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Abstract
The aim of this paper is to study the effects of magnetohydrodynamic (MHD) on

flow of field of Oldroyd-B fluid between two side walls parallel to the plate .
The continuity and motion equations, for the problem under consideration are
obtained. It is found that the motion equation contains fraction derivative of
different order and the magnetohydrodynamic (MHD) parameter M .The effect of M
upon the velocity field is analyzed ,many types of fractional models are also
considered through taken different values of the fraction derivative order . This has
been done through plotting the velocity field by using Mathemitca package .

Close form for the stress tensor was obtained in many cases, which have been
studied before, are covered from our solution.
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Introduction

Fluid is that state of matter, which is capable
of changing shape and is capable of flowing.
Fluids may be classified as real "viscous" and
ideal "perfect " according to whether the fluid is
capable of exerting shearing stress or not .Real
fluid is called Newtonian if the relation between
stress and rate of strain is linear ,otherwise is
called non-Newtonian fluid.

Within the past fifty years ,many problems
dealing with the flow of Newtonian and non-
Newtonian fluids through porous channels have
been studied by engineers and mathematicians.

The analysis of such flows finds important
applications in engineering practice, particularly
in chemical industries ,investigations of such
fluids are desirable ,for examples oil and gas,
molten plastics,liquid polymers, paints, glycerin,
display non-Newtonian behavior .

The modeling of the equation governing the
non-Newtonian fluids gives rise to highly
nonlinear differential equations .

Many models have been proposed to describe
the response of these fluids they being classified
as fluids of the differential type ,rate type [1]and
integral type ,the rate type models are used to
describe the response of fluids that have slight
memory .

Khan et al .[2] and Vieru et al.[3] have discussed
some accelerated flows of a generalized
Oldroyd-B fluid.The flow of a viscous fluid
suddenly accelerated by a plane wall is an
unsteady flow and such types of unsteady flows
are studied by Erdogan [4,5].

Fetecau et al.[6] discussed the unsteady flow
of a second grade fluid between two side walls
perpendicular to a plate, Hayat et al [7] studied
the flow of Maxwell fluid between two side
wall, due to a suddenly moved plate .Fetecau et
al [8] studied the unsteady flow of an Oldroyd-B
fluid induced by impulsive motion of a plate
between two side walls perpendicular to the
plate ,Khan et al [9] studied the effect of MHD
flow of a second grade fluid between two side
walls perpendicular to the plate through a porous
medium , Khan et al[10,11] studied the flow of
a generalized second grade fluid between two
side walls perpendicular to a plate with a
fractional derivative model and Vieru et al [12]
discussed the flow of a viscoelastic fluid with
fractional Maxwell model between two side
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walls perpendicular to a plate Hyder Ali [13]
studied the accelerated flows of viscoelastic
fluid with Oldroyd-B fluid model between two
side walls perpendicular to the plate .

In this paper we concerned with the
problem's formulation, the continuity and the
motion equations for the problem under
consideration are obtained. It is found that the
motion equations contains fraction derivative of
different order and the MHD parameter M ,by
using the Mixed Fourier sine transform and
Laplace transform techniques are used to solve
our problems. A closed form for the velocity and
shear stress are obtained, the effects of each of
fractional order derivative and the MHD
parameter M upon the velocity distribution is
analyzed .

(1) Statement of the problem

consider an incompressible generalized
Oldroyd-B fluid occupies the space above a
plane wall perpendicular to the y-axis and
between two side walls and are located at z=0
and z=d initially the fluid is at rest and at time
t=0" the bottom wall begins to slide with the
time dependent velocity At*  (a>0),
corresponding initial and boundary condition are
given by

u(y,z,0):%:Ofory>0and0§zsd,

)
u,z,0)=A for t>0 and 0<z<d @)
u(y,0,t)=u(y,d,t)=0fory,t>0 ©)
(v.z,t)

ufy,z,t),oyu (y,z,t}—0asy— o0,z (0,d)and t >0 (4)

