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Abstract

In this paper, we studied the effect of magnetic hydrodynamic (MHD) on
accelerated flows of a viscoelastic fluid with the fractional Burgers’ model. The
velocity field of the flow is described by a fractional partial differential equation of
fractional order by using Fourier sine transform and Laplace transform, an exact
solutions for the velocity distribution are obtained for the following two problems:
flow induced by constantly accelerating plate, and flow induced by variable
accelerated plate. These solutions, presented under integral and series forms in terms
of the generalized Mittag-Leffler function, are presented as the sum of two terms.
The first term, represent the velocity field corresponding to a Newtonian fluid, and
the second term gives the non-Newtonian contributions to the general solutions. The
similar solutions for second grad, Maxwell and Oldroyd-B fluids with fractional
derivatives, as well as, those for the ordinary models are obtained as the limiting
cases of our solutions. Moreover, in the special cases when & = f =1. While the
MATHEMATICA package is used to draw the figures velocity components in the
plane.

Keywords: Fractional derivative, Laplace transform, Fourier transform.
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Introduction

As to the history of fractional calculus,
already in 1965 L’Hospital [1] raised the
question as to meaning of d"y/dx" =1/2, that

is “what if n is fractional?”. “This is an apparent
paradox from which, one day, useful
consequences will be drawn”, Leibniz [2]

replied, together with «d¥2x will be equal

to X+/dX : X . Lacroix [3] was the first to
mention in some two pages a derivative of
arbitrary order in a 700 page text book of 1819.
Thus fory=x*aeR,, he showed that
d”?y  Tr(a+1) .
dx’?  T'(a+1/2)

(d/dx)*? x = 2/x/x ( the same result as by the
present day Riemann-Liouville definition below)

Fourier, who in 1822 [4] derived an integral
representation for f(x),

f(x):ijf(a)da jcos p(x—a)dp

obtained (formally)
d' 1 v
—f(X)=—| f(a)d ‘cos{p(x—a) +—}dp:
i) 2%[ (@) “lp {p(x—c)+= }p
where “the number v will be regarded as any
quantity whatever, positive or negative”. It is
usually claimed that

Abel resolved in 1823 [5] the integral
equation arising from the brachistochrone
problem, namely

Y2 In particular he had

the derivative version

1 J' g(U)l_ du — f(X),
I'la)y (x=u)=*
with the solution

1 dt f(u

909 = rl-a)dx 3 (x—u)*

As Lutzen [6] first showed, Abel never
solved the problem by fractional calculus but
merely showed how the solution, found by other
means, could be written as a fractional
derivative. Lutzen also briefly summarized what
Abel actually did. Liouville [7], however, did
solve the integral equation in 1832. Fractional

O<ax<l

c i) Aoyl il Ka

calculus has developed especially intensively
since 1974 when the first international
conference in the field took place. It was
organized by Betram Ross and took place at the
university of New Haven, Connecticut in 1974.
It had an exceptional turnout of 94
mathematicians; the proceedings contain 26
papers by the experts of the time. It was
followed by the conferences conducted by Adam
Mc Bride and Garry Roach (University of
Strathclyde, Glasgow, Scotland) of 1989, by
Katsuyuki Nishimoto (Nihon University, Tokyo,
Japan) of 1989, and by Peter Rusev, Ivan
Dimovski and Virginia Kiryakova (Varna,
Bulgaria) of 1996. In the period 1975 to the
present, about 600 papers have been published
relating to fractional calculus [1].

