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Abstract 

In this paper, we studied the effect of magnetic hydrodynamic (MHD) on 
accelerated flows of a viscoelastic fluid with the fractional Burgers’ model. The 
velocity field of the flow is described by a fractional partial differential equation of 
fractional order  by using Fourier sine transform and Laplace transform, an exact 
solutions for the velocity distribution are obtained for the following two problems: 
flow induced by constantly accelerating plate, and flow induced by variable 
accelerated plate. These solutions, presented under integral and series forms in terms 
of the generalized Mittag-Leffler function, are presented as the sum of two terms. 
The first term, represent the velocity field corresponding to a Newtonian fluid, and 
the second term gives the non-Newtonian contributions to the general solutions. The 
similar solutions for second grad, Maxwell and Oldroyd-B fluids with fractional 
derivatives, as well as, those for the ordinary models are obtained as the limiting 
cases of our solutions. Moreover, in the special cases when 1== βα . While the 
MATHEMATICA package is used to draw the figures velocity components in the 
plane. 
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ةعلى التدفقات المتسارعة للموائع اللزج تأثيـــر المجال المغناطيسي الهيدروديناميكــي  
نمــوذج بيركــــرأالمرنة مــــع   

 
     مولود عبد الهادي احمدوهند شاكر محمود 

د , العراققسم الرياضيات, كلية العلوم, جامعة بغداد, بغدا  
 

 الخلاصة
0Tالمجـال المغناطيســي   الهيدروديناميكــي علـى التدفقات المتسارعة للموائع        في هذا البحث, درسنا تأثير

نموذج "بيركر". والذي يصف حقل سرعة التدفق بواسطة معادلة تفاضليه جزئية كسرية. استخدمنا أاللزجة مع 
 : التدفق تيتينتحويـلات كل مـن فوريـر و لابـــلاس, للحصول على الحلول الدقيقة لتوزيع السرعة للمسألتين الا

الناجم عن لوحة التسريع الثابتة, و التدفق الناجم عن لوحة التسريع المتغيرة. هذه الحـلول, كتبت بصيغـة 
التكامل والمتسلسلات بدلالة الدالة ميتاج لفلر,كما انها تظهر بصيغة جمع للجزئين. الجزء الاول يمثل حقل 
 السرعة  للموائع النيوتونية لأداء الحركة نفسها, والجزء الثاني يمثل الاضافة الى حقل سرعة المائع النيوتوني 
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وهذا لسبب كونه المائع الذي درسناه هو مائع لانيوتوني. تم الحصول على حلول مماثلة لموائع من الرتبة 
الثانية مثل ماكسويل, و اولدرويد من النمط بي.ذات مشتقات كسرية, بالأضافة الى ذلك, وكحالات خاصة, تم 

==1             تغطيتها, هي عندما βα 
0T كمــا كان متوقعا, حلولنا تميل الى حلـول مماثلة لموائع بيركــر الأولية. تم استخدام الماثيماتيكا لرسم أشكال

 مكونات السرعة في المستوي.  
Introduction 

As to the history of fractional calculus, 
already in 1965 L’Hospital [1] raised the 
question as to meaning of 21=nn dxyd , that 
is “what if n is fractional?”. “This is an apparent 
paradox from which, one day, useful 
consequences will be drawn”, Leibniz [2] 
replied, together with “ xd 21  will be equal 

to xdxx : ”. Lacroix [3] was the first to 
mention in some two pages a derivative of 
arbitrary order in a 700 page text book of 1819. 
Thus for +ℜ∈= axy a , , he showed that                        

21
21

21

)21(
)1( −

+Γ
+Γ

= ax
a
a

dx
yd  . In particular he had 

πxxdxd 2)( 21 = ( the same result as by the 
present day Riemann-Liouville definition below) 
Fourier, who in 1822 [4] derived an integral 
representation for )(xf , 

