary conditions
op(n,
#n &), =0, 22y
on |,
2
877 17— 877 n—>x0

Where ¢(n,£,q) is the solution which

depends not only upon f,(7,¢), L, H(,£) and
h but on the embedding parameterqe[O,l].
When q=0 and qg=1 the zero-order
deformation equation have the solutions
¢(n.6.0) = f,(7.6) and  ¢(,5.1) = F(1.5)

respectively. Thus  increases from 0 to 1,

#(n,£,q) vary from the initial guesses
f,(n,£) to the solution f(n,&) of the

considered unsteady problem. So expanding
#(n,&, p) by Taylor's series with respect to the

embedding parameter g, we have

$01,6,) = 91,60+ Y A1, " (25)
Where 1, (7,£) = — 0 #01:¢.9) (26)
m aq"

Assuming that h properly chosen so that
the series (25) convergent at =1, we have,
using (24), the solution series

£01.8) = 11,8+ Y £.(1.) (27)

q=0

High-order deformation equation
For simplicity, we define the vector

ﬁ:{fo’fllle---vfm} (28)

Differentiating the zero-order deformation
equation m times with respect to (, then

setting q =0, and finally divided it by m!, we
obtain the m-th order deformation equation

LL {0 (7,8) = Zn Tra (1. O] =HR, (T ) (29)
Subject to the boundary conditions

of .. (n,
fm(n,§)|,,o=0,# =0
Ho.8)  _fmO _y (g

on n—® 8772 Una
Where

re 1 = " Lgrm
Rm(f m—l) = 577(1_5 1) fm—l _5 l.I:m—l

+M o+ f[(]-*‘ Kég_l) it
i—0

- fi frrllr—i—l - ZK(S_I fi’ frrllr—,i—l

+KE™H, fmfifllv ] (31)

And 5 =0 M=l (32)
Il ms1

In this way, it is easy to solve the linear
equation 29 one after the other in the order
m=123,.. by means of the symbolic
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computation  software such as
Mathematica, and Maple.

Matlab,

General solution

The first step in the HAM is to find a set of
base functions to express the sought solution of
the problem under investigation. As mentioned
by Liao [9, 12], a solution may be expressed
with different base functions, among which
some converge to the exact solution of the
problem faster than others. Here, due to many
boundary- layer flows decay exponentially at
infinity, we assume that f(7,£) can be

expressed by a set of  functions
(& ntexp(-nym)k = 0,020, ]  0)} in the form

m+l m

0n(1,E)=D Y Wi () & exp(=kyn)

k=0 r=0
m>1 (33)
where
lr//m,r,o = br?\,r,O’ m 21’ k = 0

Wm0,k :brg,o,w m>1 k>1 r=0

Wimoo =bmoo M21 k=r=0 (34)
2m—(k+r) _
V/m,r,k(n)z Z brln,r,k 77I
i=0

m>1 1<k<m+1 1<r<m
And from the initial guess f,(77,&) we have

1 -1
b(?,o,o = bg,o,l = 7 (35)

For simplicity we will define /”timyr]k as the

following
2m—(k+r)

Wm,r,k(’]): Z ﬂ'im,r,k brin,r,k 77i (36)

i=0
where

—

m=k=r=0, i>0
m>0, k=0, i>1
m>0,k>1Lr=0, i>1
m>0, k=r=0, i>1
if k>m+1

r>m

i>2m-(r+k)

1, otherwies

From equation 33, 36 and 37 we can get

P —

i _
/Im,r,k -

(37)

o O O o o o o
== =

—

m+l m 2m—(k+r) _ _

omE)=YY Y an.n & expl-kym) (38)
k=0r=0 i=0
m+l m 2m—(k+r) ) )

ohmnE)=YY Y e Eexpl-kyn) (39)
k=0r=0 =0
m+l m 2m—(k+r) _ )

on.E)=2"3" Y dy ' Eexp(-kym) (40)
k=0r=0 -0
mil m 2m—(k+r) )

o 0E)=> Y wh ' &Texp(-km)  (41)
k=0r=0 i=0

where

arin,r,k = (i +1)/Iir§,1r,kbrin+,i,k - (k7)}“im,r,kbim,r,k (42)