Understanding non- Newtonian fluid flows
behavior becomes increasingly important as the
application of non-Newtonian fluids perpetuates
through various industries, Including polymer
processing and electronic packaging , paints ,
oils liquid polymers,glycerin
,chemical,geophysics,biorheology. However,
there is no model which can alone predict the
behaviors of all non-Newtonian fluids. Amongst
the existing model, rate type models have special
importance and many researchers are using
equations of motion of Maxwell and Oldroyd-
fluid flows. Khan, Hyder Ali, Haitao Qi. (2007)
[2] construct the exact solutions for the
accelerated flows of a generalized Oldroyd-B
fluid. The fractional calculus approach is used in
the constitutive relationship of a viscoelastic
fluid. The velocity field and the adequate
tangential stress that is induced by the flow due
to constantly accelerating plate and flow due to
variable accelerating plate are determined by
means of discrete Laplace transform. Khan,
Huder Ali, Haitao Qi. (2009) [3] Studied the
accelerated flows for a viscoelastic fluid
governed by the fractional Burgers’ model. The
velocity field of the flow is described by a
fractional partial differential
equation.et.al.(2011) [4] research for the
magnetohydrodynamic (MHD) flow of an
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incompressible generalized Oldroyd-B fluid due
to an infinite accelerating plate. The motion of
the fluid is produced by the infinite plate, which
at time t = 0" begins to slide in its plane with a
velocity At. The solutions are established by
means of Fourier sine and Laplace transforms.

Problem statement

Consideration is given to a conducting fluid
permeated by an imposed magnetic field Bo
which acts in the positive y- direction. In the
low-magnetic Reynolds number approximation,
the magnetic body force is represented by oB2u .
Consider an incompressible fractional Burgers’
fluid lying over an infinitely extended plate
which is situated in the (x,z) plane. Initially, the
fluid is at rest and at time t =07, the infinite
plate to slide in its own plane with a motion of
the constant acceleration A. Owing to the shear,
the fluid above the plate is gradually moved.
Under these considerations, the governing
equation, in the absence of pressure gradient in
the flow direction, is given by

e w2y OU o%u
L+ A"Df + 22D} )E=u(1+/v;Df)y

~M@+ A D + 23D )u
7

Wherev = — is the kinematics’ viscosity of the
yo,
fluid and y — 9B.Y .
P

The associated initial and boundary condition

are followed

Initial condition:
au(y,0)

u(y,0)= .

Boundary conditions:

uO,)=At , t>0

Moreover, the following natural conditions

w0 16U(y.t)

Have to be also satisfied. In order to solve this
problem, we shall use the Fourier sine and
Laplace transforms.

0, y>0

-0 asy—»wand t>0

Solution of the problem

The  constitutive  equations  for  an
incompressible fractional Burger’s fluid is
given by
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T =—PI +S,(1+ A°D¥ + 22“D?*)S

= u(1+ ZD/)A )
Where T is the Cauchy stress tensor,-PI denotes
the indeterminate spherical stress, S the extra
stress tensor, and also S the first Rivlin-

Ericksen tensor, where L is the velocity
gradient,u the dynamic viscosity of the

fluid, A, and A5 (< ﬂ/l) the relaxation and

retardation times, respectively, 2,2 is the new

material parameter of the Burgers’ fluid,
o and ¢z the fractional calculus parameters

such that o0<a<pg<1 and Dtp the upper
connected fractional derivative defined by
DPS=D’S+Vv-VS—LS—SL",
DPA=DPA+V-VA—LA—- AL (2)
In which DF(=0f) is the fractional
differentiation operator of order p with respect to

t and may be defined as [5]

DL ()] = —— djf(T)dr,OSpél 3

re-p) diy-7)
Here I"(-) denotes the Gamma function and
D’’S = D7 (DrS), (4)
The equations of motion in absence of body
force can be described as
N_v.T )

£ dt ’
Where p is the density of the fluid and d/dt
represents the material time derivative. Since the
fluid is incompressible, it can undergo only is
isochoric motion and hence
V-v=0, (6)

For the following problems of unidirectional
flow the intrinsic velocity field takes the form

vV =[u(y.,1),0,0] (7)
Where u(y,t) is the velocity in the x-

coordinatesdirection. For this velocity field, the
constraint ~ of  incompressibility  (6) s
automatically satisfied, we also assume that the
extra stress S depends on y and t only.
Substituting equation. (7) into (1), (5) and taking
account of the initial conditions

