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Abstract 

In this paper, the series solution for unsteady flow for an incompressible viscous 
electrically conducting fluid of second grad over a stretching sheet subject to a 
transverse magnetic field is presented by using homotopy analysis method (HAM). 
Also we examines the effects of viscoelastic parameter, magnetic parameter and 
time which they control the equation of motion. 
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Introduction 
There are many mathematical models which 

describing some properties, but not all, of non-
Newtonian fluids, as ketchup, custard, paint, 
liquid detergent, liquid polymers and a variety 
of other liquids. Among these models, the fluids 
of differential type, for example, fluids of 
second grade and tired grade, have been 
received much attention in the past due to their 
elegance and simplicity [1]. 

The studies of boundary layer flow of non-
Newtonian fluids over a stretching became more 
important because of the development in the 
industry Fox et al. [2]  

Examine the boundary layer flow of a 
viscoelastic fluid characterized using both exact 
and approximate methods with a power law 
model. Vajravelu and Rollins [3] investigated 
the heat transfer of the boundary layer flow of a 
second grade fluid whose constitutive equation 
is given by 

2
12211 Α+Α+Α+Ι−=Τ ααµp     (1) 

Here Τ  is the Cauchy stress tensor, p is the 
indeterminate pressure constrained by the 
incompressibility, µ is the viscosity, 1α and 2α  
are the moduli of the viscoelastic fluid, 1Α  and 

2Α are the first two Rivilin-Ericksen tensors 
defined by [4] 

Τ+=Α LL1  

11
1

2 Α+Α+
Α

=Α ΤLL
dt

d
,     (2) 

Where dtd /  is the material derivative and 
VL ∇= . If the fluid of second grade is to 

satisfy the Clausius-Dehum inequality for all 
motions and the assumption that the specific 
Helmholtz free energy of the fluid is a minimum 
when it is locally at rest, Then the requirements 
for the moduli of the second grad fluid are 

0   and ,0  ,0 211 =+>≥ αααµ     (3)    
Though the sign of 1 α has been a subject of 
much controversy.  

If the second grade fluid is electrically 
conducting, the Lorentz force BJ ×  where J  
is the electrical current and B is the magnetic 
field, must be included in the momentum 
equation when a transverse uniform magnetic 
field )0,,0( 0BB = is applied to the fluid layer. 
The terms due to Lorentz force can be simplified 

if the following assumption are made: (i) all 
physical quantities are constant; (ii) the 
magnetic field B  is perpendicular to the 
velocity V and the induced magnetic field is 
small compared with the applied magnetic  field; 
(iii) the electrical field is assumed to be zero. 
These assumptions are valid when the magnetic 
Reynolds number is small and there is no 
displacement current [5]. Thus, in the boundary 
layer approximation the Lorentz force is simply 
the term uB2

0 σ− , where σ  is the electrical 
conductivity, 0 B is the uniform magnetic field in 
the y -direction , and u is the x -component of 
the velocity  V .  

The flow problem of non-Newtonian fluids, 
characterized by Bingham plastic and the power 
law models, in a magnetic field has been 
investigated by Sarpkaya [6]. Sarpkaya also 
pointed out that some non-Newtonian fluids 
such as nuclear fuel slurries, liquid metals, 
mercury amalgams, biological fluids, plastic 
extrusions, paper coating, lubrication oils and 
greases, have applications in many areas in the 
absence as well as in the presence of magnetic 
field. 

In this paper, using homotopy analysis 
method (HAM), one of the most effective 
methods [7, 8]. We present a general solution 
for unsteady velocity equation of a laminar 
boundary layer flow of an electrically 
conducting second grad fluid subject to a 
transverse uniform magnetic field over a 
stretching sheet with prescribed power-law 
surface temperature and prescribed power-law 
surface heat flux, the viscoelastic modulus 1 α  
of the second grad fluid is taken to be positive to 
satisfy thermodynamic restriction equation. 3  
 
Mathematical Description 

Consider the unsteady, two dimensional 
laminar flow of electrically conducting fluid 
caused by an impulsive stretching flat surface in 
two lateral direction in an otherwise quiescent 
fluid in the presence of transverse magnetic 
field. It is assumed that the contribution due to 
the normal stress is of the same order of 
magnetic as that due to shear stress.  