Crin,r,k = (i +l)(i + Z)Eig,zr,kbrinf,k

—2(k]/)(| +1)//i’ir:1r,1r,kbrinf1,k +(k7/)zﬂ’:‘n,r,kbrin,r,k (43)

drin,r,k = (I +1)2’Ir;1rkcrln+%k - (ky)lim,r,kcrin,r,k (44)
Wrin,r,k = (i +1)2’in:,lr,kdrin+,:,k - (k7)/1im,r,kcrin,r,k (45)
Now

G, =hR (46)

m m

1 - " - " !
Rm = 577(1_ é: 1)(om—l - ‘f 1¢m—l +M nPm-

m-1
+ [a+KeNale! - o0
s=0

—2KEl  +KE ool ] (47)
From equation (30) we can have:

s+l s 2s—(kl+rl) .
| 53 Sal s entian)

k1=0r1=0 i1=0

m—s m—s—12(m-s-1)~(k2+r2) .
% |: Z Z iar‘nz—s—l,rz,kzﬂlzégirz exp(—k2 77;/):| (48)

k2=0r2=0 i2=0

Which can be rewritten as

_ {z S expl(- (ki+k2) 777)}

k1=0k2=0

[ s m-s-1
™ z Zf—(r1+r2):|

Lr1=0 r2=0

[2s+(kl+rl) 2(m-s-1)—(k2+r2) o
x a;?rl,klarlnzsl,r2,k277ll+lz:|

i1=0 i2=0

[(ma min{m+1,k} m-1 min{m,r}
| Sewcin 8" LS S
| k=0 k1=max{0,k—-m+s} r=0 rl=max{0,r-m+s+1}

2(m-1)+2k1-k+2r1-r min{2s+k1+rli}
i il i-il
x 77 as,rl,klamfs—l,r—rl,k—kl
i=0 il=max{0,i-2(m-s-1)+(k—k1+r-r1)}

This finally gives
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m+1 m-1 2(m1)+2k1k+?r1r:|

PP o1 = [Zexp( k777)2§ Zn
min{m+1,k}
{ §:

kl=max{0,k—m+s} rl=max{0,r—m+s+1}

min{m,r}

min{2s+k1+rl,i}

il i—il
zas ri, klam s—1,r—-rl,k-k1 (49)
il=max{0,i—-2(m-s-1)+(k—k1+r-r1)}

By the similar way, we can have
2m+l-s 2m-s-1 4m2(s+1)(k'+r):|

PPn s 1 { Y exp(-kmy) 2 &7 Y7
k=0 r=0 i=0
min{m+1,k}
{ $

kl=max{0,k—-m+s}  rl=max{0,r—m}

min{m,r}

min{2(m-s-1)—(k—k1+r-rl),i}

il i1 i—il
2 ﬂ’m rl, klbm rl klcmsl,rrl,kk1:| (50)

il=max{0,i—2(m-s-1)+(k—k1+r—-r1)}

m+1 m-1 2(m-1)—(k+r)
PPy = {Zexp( kW)Z§ Zn}

min{s,r}

min{s+1,k}
X
kl=max{0,k—m+s} rl=max{0,r—m+s+1}
min{2s—(k1+r1),i}

i—il
Zas rlkldm s—1,r—-r1k—k1 (51)
il=max{0,i-2(m-s-1)+(k—k1+r-r1)}

2m+1-s 2m-s-1 4m2(s+1)(k}+r):|

P Prr s { Dexp(—kny) D& Yo'
k=0 r=0 i=0
min{m+1,k}
{ 5

min{m,r}

kl=max{0,k—m+s} rl=max{0,r-m}
min{2(m-s-1)—(k—k1+r-r1),i}

z ﬂ“lm rl, klbllnl rl lerin_itl,rrl,kkl:| (52)

il=max{0,i—-2(m-s-1)+(k—k1+r-r1)}
Substitution equations 38-40 and 48-52 into
(46-47), we obtain