(2) Governing equations
Unsteady incompressible flow is governed by
the continuity equation:

divv =0 5)
and by using motion equation

dv L=

- =divT 6
P45 v ()

Where ,p=density ,v = velocity
The Cauchy stress tensor for an incompressible
fractional Oldroyd-B fluid has representation

Topies [1022% Vsopf102, 20 | A @)
=- + - = — i
p Dt H rDtB 1

In which P = pressure, | =identity tensor ,
S =extra stress tensor, W =dynamic viscosity,
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A, A = relaxation and retardation times
respectively , o , p = fractional parameters such
that 0 < a < B <1, A;=L+L" where L is the
velocity gradient

D”S _ D¢S+ (V.V)S—LS—SLT,
Dt

B

D

R eolaivon-ar O

In which p and Df are fractional

differentiation operators of order a and B with
respect to t, respectively and may be defined as
Riemann —Liouville fractional integral [14]

pern 1 db f(0)
Dif(t) = ra- p)dt({(t_r)pd 1,0<p<1 (9)

Where I'(.) is the Gamma function .this
model reduces to the classical Oldroyd-B fluid
model for o = f=1.

We assume the velocity field under the form
v=[u(y,zt),0,0] 10)
which u is the velocity in x-direction.

The above velocity field automatically satisfies
the constraint of incompressibility.

S(y, z, 0)=0 (11)
(the fluid being at rest up to the moment t=0) ,
We obtain S,,=S,,=S,,=0
@+AD§f)ty = p (1+kD?)%u(y,z,t),

O uy,z,t)  (12)

oy
Where el sty and 15 =Sy, are tangential

@+AD)ty = p @+ 2DP)

stress.

Using equation 10 into equation 7 and taking
into account the initial condition 11,and
resulting together with equation 6 gives

(+ apg) MO

2

2

By, O

v+ A4 Df ) (—5+
rt 6y2

a—z)u(y, z,t)—Mu 13)
0z

Where v = p / p is the kinematic viscosity of the

2
fluid oBo field
p

and M= is magnetic

parameter.

(3) Calculation of the Velocity field

The velocity field can be obtained by solving
the governing equation using the mixed Fourier
sine transform.
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So, let us denoted the mixed Fourier sine

transform of the velocity component by

wod
Ugn(&,1) = %”u(y,z,t)sin(y@)sin(xnz)dzdy, n=12,..(14)
00

And taking the Fourier mixed sine transform to
equation 13 keeping in mind the boundary
condition 1-3 we get,

(1+ XD?)GIZJTSH +v(l+ er?)(éz 18 Usn (&=

Avide 2
%ﬁ\/;(l—(—l)”)mm?)— MUsn &) (15)

Now applying the discrete Laplace transform
method to equation 15,we get

U Ag\/’ 1 (-1 T'(a+1)
Hen ™ R Y L2422
v(1+1raP) (2 +22) 16)
q(1+xqa)+v(1+xrqﬁ) (§2+xﬁ)+M
Which can also written in the form
* _& (1 (—l)”)
sn
(é 28)
A o+l +M
(- q+Aq I'(a+1) an

9(1+2q%) v+ 1 gP) 22 eM Pt

In order to get U*, (€ ,t)and to avoid lengthy
calculations of residues and contour integrals |,
we rewrite equation 17 in the series form

*Aa

sn

2 (1- (1)”) Ia+1) Ag

T (248 o

§(—1>"i+jz:k1J—LV eaf) M
k=0 ~ i,polt Kt
m+L=i }\’ [quer a— 1k

@)

—a-k+pm-2 Ki

s

And use the next property of the inverse Laplace
transform of equation:

2(1-(Y"
— (a+1)
T (€2 +2f)

qa—k+ﬁm—a—lk!

- Geanf™

m,L20 MIL!