The basic boundary layer equations for the 
unsteady flow are: 

http://en.wikipedia.org/wiki/Ketchup
http://en.wikipedia.org/wiki/Custard
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Where u  and υ  are velocity component in the 
x  and y  direction respectivelly, ρ is the 
density, ρµν /=  is kinematic viscosity. The 
last term in (1) is the Lorentz Force. The gravity 
force assumed to be neglected and the modified 
pressure gradient is absent since the flow is 
driven by the stretching sheet.  

The boundary conditions for velocity field are 





∞→→∂∂→
>===

 at  0 /  ,0  
0  ,0at  0 ,

yyuu
ByBxu υ

     (6) 

 
Non-Dimensional form of Velocity Equation 

We can write down the Velocity Equation in 
non-dimensional form through using the 
transformations: 









−=

=−=

−=′=

−
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τξ

τξνη

ξηνυη

e
BtyB
fBfBxu

1
 , )/(

)()( , )(
2/12/1

2/12/1

     (7) 

The substitution of these quantities into (5) 
gives: 

=′′−′+−′′ − ffxBfxBfxB 22212 )()1(
2
1 ξη  


 ′′′′+′−′′′ −− ffBxBfBxBfxB 1

2
1

2
012 2 ξ

νρ
α

ρ
σξ      


′′′′−′′− −− ffBfB 121 1)(1 ξ

ν
ξ

ν
    (8) 

Dividing the above by xB2 , the above 
equation became 

=′′−′+−′′ − ffff  )()1(
2
1 21ξη  

+′−′′′− fMf n
1ξ

[ ]fffffK IV−′′−′′′′− 21 )( 2ξ      (9) 
 

Where a prime denotes the differentiation with 
respect toη , µα /1BK =  is the viscoelastic 
parameter and  nM  is the magnetic parameter. 

The corresponding boundary conditions  6 
became: 





∞→=
==′=

ηξη
ηξηξη

at    0),(
0at   1),(   ,0),(

f
ff

     (10) 

 
Basic ideas of HAM 

Consider a non-linear equation governed by 
0=+ f(r)A(u)        (11) 

where A is a non-linear operator, f(r)  is a 
known function and u is a unknown function. By 
means of homotopy analysis method, one first 
constructs a family of equations 

=−− )](),([)1( 0 ruprLp υ  
           )]}(),([{ rfprAph −υ      (12) 

where L is an auxiliary linear operator, 
)(0 ru  is an initial guess, h is an auxiliary 

parameter, ]1,0[∈p  is an embedding 
parameter, ),( prυ  is an unknown function of r 
and p. Liao [9,10] expanded ),( prυ  in Taylor 
series about the embedding parameter 

 m

m
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∞
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1

0 )()(),(υ      (13) 
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The convergence of the series (13) depends 
upon the auxiliary parameter h. If it is 
convergent at p=1, one has 

∑
∞

=

+=
1

0 )()()(
m

m rururu        (15) 

Differentiating the zeroth order deformation 
equation (12) m-times with respect to p and then 
dividing them by m! and finally setting p=0 we 
obtain the following mth-order deformation 
problem: 

)()]()([ 1 rhRruruL mmmm =− −χ      (16) 
in which 
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There are many different ways to get the 
higher order deformation equations. However, 
according to the fundamental theorems in 
calculus [11], the term )(rum  in the series (13) 
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is unique. Note that the HAM contains an 
auxiliary parameter h, which provides us with a 
simple way to control and adjust the 
convergence of the series solution (15). 