 ∫∫
ℜℜ

−= dpxpdfxf )(cos)(
2
1)( ααα
π

 

obtained (formally) the derivative version 

∫ ∫
ℜ ℜ

+−= dpvxppdfxf
dx
d v

v

v

}
2
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2
1)( π
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where “the number v  will be regarded as any 
quantity whatever, positive or negative”. It is 
usually claimed that  

Abel resolved in 1823 [5] the integral 
equation arising from the brachistochrone 
problem, namely 
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)(
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As  Lutzen [6] first showed, Abel never 
solved the problem by fractional calculus but 
merely showed how the solution, found by other 
means, could be written as a fractional 
derivative. Lutzen also briefly summarized what 
Abel actually did. Liouville [7], however, did 
solve the integral equation in 1832. Fractional 

calculus has developed especially intensively 
since 1974 when the first international 
conference in the field took place. It was 
organized by Betram Ross and took place at the 
university of New Haven, Connecticut in 1974. 
It had an exceptional turnout of 94 
mathematicians; the proceedings contain 26 
papers by the experts of the time. It was 
followed by the conferences conducted by Adam 
Mc Bride and Garry Roach (University of 
Strathclyde, Glasgow, Scotland) of 1989, by 
Katsuyuki Nishimoto (Nihon University, Tokyo, 
Japan) of 1989, and by Peter Rusev, Ivan 
Dimovski and Virginia Kiryakova (Varna, 
Bulgaria) of 1996. In the period 1975 to the 
present, about 600 papers have been published 
relating to fractional calculus [1].  
Understanding non- Newtonian fluid flows 
behavior becomes increasingly important as the 
application of non-Newtonian fluids perpetuates 
through various industries, Including polymer 
processing and electronic packaging , paints , 
oils liquid polymers,glycerin  
,chemical,geophysics,biorheology. However, 
there is no model which can alone predict the 
behaviors of all non-Newtonian fluids. Amongst 
the existing model, rate type models have special 
importance and many researchers are using 
equations of motion of Maxwell and Oldroyd-
fluid flows. Khan, Hyder Ali, Haitao Qi. (2007) 
[2] construct the exact solutions for the 
accelerated flows of a generalized Oldroyd-B 
fluid. The fractional calculus approach is used in 
the constitutive relationship of a viscoelastic 
fluid. The velocity field and the adequate 
tangential stress that is induced by the flow due 
to constantly accelerating plate and flow due to 
variable accelerating plate are determined by 
means of discrete Laplace transform. Khan, 
Huder Ali, Haitao Qi. (2009) [3] Studied the 
accelerated flows for a viscoelastic fluid 
governed by the fractional Burgers’ model. The 
velocity field of the flow is described by a 
fractional partial differential 
equation.et.al.(2011) [4] research for the 
magnetohydrodynamic (MHD) flow of an 
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incompressible generalized Oldroyd-B fluid due 
to an infinite accelerating plate. The motion of 
the fluid is produced by the infinite plate, which 
at time += 0t begins to slide in its plane with a 
velocity At . The solutions are established by 
means of Fourier sine and Laplace transforms. 
 
Problem statement 
     Consideration is given to a conducting fluid 
permeated by an imposed magnetic field B₀ 
which acts in the positive y- direction. In the 
low-magnetic Reynolds number approximation, 
the magnetic body force is represented by uB 2

σ . 
Consider an incompressible fractional Burgers’ 
fluid lying over an infinitely extended plate 
which is situated in the (x,z) plane. Initially, the 
fluid is at rest and at time += 0t , the infinite 
plate to slide in its own plane with a motion of 
the constant acceleration A. Owing to the shear, 
the fluid above the plate is gradually moved. 
Under these considerations, the governing 
equation, in the absence of pressure gradient in 
the flow direction, is given by 

uDDM
y
u

D
t
u

DD

tt

ttt
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21
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2
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2

21
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∂
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Where
ρ
µυ =   is the kinematics’ viscosity of the 

fluid and 
ρ

σ uBM
2
= . 