(18)

HHy
L 7kk1 /1k+,u 1E(k) +ct/1 (Re(s) c\%l (19)
(s Fo)fh

Where
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n

@)=y

E _—,
n=0 I'(An+p)

Au>0 (20) [15]
Ap
Represents the generalized Mittag - Leffler
function [15] and,
gk
E
dzK A

(n+kyiz"

(k) -3
o (Z)_ ()= W20 MIT(n + 2k + 1) (20

Consequently, applying the inversion formulae
term by term for Laplace transform equation 18
yields

(1 ( 1) ) a Af 2(1—(—1)n)
u.- (&, t)— t =N 2 2.
sn T 2d) " d
i .
© ki+j:k1v'(§2+x%) m!maL=i i m
M@+ ¥ (-1 o N O T

o
[ta fmkcradie k)E(k)+k +k—pm +a+1(_t7) +

o
xta—[}m+nk+k Ef:)kfpmau(_ti) +
Mmoot g (), )] (22)

Inverting equation 22 by means of Mixed
Fourier sine transform ,we find the velocity field

is given by

u(y , t) 8Ata OZO Sln)\’N j gSm&ydé 8Ar(a+1)
nd na1 Ay Og }‘N md

% Siny, P Esingy 2 ki 1 Vi) m]

DI e ¥ C AR V=

. 0§2+)L% k=0 |J>OJ k+l

m+l=i I a—pm+k+a(1+k) £(K) L

m%>0m7\r t Eoa(+k)+k— Bmﬁﬁl( )

a—Pm+ok+K (k) t®
P Eo k- ﬁm+a+1( Rl

M 2 ﬁm+ak+u+k+lE&k)+k Bm+a+2( )]dé‘; (23)

Where N=2n-1 to change the origin of the
coordinate system, Setting d=2h and z=z"+h and
the dropping asterisk notation, then equation 23
will take the form (see appendix Al)
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A% Cos \yz 4AT(a+1
Uy, 0= S 1L N CO M gy ST
N n h
E(_l)n +1M°°&Sm§ y @ itjzkmL=i (_1)K
n=t My 082 +A% K0 ko mLs0 JIMIL!

(222! i M akk-pm+a
I8

}\,K
ag® -t E® t
t Ea at+k-— Bm+a+l( N )+XEak Bm+a+l( 7»)

o+1p(k)
M a,0+k- Bm+a+2(

) dév (24)

In which %\ =(@2n-1n/2his associated

velocity field for flow of fractional Oldroyd-B
fluid model between two side walls
perpendicular to the plate

(i) Flow induced by constant acceleration of
the plate

For this case ,Substituting a=1 into equation
24 we get the solution for flow induced by
constantly accelerating plate i.e.

00 o0
uy2.9= 220 St B2 g, ) A Ty

n=1 An m hog
Cospy2 7 ESinty 2 Wkt (1) (e + 1)

M &2 +)2k=0ijomiso JIMILY A

—t%

kr ok+k-pm+1],a
t t Eaa+k Bm+2( A )+

A

s mie+ g0

kEg(,)k—Bm+2( 2 oo+ k- Bm+3( }L)}di (29)

Now , using A,—0 into equation 24,we get

Co;xNzE Pk )

N
)n+1 COS}‘ I ‘:Slnéy |+j—k( l)K
Ay §2+7u k= 0IJ>O it

uy.2 9= 3 SV

_72(

(v(&* +22 ))I Ml ek +k +l{taE(k

KA aa+k+2(T)+

}”Ekk+2(_ )+Mt“+1Eaa+k+3(—)}d§ (26)

Which is the associated velocity field for the
fractional Maxwell fluid model.

For A—0 into equation 17 and adopting similar
procedure,
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2At ® Cos 2z 4A X
u(y,z,t) = 20 3 (<) 2B By y) - 22 5 (1)t
h o AN Th i

Cos )z P ESINE Y

SO ANE (-1
A (I) £ +1% &5

(0 B g (@ +2) 15+

MEKT2 ERy o (€428 B @)

Which is the associated velocity field for
fractional second grade fluid for constantly
accelerating plate.

o0

(@ agymf
k!