 
Homotopy Analysis Solution  

In order to solve equation  9 we select 
γξη γη /)1(),(0

−−= ef       (19) 
as initial approximation of f , where 

)1/()1( KM n ++=γ   is a combined 
parameter relating the effects of viscoelasticity 
of the second grad fluid and the magnetic field. 
Besides to choose 

η
φγ

η
φηξφ

∂
∂

−
∂
∂

= 2
3

3

)],,([ qL      (20) 

as the auxiliary linear operator with the property 
0])exp(C)exp(-[ 321 =++ γηγηCCL     (21) 

)(0 ηf  Satisfy the linear operator and the 
corresponding boundary conditions.  
 
Zero-order deformation equation 

Based on equation 9  we define the 
nonlinear operator  

21)1(
2
1)],,([ φξηφξηφ ′+−′′=Ν −q

φφξφφ ′+′′′−′′− −
nM1 

[ ]φφφφφξ IVK −′′−′′′′− − 21 2      (22) 
Let h  denote the non-zero auxiliary 

parameter. We construct the zero-order 
deformation equation, 

=−− )],(),,([ )1( 0 ξηξηφ fqLq
)],,([ ),(  qtrHhq ξηφΝ      (23) 

Subject to the boundary conditions  
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=
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η η
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∞→∞→ ηη η
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η
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    (24) 

Where ),,( qξηφ  is the solution which 
depends not only upon ),( ,),,(0 ξηξη HLf   and 
h  but on the embedding parameter [ ]1,0∈q . 
When 0=q  and 1=q  the zero-order 
deformation equation have the solutions 

),()0,,( 0 ξηξηφ f=  and ),()1,,( ξηξηφ f=  
respectively. Thus q  increases from 0 to 1, 

),,( qξηφ  vary from the initial guesses 
),(0 ξηf  to the solution ),( ξηf  of the 

considered unsteady problem. So expanding 
),,( pξηφ  by Taylor's series with respect to the 

embedding parameter q , we have 

m

m
m qfq ),()0,,(),,( 

1
ξηξηφξηφ ∑

∞

=

+=     (25)  

Where  
q

),,(
!

1),(
0q

m
=

∂
∂

=
q

m
f

m

m
ξηφξη     (26) 

Assuming that h  properly chosen so that 
the series (25) convergent at 1=q , we have, 
using (24), the solution series  

),(),(),(f 
1

0 ξηξηξη ∑
∞

=

+=
m

mff     (27) 

 
High-order deformation equation 

For simplicity, we define the vector  
{ }mm fffff ,...,,, 210=       (28) 

Differentiating the zero-order deformation 
equation m  times with respect to q , then 
setting 0=q , and finally divided it by !m , we 
obtain the m-th order deformation equation 

)( )],(),([ 11 −− =− mmmmm fhRffL ξηχξη     (29) 
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In this way, it is easy to solve the linear 
equation 29 one after the other in the order  

1,2,3,...m =  by means of the symbolic 
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computation software such as Matlab, 
Mathematica, and Maple.  
 

General solution  
The first step in the HAM is to find a set of 

base functions to express the sought solution of 
the problem under investigation. As mentioned 
by Liao [9, 12], a solution may be expressed 
with different base functions, among which 
some converge to the exact solution of the 
problem faster than others. Here, due to many 
boundary- layer flows decay exponentially at 
infinity, we assume that ),( ξηf  can be 
expressed by a set of functions 
{ })0,0,0)exp( ≥≥≥− jnknjk γηηξ  in the form 
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And from the initial guess ),(0 ξηf  we have 

γ
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For simplicity we will define i
krm ,,λ  as the 
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From equation  33, 36 and 37 we can get 
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From equation (30) we can have: 
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Which can be rewritten as 

( )