S(y,0)=0,S(y,00=0,y>0. ie.

being at rest up to time t = 0.

the fluid
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For the components of the stress field S, we have

S, =5,=5,=S,,=0and

SXy = Syx , this yields
ou 0 an

p A= )
o ox oy

(D7 + 010, = s 20N )
Consider that the conducting fluid is permeated
by an imposed magnetic field B, which acts in
the positive y- direction. In the low-magnetic
Reynolds number approximation, the magnetic
body force is represented by & BZu .Then, in

the absence of a pressure gradient in the x-
direction, the equation of motion yields the
following scalar equations:

ou op any
P =—F

ot ox oy
Where p is the constant density of the fluid.
Eliminating SXy between equations.(9) and (10),

~oB2u (10)

we arrive at the following fractional differential
equation

+;z(ljtﬂth'”)?—(le/llDt +A2D¥)oBiu (11)

Consider an  incompressible  fractional
Burgers’ fluid lying over an infinitely extended
plate which is situated in the (x,z) plane.

Initially, the fluid is at rest and at time t =0the
infinite plate to slide in its own plane with a
motion of the constant acceleration A. Owing to
the shear, the fluid above the plate is gradually
moved. Under these considerations, the
governing equation, in the absence of pressure
gradient in the flow direction, is given by

vma a2 OU Rl
1+ 247Dy +12th )E:U(l-'-ﬂthﬂ)W

-M @+ ADf + 2D ) (12)
Where ,, — # is the kinematics’ viscosity of the
P
fluid and |, _ @Bou_
P

The associated initial and boundary condition
are as follows:
Initial condition:

P+ 4D/ +ZZD[2‘E)%J:—(1+ ADE + 44D ?
X
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u(y’O):MZO ,

P y>0 13)
Boundary conditions:
u(@0,t)=At , t>0 (14)
Moreover, the natural conditions are
ou(y,t)
u(y,t), o —0 as y—o and t>0(15)

Have to be also satisfied. In order to solve this
problem, we shall use the Fourier sine and
Laplace transforms.

Employing the non-dimensional quantities

2
=y =y,
v L

UZW,UZV

A A? ~ A*
/11 = /11 (7)1/3 ' lz = ﬂ*z (7)1/3

- A?
and A, = 1,(—)"° (16)
v
Egs. (12) - (15) in dimensionless form are
wma . aam2ay OU o°U
A+ ADf + A3D; )E:(H D)) e
~-M@+A'Df + 22D ) 17)
2)
U (77,0) — aU (7710) — 8 U (Zlo) — O , ’7 > O (18)
or ot
U@,r)=7r ,7>0 (19)
U(n,r),M—)O, asn —>wo

and >0 (20)
Where the dimensionless mark that has been
omitted for simplicity.

Now, applying Fourier sine transform [6] to
equations.(17) and taking into account the
boundary conditions (19) and (20), we find that

(1+ijta +A§tha)aUS(§,T)
ot

= (L+4D/) (\E {r-¢U(60)

~M L+ ADf + A5DX) U (&,7) (21)
Where the Fourier sine transform

U, (&,7)of U(n,t) has to satisfy the conditions
_0U(60)_0U,(0)

us(g,O)_T_T_o; 0. (22)
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Let U_(&,s) be the Laplace transform of :\E;f ;j)
/4 S+
U s (é‘, ’[') defined by EAS M+ 252 = AT+ MsTE + MATS T2 + MASs*?)
(S+ED)(s+ ATt + 252 4 E2 1 £22057 + M + MASs™ + MAZs™™)

Q(5,8)=TUS(§,T) exp(-st)dz, s>0.  (23)Tak \/5(1 1

)