(ii) Flow induced by the variable acceleration
of the plate
For this problem , replacing a=2 into equation
24 we find
w2 )= 28 Sy 1S hnteg )
n=1 AN
T (qn+1Cosay2? ESiny

T (-1
n=1 o 0e2+22kZ010,j20 m,

(E2 A2 i AT ak-+ K —pm + 2] gk
A A o,0+K-pm+3

_8A
nh
0 i+j:km+|_:i (—l)k

L o imiL

_t0

(T) +

t¢ t¢
N +kﬁm+4(_7\)}dé (28)
Which is the velocity for flow due to variable
acceleration of the plate .

Using A,—0 in the above equation we get the
solution for the flow induced by the variable
accelerating plate for fractional Maxwell fluid
model.

2
U(y,z,t) =2'A7t ;(-1)” +1%

)+ Mt(l+1Ek
0,0

k
}"Ea,k —pm + 3(

8A
Exp(-AnY)—

n=1 N T[h
n+1C0s )z % singy @ 1+i=k(p)k

w08 +akk=0ij>0 I

[e¢]

2(-1)
n=1
—t@

2 a2y
MMJtak+k+a[taEka+k+3(x)+

}»K+1 a,

k

ta a+1-k ta d
7‘Ea,k+3(_T)+Mt Ea,a+k+4(_7) g (29)

Now , using A—0 into equation 17 ,and taking
the inverse Fourier sine and discrete Laplace
transforms of use resulting one ,we get ,
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2A12 X Cos ).\ 2Z 8A
u(y,z ) =L 3N IS A Eypp y) O
h n21 An nh

3 -1
&

K (v(g2+x2N)+M)k

®  \n+1Cospyz% ESinE y
D W P e k!
n=1

082432

(k)

(€642 B gy avireead) £+

MtK+3 Ew

P gk s 4O EIR) LB)a (30)

Which represents the solution corresponding to
the flow induced by variable accelerating plate
for fractional second grade fluid.

(4) Flow over an infinite plate (limiting case

h—)

When h—oo in the Eq(24),the solution
corresponding to the motion over an infinite
constantly accelerating plate ,
and Ay—0 ,where
_(2n — )7t we obtained

o 2h
D ggj o) i+j:k
u(ylet)=Ata—2Ar(a+1)Jésnlzéf;y z z
n 0 & k=01ij>0

. 2]
m+L=i (-1)¥ {V(a )] Mjﬂtak+k—ﬁm+a
jimiL! A

ek ) 2k N
a,0+K-pm+a+1' ) a,k—pm+a+1t )

Mt(l +1Ek

0,0+K-Pm+a+2 (31)

tU.
(—X)}da

(5) Special case
1-Making A,—0 and a—1in to equation 17 ,we
get:

2A1d 2 Cos 2
2= ST E( )
N

0

x

n=

_4AT(a+1)

Jn+1C05 A2 ESint y
n h

(-1
1 AN 082493

g(fl)k”fki“(ézﬂ%) m!
K=0 i,j>0 it kk+l

t t
[ta+1+2kE(lk,)k+a+2(_[)+Ma+2kE£I,(&+a+l(_{)

M@ 2o e ) o 2

(6) Calculation of the shear stresses
Applying the Laplace transform to equation 8
and using the initial condition 11 ,we find that
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1+ raP suy,z,a)
1+2q oy ’

1+ ;quB ou(y,z,q) (33)
1+2q® oz

1 (¥,2,9) =p

To(¥,2,9) =p

The image function u(y, z, q) of u(y,z,t)can
be obtained from equation 24,and consequently
evaluating  syy.z qyand  au(y,z,q) from the

oy oz
mentioned equations and introducing into
equation 33,it results that

1+3,0P [2Ar@+1) 2 Lyyra S5z

o a+ly = A

1+ q47*h n=1 N

_4AT@+]) ()n+1COstz°°gZCosay
mh 21 Ay 0§2+7»%,

@ v (6 (@ 4a2) AT

7MJ
k§0 i,jzzo m%zo jimiLt gk A

2 00" 1

o A'nl! qOlk+0tﬂ+01+k—Bm+a+l+

u(y,2,0) =p (-ANEXp(-1yY))