 
The associated initial and boundary condition 
are followed 
 Initial condition:  

0,0)0,()0,( >=
∂

∂
= y

t
yuyu

 Boundary conditions:  
0,),0( >= tAttu

Moreover, the following  natural conditions  

00),(,),( >∞→→
∂

∂ tandyas
y

tyutyu

  Have to be also satisfied. In order to solve this 
problem, we shall use the Fourier sine and 
Laplace transforms.  
 
Solution of the problem 
   The constitutive equations for an 
incompressible fractional   Burger’s fluid is 
given by  

)1()~1(

)~~1(,

3

22
21

AD

SDDSPIT

t

tt
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λλ

+=

+++−=
   

Where T is the Cauchy stress tensor,-PI denotes 
the indeterminate spherical stress, S the extra 
stress tensor, and also S  the first Rivlin-
Ericksen tensor, where L is the velocity 
gradient,µ the dynamic viscosity of the  

fluid, 1λ and 3λ (< )1λ the relaxation and 

retardation times, respectively, 2λ  is the new 
material parameter of the Burgers’ fluid, 
α and β the fractional calculus parameters 

such that 10 ≤≤≤ βα  and
p

tD~ the upper 
connected  fractional derivative defined by 

)2(~~
,~

Tp
t

p
t

TP
t

p
t

ALLAAvADAD

SLLSSvSDSD

−−∇⋅+=

−−∇⋅+=      

In which )( p
t

p
tD ∂=  is the fractional 

differentiation operator of order p with respect to 
t and may be defined as [5] 

)3(10,
)1(

)(
)1(

1)]([
0

≤≤
−−Γ

= ∫ pdf
dt
d

p
tfD

t
p

t τ
τ

τ   

Here )(⋅Γ denotes the Gamma function and 
)4(,)~(~~ 2 SDDSD P

T
P
T

p
t =    

The equations of motion in absence of body 
force can be described as  

)5(,T
dt
vd 

⋅∇=ρ  

Where ρ is the density of the fluid and d/dt 
represents the material time derivative. Since the 
fluid is incompressible, it can undergo only is 
isochoric motion and hence 

)6(,0=⋅∇ v  
For the following problems of unidirectional 

flow the intrinsic velocity field takes the form 
)7(]0,0),,([ tyuv =


    

Where ),( tyu  is the velocity in the x-
coordinatesdirection. For this velocity field, the 
constraint of incompressibility (6) is 
automatically satisfied, we also assume that the 
extra stress S depends on y and t only. 
Substituting equation. (7) into (1), (5) and taking 
account of the initial conditions  

0,0)0,()0,( >=∂= yySyS t . i.e. the fluid 
being at rest up to time t = 0. 
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For the components of the stress field Ѕ, we have 
0==== yzxzzzyy SSSS and 

yxxy SS = , this yields           

)8(,
y

S
x
p

t
u xy

∂

∂
+

∂
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−=
∂
∂ µρ

)9()1()1( 3
2

21 y
uDSDD txytt ∂

∂
+=++ ββαααα λµλλ  

Consider that the conducting fluid is permeated 
by an imposed magnetic field B₀ which acts in 
the positive y- direction. In the low-magnetic 
Reynolds number approximation, the magnetic 
body force is represented by uB2

0σ .Then, in 
the absence of a pressure gradient in the x- 
direction, the equation of motion yields the 
following scalar equations: 