0 & &(s+¢)
ing the Laplace transform of equation.(21), 52(%5”1*/12152"172/13’15/]’1;MSZ’2+M2§’S“’2+M1§52“’2)2 )
having in mind the initial conditions (22), we get (s+&M)(s+ 48"+ 258"+ 8%+ EAS" + M+ MATS” + M;s™)
2
_ el \F (Lo ¢
Us(f! )'J; SQ X 2 53 6 5(S+§ )
24) Gs™ A S M WS M)
(S+§2)(S+/ﬁzsa-l+/1a52a+l+§2+§2/»Lﬂsﬂ+M +Mﬂfs“+M/IZ“82“) (s+§2)(s+ﬁsml+igszml+§2 +§zj’§sﬁ +M +M}'1asa +M/1;SM)
2 2 2 2

In order to obtain _ 2 i_(5+5 ‘5)£
U = L'{U, with L tas TS )

(6, 7) =L 74U, (S, 9)} E(As 4 2esM - AP M MATS 4 ML)
the inverse Laplace transform operator and to e i —
avoid the lengthy procedure of residues and (S+E)(+AS" #4577 +87 478" + M+ MA'S" + M;s™)
contour integral, we apply the discrete Laplace 2,1 1 1.1
transform method. However, for a more suitable TEst s segt &
presentation of the final results, we rewrite ot e e e
equation. (24) in the equivalent form ST s s M AT 4 MAS' 2)) (25)

- [F0 5 o)
=z s? 1
TR : ST ) X(S+ﬂf3“”+ﬂjs“”+§z+§2/1§sﬂ+M M + MASs™)
(Hé)sws sor( #8TEATM M MATST) Hence, the Eq.(25) can be written under the form
\ffsﬂg +e%8"(s+¢7) of a series as

2(s+£7) 1
1 0,&9) \f{[ P
><(S+A¥sa+1+ia52a+1+§2+§2j’ﬂsﬁ+M +M/1fsa+M/12aSZa) S S+§ é
2 2 2 — S T AT = A+ Ms T

FMAS ¢ Mzgsh-z)i(—l)m

g

By adding and subtracting the quantities
ﬂfswl,f a52a+1,§M ,fMﬂfSaand fM aSZaI
|

We get: .ZII _|)|Z

l'(J—l)'gd'(l d)'}

= i J'(| e
:\/z L X a+l 1 m+1
7 st (s+&Y) (s+&7)(s +E(§ +M))
S+ E ST A EMSP L EN ST ST £ M M+ AMASS™ ) ) _ )
a(-m+i-d-1) qa(l-i) d -d g2d
(S+ A7+ 25s™ + E2 + E A0S + M+ MAIS” + MAXs™) A ' % ’15 M &% m! s’ (26)

_\/5(5(5+azsa+l+ﬂa52a+l+é;2+4¢2/L§IS/I+M In WhiCh 5:m+2al_j_ai+ﬁd_ad'
- 2
T

+MATS” + MALS™) (A5 4 JusPet - Pt Now, applying the inversion formula term by
MM 4 M) term for the Laplace transform, equation.(26)
‘ . yields
)

X
S (S+EN) (s + AL T+ AT 4 E2 - E MG A M A MATS + MASS™)

F ¢
Nz (s+&7)

EALs T 4 As™ T - AP Ms T+ MATS TR+ MASS ™)
(s+ED)S+ AL + 0™+ EL 1 E2 Q07 + M+ MATS® + MASs™)
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U (&.7) = \F[— (1-exp(-¢°r)]

2 i 1
‘{"EJ;;)(_” gmm—m
. Lol
gﬂa—n' ol'(J—')'§d'(| 0)

ll( m+i—-d-1) qa(l-i) /‘Lfde d §2d

X[ﬂ,l O_a+1)m+ (2-6)-1 E(m)l)(2 5 (

(a+

P L@ myo

a l a
+/12 a+1)m+2 a—5)-1 E(((;nﬂ . afg)‘)(_E(§2+M) Uul)