1 —1\ 1 1"
Gm = h[gﬂ(l— é: l)(Dm—l - l(Dm—l

m-1
Mg+ YA+ KED gl
s=0

"

- (Ds¢rlr:—s—l -2 K§_1¢;¢m—s—l
+ K5_1¢s¢rlnv—s—l] (53)

m 2(m-1)—(k+r)
Gm = Z eXp(—kW?) ZnHlAIn—l,r,k
k=0 i=0

2(m-1)—(k+r)

—Zexp(—km) ZnHlAin—l,r—l,k
k=0 i=0

m+1 2m—(k+r)
+ZeXp( kym) Zn Br .«
m+1 2(m l) (k+r)
+ EXp(—kVU) 277 Dm 1r.k
k=0
m-1 m+1 2(m 1)+2k1-k+2rl-r
+> > exp(-kyn) Zn A,
s=0 k=0
m-1 m+1 2(m—1)+2k1—k+.2r1—r'
+ z Zexp(—kyn) ZU'K Ak
s=0 k=0 i=0
m-1 m+1 4m-2(s+1)— (k+r)
+Z ZeXp(—kW?) 277 m,r.k
s=0 k=0
m-1 m+l 2(m—l)—(k+_r) )
+ Z Zexp(_k777) Zﬂl [\Im,r,k
s=0 k=0 i=0
m-1 m+1 4m-2(s+1)—(k+r)
+ > exp(=kyn) Zn Qe (54)
s=0 k=0
Where

Ain—l,r,k :Ez_:é:rcrinl,r,k (55)
mrk_ hzd;nrké_ (56)

Driw—l,r,k =-h I\/ln Zarin—l,r,ké:_r (57)
r=0

m-1

k= hZ

r=0 kl=max{0,k—m+s} rl=max{0,r-m+s+1}
min{2s+k1+rl, |}

min{m+1,k} min{m,r}

| il
X é: as ri, k1 m s-1,r—rlk—ki1 (58)
il=max{0,i-2(m-s-1)+(k+k1+r-r1)}
2m-s-1 min{m+1,k} min{m,r}

Tw=h 2 & )

k1=max{0,k—m+s} rl=max{0,r-m}
min{2(m-s-1)—(k—k1+r-rl),i}
i1 il | —il
x Z j’m,rl,kl bm r1,kl m s-1,r—r1,k—k1 (59)
il=max{0,2(m-s-1)+(k—k1+r—-r1)}
m-1 (41 min{s+1k} min{s,r}
i —(r+1
Ny =—2KhY €& >
r=0 k1=max{0,k—-m+s} rl=max{0,r-m+s+1}
min{2s—(k1+rl),i}

il i—il
X Z as,rl,kl dm—s—l,r—rl,k—kl (60)
il=max{0, i—2(m—s—1)+(k—k1+r—rl)}
min{m+1,k} min{m,r}

mrk_Khzg(Hl) z

kl=max{0,k—m+s} rl=max{0,r-m}

min{2(m-s-1)—(k—k1+r-rl),i}
(61)

il i—il
x ;]’m rikl bm rikt WinZs—1,r—rik—k1

il=max{0,i-2(m-s-1)+(k—-k1+r-r1)}
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In order to solve equation 54, we should first
give solutions of the equation

y"(m)=r*y(m) =n's " exp(-kyn)  (62)
The particular solution of this equation is

Yo = eXp(=Kym) D s ;. 1 (63)
j=0
&l
y? il ky)
Using the solution (63) on the differential
equation (54), we obtain the following general
solution