)10(2
0 uB

y
S

x
p

t
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∂
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Where  ρ  is the constant density of the fluid.    
Eliminating xyS  between  equations.(9) and (10), 
we arrive at the following fractional differential 
equation 
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    Consider an incompressible fractional 
Burgers’ fluid lying over an infinitely extended 
plate which is situated in the (x,z) plane. 
Initially, the fluid is at rest  and at time 0=t the 
infinite plate to slide in its own plane with a 
motion of the constant acceleration A. Owing to 
the shear, the fluid above the plate is gradually 
moved. Under these considerations, the 
governing equation, in the absence of pressure 
gradient in the flow direction, is given by 
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Where 
ρ
µυ =  is the kinematics’ viscosity of the 

fluid and  .
2
0

ρ
σ uBM =   

The associated initial and boundary condition 
are as follows: 
 Initial condition:  

)13(0,0)0,()0,( >=
∂

∂
= y

t
yuyu  

Boundary conditions:  
)14(0,),0( >= tAttu

Moreover, the natural conditions are 

)15(00),(,),( >∞→→
∂
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Have to be also satisfied. In order to solve this 
problem, we shall use the Fourier sine and 
Laplace transforms. 
   
Employing the non-dimensional quantities 
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  Eqs. (12) - (15) in dimensionless form are  
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Where the dimensionless mark that has been 
omitted for simplicity. 
    Now, applying Fourier sine transform [6] to 
equations.(17) and taking  into account the 
boundary conditions (19) and (20), we find that 

)21(),()1(

)),(2()1(

),()1(

2
21

2
3

2
21

τξλλ

τξξζτ
π

λ

τ
τξ

λλ

αααα

ββ

αααα

stt

st

S
tt

UDDM

UD

UDD

++−

−+=

∂
∂

++

     

Where the Fourier sine transform 
 ),(),( tUofU s ητξ  has to satisfy the conditions 

.0;0)0,()0,()0,( 2

2

>=
∂

∂
=

∂
∂

= ξ
τ

ξ
τ
ξ

ξ ss
s

UUU                  (22) 



Mahmood and Abdulhadi                                 Iraqi Journal of Science. Vol 54.No.2.2013.Pp 419-426 
 

 423 

Let ),( sU s ξ  be the Laplace transform of 

),( τξsU defined by  

)23(.0,)exp(),(),(
0

>−= ∫
∞

sdstUsU ss ττξξ Tak

ing the Laplace transform of equation.(21), 
having in mind the initial conditions (22), we get  
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     In order to obtain 
 )},({),( 1 sULU ss ξτξ −= with 1−L as 
the inverse Laplace transform operator and to 
avoid the lengthy procedure of residues and 
contour integral, we apply the discrete Laplace 
transform method. However, for a more suitable 
presentation of the final results, we rewrite 
equation. (24) in the equivalent form 
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Hence, the Eq.(25) can be written under the form 
of a series as 
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     Now, applying the inversion formula term by 
term for the Laplace transform, equation.(26) 
yields 



Mahmood and Abdulhadi                                 Iraqi Journal of Science. Vol 54.No.2.2013.Pp 419-426 
 

 424 

)27()](exp(*

)])(1(

))(1(

))(1(

))(1(

))(1(

))(1([

)!(!
!

)!(!
!

)!(!
!

)!(!
1)1(2

)]exp(1(1[2),(

2

12

1

)(
)3(),1(

1)3()1(
2

12

1

)(
)3(),1(

1)3()1(
1

12

1

)(
)3(),1(

1)3()1(

12

1

)(
)2(),1(

1)2()1(
3

12

1

)(
)2(),1(

1)2()1(
2

12

1

)(
)2(),1(

1)2()1(
1

2
3

)(
2

)1(
1

000

000

2
3

σστξ

σξ
λ

σλ

σξ
λ

σλ

σξ
λ

σ

σξ
λ

σλ

σξ
λ

σλ

σξ
λ

σλ

ξλλλ

π
ξ

τξ
ξξ

τ
π

τξ

α
αδαα

δααα

α
αδα

δαα

α
ααδα

αδα

α
αδβαα

δβααβ

α
αδαα

δααα

α
αδα

δαα

βαα

τ

d

MEM

MEM

MEM

ME

ME

ME

M

did
i

iji
j

jlj
l

lml

U

mm

mm

mm

mm

mm

mm

ddjdildim

i

d

j

i

l

j

m

lm

m

s

−−

+−+

+−+

+−+

+−−

+−+

+−×

−−−

−
−−

−−−=

+
−−+

−−−++

+
−+

−−++

+
+−+

−+−++

+
−−++

−−−+++

+
−−+

−−−++

+
−+

−−++

−−−−+−

===

=

∞

=

∑∑∑

∑∑∫

 