+−= ∑ ∑

+

=

−

=

1

01 02
 )21(exp

s

k

sm

k
kk ηγ  









× ∑ ∑

=

−−

=

+−
s

r

sm

r

rr

01

1

02

)21(ξ









× ∑ ∑

++

=

+−−−

=

+
−−

)11(2

01

)22()1(2

02

212
2,2,1

1
1,1, 

rks

i

rksm

i

iii
krsm

i
krs aa η  









×









×








−=

∑∑

∑ ∑∑ ∑
++

−+−+−−−=

−
−−−−

−+−+−

=

−

= ++−=

−
+

=

+

+−=

},112min{

)}11()1(2,0max{1

1
1,1,1

1
1,1,

1212)1(2

0

1

0

},min{

}1,0max{1

1

0

},1min{

},0max{1
)exp(

irks

rrkksmii

ii
kkrrsm

i
krs

rrkkm

i

i

m

r

rm

smrr

r
m

k

km

smkk

aa

k

η

ξηγ
 

 

This finally gives 
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By the similar way, we can have 
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Substitution equations  38-40  and  48-52  into 
(46-47), we obtain  
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In order to solve equation  54, we should first 
give solutions of the equation 
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The particular solution of this equation is 
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Convergence of the solution 

It is noticed that the explicit analytical 
solution expression contain auxiliary parameter 
h. As pointed out by Liao [9,12], the 
convergence region and rate of approximations 
given by homotopy analysis method are strongly 
dependent upon h, so we have a family of 
solution expressions in the auxiliary parameter 
h, and the physical quantities also depend upon 
h. So, regarding h as an independent variable, it 

is easy to plot curves of these kinds of quantities 
versus h. So, if the solution is unique, all of 
them converge to the same value and therefore 
there exists a horizontal line segment in the h-
curve, and if we set h any value in the horizontal 
line segment we quite sure that the 
corresponding solution series converge. 

Figure 1 portrays the h-curve of the velocity 
profile. The range for admissible value of h for 
the velocity is 5.04.0 ≤≤− h  we see that series 
converges in the whole region of η  
when 3.0−=h , this value of h  lie in the 
admissible range of h. 

 
 
 
 
 

 
 Figure 1- The h-curves of  ),0( ξηηηf  obtained by    
                the 14th-order approximation of the HAM,     
                when(a) 1K 1/2, ξ  1,Mn ===  
                         (b) 2K 1/2, ξ  2,Mn === ,  
                         (c) 0K 1/2, ξ  3,Mn ===  
 
Result and conclusion 

The solution form of the velocity 
components shows that the combined parameter 
γ  depends on the viscoelastic parameter K  of 
the second grad fluid as well as the magnetic 
parameter nM  .        
 
Effects of timeξ : 

To study the effects of time ξ  on the 
velocity distribution, we keep magnetic 
parameter nM  and the viscoelastic 
parameter K  fixed at 1, 1 respectively, and we 
give time ξ  for values 3/π , 2/π , π  the 
following result is made: 
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Figure 2- The approximation solution given by the 

6th-order approximate solution  
 
As time ξ  increases, there is small 

decreasing in the velocity range. See figure. 2. 
 
Effects of viscoelastic parameter K : 

To study the effects of the viscoelastic 
parameter K  on the velocity distribution, we 
keep magnetic parameter nM  and the time ξ  
fixed at 0.5, 4/π  respectively, and we give the 
viscoelastic parameter K  for values 0, 0.5, 1 
the following result is made: 
As viscoelastic parameter K  increases, there 
is small decreasing in the velocity range. See 
figure 3. 

 

 
Figure 3- The approximation solution given by the 

6th-order approximate solution  
 
Effects of magnetic parameter nM : 

To study the effects of magnetic parameter 
nM  on the velocity distribution, we keep time 

ξ  and the viscoelastic parameter K  fixed at 
4/π , 0.5 respectively, and we give of magnetic 

parameter nM  for values 0, 0.5, 1, 2, 5 the 
following result is made: 
As magnetic parameter nM  increases, there is 
small decreasing in the velocity range. See 
Figure. 4 

 
 

Figure 4- The approximation solution given by the   
                 6th-order approximate solution 
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