Where 4 ;. =

Pn = AP =
m  2(m-1)—(k+r) i+1 L
D exp(kymAL L ZuL*, 7’

=
I

i=0
2(m-1)—(k+r) i+1

eXp('kVU)Aim-l,r-l,k Zul:+ll rn-
=0

i=0
2m—(k+r) . i . .
D exp(-kym)Br i Dt
i=0 =0
2(m=1)—(k+r)

+

+
Me T I

i
exp(-Kym) Dl i Dt 5.1’
i=0 J'—O
—1m+12(m-1)+2k1-k+2rl-r

Zexp( ky’])Am r,k Z:uk ] r77

2(m— 1)+2k1 k+2ri-r

" 2 xRk Zﬂk 371

3 =
II
L oo

—+

ZeXp(-km)EL,r,k Zu&, i1’

2(m-1)—(k+r)

+y eXp( SZ) . Zuk i
s=0 k=0 i= j=0

1m+14m- 2(s 1))-(k+r)

+ exp(-Kym, i > 4 ;.11
=0

s=0 k=0 i=0

+C." +Cylexp(-yn) + Cexp(kyn) (64)

Convergence of the solution

It is noticed that the explicit analytical
solution expression contain auxiliary parameter
h. As pointed out by Liao [9,12], the
convergence region and rate of approximations
given by homotopy analysis method are strongly
dependent upon h, so we have a family of
solution expressions in the auxiliary parameter
h, and the physical quantities also depend upon
h. So, regarding h as an independent variable, it

is easy to plot curves of these kinds of quantities
versus h. So, if the solution is unique, all of
them converge to the same value and therefore
there exists a horizontal line segment in the h-
curve, and if we set h any value in the horizontal
line segment we quite sure that the
corresponding solution series converge.

Figure 1 portrays the h-curve of the velocity
profile. The range for admissible value of h for
the velocity is —0.4 <h < 0.5 we see that series
converges in the whole region of 7

whenh =-0.3, this value of h lie in the
admissible range of h.

-1.0 0.5 0.5 1.0
Figure 1- The h-curves of f,(0,&) obtained by
the 14th-order approximation of the HAM,
when(@@ M, =1, £=1/2,K =1

b)M, =2, £=12,K=2,

(€)M, =3, £=1/2,K=0

Result and conclusion

The solution form of the velocity
components shows that the combined parameter
y depends on the viscoelastic parameter K of
the second grad fluid as well as the magnetic
parameter M |

Effects of time & :

To study the effects of time & on the
velocity distribution, we keep magnetic
parameter M and the viscoelastic

n
parameter K fixed at 1, 1 respectively, and we
give time & for valuesz/3, 7/2, n the
following result is made:
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Figure 2- The approximétion solution given by the
6th-order approximate solution

As time & increases, there is small
decreasing in the velocity range. See figure. 2.

Effects of viscoelastic parameter K :
To study the effects of the viscoelastic
parameter K on the velocity distribution, we

keep magnetic parameter M and the time &

fixed at 0.5, 7 /4 respectively, and we give the
viscoelastic parameter K for values 0, 0.5, 1
the following result is made:

As viscoelastic parameter K increases, there
is small decreasing in the velocity range. See
figure 3.

L

Lh

Y
%
1 .
]
I
[}
1
=11
fe T

S
I
R
]
4
i
noES

=0y
- [
e |

! L =12

Figun:e 3- The approximation solution given by the
6th-order approximate solution

Effects of magnetic parameter M, :

To study the effects of magnetic parameter
M, on the velocity distribution, we keep time
& and the viscoelastic parameter K fixed at
14, 0.5 respectively, and we give of magnetic
parameter M for values 0, 0.5, 1, 2, 5 the
following result is made:

As magnetic parameter M increases, there is

small decreasing in the velocity range. See
Figure. 4
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Figure 4- The approximation solution given by the
6th-order approximate solution
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