   Where " ∗ " represents the convolution of two 
functions and   
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Denotes the generalized Mittag-Leffler function 
with 
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Here, we used the following property of the 
generalized Mittad-Leffler function 
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Finally, inverting (27) by the Fourier transform 
we find for the velocity ),( τξU the expression 
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      Represents the velocity field corresponding 
to a Newtonian fluid performing the same 
motion.  
     In the above relation (.)Erfcin are the 
integrals of the complementary error function of 
Gauss. 
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a) Burgers’ model    
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Figure 1.- Velocity ),( τηU versus η  for  
               different values ofα  when other  
                parameters are fixed.  
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Figure 2- Velocity ),( τηU versus η  for 
different values of β  when other 
parameters are fixed.  
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Figure 3- Velocity ),( τηU versus η  for    
different values of 2λ  when other 
parameters are fixed.  
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Figure 4- Velocity ),( τηU versus η  for 

different values of τ when other 
parameters are fixed.  
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Figure 5- Velocity ),( τηU versus η  for different 

values of M,α when other 
parameters are fixed.  

 
Results and discussion  

We interpret these results with respect to the 
variation of emerging parameters of interest. The 
exact analytical solutions for accelerated flows 
have been obtained for a Burgers’ fluid and a 
comparison is made with the results for those of 
the fractional Oldroyd-B fluid. 
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    Figure 1 is prepared to show the effects of 
non-integer fractional parameters α  on the 
velocity field, as well as a comparison between 
the fractional Oldroyd-B fluid and fractional 
Burgers’ fluid for fixed values of other 
parameters. As seen from this figures that for 
time τ =0.5 the smaller theα , the more slowly 
the velocity decays for both the fluids. 
Moreover, for time τ =0.5 the velocity profiles 
for an Oldroyd-B fluid are greater than those for 
a Burgers’ fluid. Its also observed that for time 
τ =0.5 the velocity profiles for Burgers’ fluids 
approach the velocity profile of the fractional 
Oldroyd-B fluid and after some time it will 
become the same. Thus, it’s obvious that the 
relaxation and retardation times and the orders 
of the fractional parameters have strong effects 
on the velocity field. 
    Figure 2 is prepared to show the effects of 
non-integer fractional parameters β  on the 
velocity field, as well as a comparison between 
the fractional Oldroyd-B fluid and fractional 
Burgers’ fluid for fixed values of other 
parameters. It is observed that for time τ =0.5 
the velocity will increase by the increase in the 
parameter β . It is also observed that for time 
τ =0.5 the velocity profiles for Burgers’ fluids 
approach the velocity profile of the fractional 
Oldroyd-B fluid and after some time it will 
become the same. 
     Figure 3 shows the effects of new material 
parameter on the velocity field for fixed values 
of other parameters. It is observed that for time 
τ =1 the velocity will decrease by the increase 
in new material parameter 2λ . 
     Figure 4 shows the variation of time on the 
velocity field for fixed values of other 
parameters. It’s observed that the velocity will 
increase by the increase in time and after some 
time it will become the same. 
   Figure 5 shows the velocity changes with the 
fractional parameters and the magnetic field 
parameter. It is observed that for 2.0≤α  the 
velocity will decrease by the increase in the 
magnetic field M. However, one can see that an 
increase in the magnetic field M for 6.0≤α  has 
quite the opposite effect to that of 2.0≤α . 
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