M

A M
ak+a n—Bm+a+1+qak+an+a+k—ﬁm+a+2

1+quﬁ 2AT(a+1) X v+l —hnSiN A2
14aq* | q@+lh p21 An

AAT(a+1
EXP(~ 1Y) n(iahﬂ

) (34)

q

2y,2,0)=p

pn+1 A Sin MZO!O ESincy

(-1

1 W el
i+j=k L=i 2wi .M

w driskme L= (g e ead)yiof

k=01i,j>0 mL>0mLt ;K A
® (n+k)I=)" 1
2 (4"

n=0  A"n! qak+a n+o+k—pm+a+1 *

HMS

=

A M
ak+an—[3m+a+1+quk+an+a+k—5m+a+2

)dé} (39
q

Lengthy but straight forward computations
,allow us to determine t1(y,zt), T2(Y,z,t) from
equation 34 and 35. (appendixA2), the property
(appendix A3) (that used for the convolution
product of two functions) and the simple
decomposition

1+,a” . A P aq®

1+2xq® A q®*+1/a q°‘+1/x

Final form of 1(y,zt), t2(y,zt),(See also
appendix A2)
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* a o
(20 = 25 5
h nZ1
o0
4A r(ah+1) 2
T[ =

1

m+L =i L)K (v(E2 +12))

m’LzojlmIU )Lk

apk
t Ea,a+k—ﬁm+a+1

(

a+1-k
Mt Ea o+k—pm+a+2

Pr 2AuT(a+1)

(I EXpy)]- {

n+1Coshyz
I8

_to
L

(=AEXP(=AyY))

N

n+1Cos iy ZOFF;ZCosgy o i+j=k

Mg g2 k=01,j20

Mz

)+7LEk

}‘r ok +k—pm+a

(_

o, k—pm+a+1 o

o )}da

v Rpa- 1'(1( 5

M dAT@+1) ©
nh

n+1Coshkyz
M

5 (_l)n +1 Cos hyz

n=1 My

00 £

(=
1

©:2Costy @ '+J:km+£.:i(_1)*< wEZa2yt am

082412 k=0 10,j>0 mi>olmiLl K

J.S()ck-¢-k Bm+a{saEk
0

k
kEa,k—Bera-f-l( N )

xR Q’B(-m,o, t-s)dsdé -

- 1)n +1CosA z

n=1 hy

M8 1 M8

=S

+k- Bm+a+l( )+
o

+Mt(l+1Ek ( S )}

[2A,u (a+1) 1

(A EXp(=2 V) |+

a 1)n+1Costz §2Cos§y 5
A 2,42 j'miL!
n=1 N Q& +Ay k=01i,j>0 mL>0

MJ

o

0,0+k—pm+a+2

R 200

oc-a-l*ot(_}L

n h
I+j*km+L—i( 1)K

{4A T(a+1)

WE02) A kk—pme+a

M= s
K o

apk
s Ea a+k- Bm+a+1(

o+1ck
Mt Eu a+k-Pm+a+2

-

)+XE

g0

A

=)

N
o k- Bm+a+1( )»)+

*Ro,a (-2/A,0,t—s)dsd¢,
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2Autd
v29== ( DM aSinnZ)EXPY))
n=1
AAT(a+l) @ Sin
(;:"' ) Z( )n+1( stmsz)J‘az | é’;Zy
o=l 082 +14
g iEkmeL=iC0f gt
k=0i,j>0 m|_>oj!m!L! 2K %

ok+k-pm+a| ok -t¢
t {t Eu,a+k ﬁm+a+1( )+

2EK )Mo +Igk e
a,k-Ppm+a+l' a,0+K—Pm+a+2

A 2AuT(@+1) 1
HfRB-a-M(W'O‘)

M 2AuT(a+1)

Mt +1gk de+
e -

a,0+k— Bm+a+2(

*Rp-a-10 (——,o, v z(—1>”+1<—xNSianz>Exp(—xNy»]

1 ©¢ Singy
2( )N (A, Sinky Z)(j)éz 2
0 i+j=km+L:|(_l) (V(E"Z_”‘%\]) m
- 7MJL
kEO i,jZZO m,Ezoj!m!L! }Lk Py

ak+k-pm+a| ok -
{s Eu,a+k ﬁm+a+1( )+

A 4AT@+1) @
A wh

t o
Is
0

k s“ a+1-k s®
)\Eak Bm+a+1( T)+Mt Ea,a+k[}m+a+2(_)\)}<

—Ot)

Ralﬁ(-llx,o,tfs)dsdg{w%w e

Z( l)l’H-l

5 ()" R, Sin 1, DExp(-1,Y)
n=1

n=1 h

{4A [(a+l) ©

i+j=km+L=i_K
(hnSindy2) |- 3 y LUD
062+22k=01i,j>0 m,L>0J'm!L!

(v(&? +k2))' }\m } ak+k-pm+a| capk (£)+
kk k 0 a,0+K—Pm+a+1t )
k a+1gk s
}‘Ea k- Bm+a+1( )+Mt Ea a+k—ﬁm+a+2(_)\)}<

Ra,a (-1/1,0,t —s)dsdg
Where

_ = N—antha—b-l
Ra p(c.dt) = néo T[(n+1Da—b]

(6) Results and discussion

The effect of each parameter upon the
velocity field will be considered .For simplicity
,in the middle of the channel ,let z=0 will be
setting equal to zero .Also ,to see the effects of
any parameter ,this parameter will be taken in
some range ,while the other parameters will kept
fixed .regards the generalized Oldroyd-B fluid,
The following results are observed :
1-As B increasing there is decreasing in the
velocity field ,see figure 1: figure 2 and figure 3

Iragi Journal of Science. Vol 54.No.2.2013.Pp 427-437

2-As A increasing there is decreasing in the
velocity field ,see figure 4 : figure 5 and figure
6. 3-As o increasing there is decrease in the
velocity field ,see figure 7: figure 8 and figure 9
4-As t increasing there is decreasing in the
velocity field ,see figure 10 and figure 11.

5-As M\ increasing there is decreasing in the
velocity field, see figure 12 and figure 13.

10F
08

06 [

p =02
02 f
0.‘5 110 115 2.‘0 2.‘5 3.‘0
02
Figure 1- v=1,h=1,0=0.3

10}
08
06
04

02}

2k —

Figure 2- z=

10f
08}
06}

0.4; p=0.8

r 05 10 15 20 25 7/3‘0
2k —

Figure 3-z=0, A=1, v=1,h=10=0.3,a=0.2,
t=2,21=4,M=1,A=12
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Together Figure (1:2:3)

10}
08}
06} < M=2
04}
02}
B T R TR R TR
Figure 4- z=0,A=1,v=1,h=1,0=0.3,
p=0.8,a=0.2,t=2,M=1,A=12
10}
08}
05}
045 }"l: 4
02}
i 05 10 15 20 25 30
2+
Figure5- z=0,A=1,v=1,h=1,a =0.3
,p=0.8, a=0.2,t=2,M=1,A=12
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108
05| \ «—M=6
Og\ ‘ ‘1,‘0‘ - ‘1.‘5‘ - Zb - ‘2.‘5‘ - ‘3,‘0
\
st \ o
. -
oot —
Figure 6- z=0,A=1,v=1,h=1,0=0.3
,p=0.8,a=0.2,t=2 ,M=1,A=12.
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Figure 8- z=0,A=1,v=1,h=1,$=0.8
2,t=2,%,=4 ,M=1,)=12
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Figure 9-z=0,A=1,v=1,h=1,3=0.8
a=0.2,t=2,1,=4 ,M=1,A=12
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Figure 11-z=0,A=1,v=1,h=1,0=0.3,
p=0.8,a=0.2,A,=4,M=1,
A=12,t=1.
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Figure 10- z=0,A=1,v=1,h=1,0=0.3,
f=0.8,a=0.2,1r,=4,M=1,

A=12,t=1
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Figure 12- z=0,A=1,v=1,h=1,0=0.3
,p=0.8,a=0.2,t=2,M=1,11=4
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Appendix A:
Some relations used in our text
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