_ ﬁgﬂ o_(a+1)m+(2+a—ﬂ—§)—1E(m) (

(a+1),(2+a-f-3) Py (5 +M)o“™)

+ M O_(a+1)m+(3—¢)‘+a)—1 E(m) (

(a+1),(3-6+a) ﬂ'l (5 + M)O'aﬂ)

+ M ﬂfa (a+1)m+(3-5)-1 E(m)l) . a)( il (4;2 + M)gaﬂ)

n Mﬂf;O' (e D)m+(3-a-6)-1 (m)

(a+1),(3— a—&)(_% (égz +M )5‘“1)]

*exp(-£%(r - o)) do (27)
Where " *" represents the convolution of two
functions and

A, >0, 28
Z:‘)innJr,u) a (28)

Denotes the generalized Mittag-Leffler function
with
dk = (n+k)z"
E¥ (z 29
wl2)= b nznll"ln+1k+y) ®)

Here, we used the following property of the
generalized Mittad-Leffler function

L_l{ k Sﬂi‘u } tﬂk-f—y—l E(k) (¢Ctﬂ)
(S}“ = C)k+l Ap ’

(Re(s) > [c[**). (30)

Finally, inverting (27) by the Fourier transform
we find for the velocity U (&, 7) the expression
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U(n,r)=uN(n,r)—gﬁmi(—nm

Ms

|'(m - |)'Z NGy J)'Z i - l)'

| j=0 i

il Je-mrisd-1) a(i-i) oA
“dii—d)! 2 ®

R

1 2 1
— +M)oc* )"
2 ¢ )o )
Sn((x+Dn+ (x+1)m+ (2-9))
+ iga(a+1)m+(2—a—o‘)—l

(a+1)m+(2-5)-1

(n+m)I(—

[Ms

(n+m)I(-

€M)y

1
nzzé NC(e+HOn+(@+1)m+(2-a-9)
+ /’iléfo_(a+l)m+(2+a—ﬂ—§)—1

0

(n+m)!(—l%(§2 + Moty

nz::;nll“((a+1)n+(a+1)m+(2+a—,8—§))

+ M O_(a+1)m+(3—§+a)—l

(n+m)!(—%(§2 +M)oety"

1
nZ::‘, NC'((e¢ +Hn+ (¢ +I)m + (3— 5 + a))
+M lfo_(a+1)m+(3fs)f1

.+ m)!(—%(éz + Moy

nzz(; NC'((e +D)n + (e +)m + (3 - 5))
+M ﬂyg O_(a+l)m+(3—a—§)—1

(n+ m)!(—ia(.»;2 + Moy

nZ::‘, NC((e+Dn+ (e +I)m+ B3—« —5)):I

xexp(—£2(r —o)dodé (31)
Whence,

U0, r)—r——j(l exp(-&?r )S'“f”)df

— 47i2 Erfe(), (32)

2Jr

Represents the velocity field corresponding
to a Newtonian fluid performing the same
motion.

In the above relation i"Erfc(.)are the

integrals of the complementary error function of
Gauss.
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a) Burgers’ model

10
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o5 i 15 26
sl
=0.8,21=2,12=0,
o 73=1,M=1,7=0.5

'b) Oldroyd-B fluid

Figure 1.- VelocityU (77, 7) versus n for

different values of ¢ when other
parameters are fixed.

101

i p—0.3

i f—0.5
05+ p—0.7

05 —4:‘9, ‘ 15 20

s}

i 0=0.1,21=2,12=1,

i A3-=1,M=1,1=0.5
ool

a)Burgers’ model

101
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[ $=0.5
05f\\ p—0.7

05 10— 15 20

! a=0.1,11=2,12=0,
s %3-=1,M=1,1=0.5
ol

b)Oldroyd-B fluid

Figure 2- VelocityU (r,7) versus 7 for

different values of £ when other
parameters are fixed.
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A2—7
3 O.‘6 d8
s}
a=0.4,B=0.6,11-5,
Do~ 13=0.5,M=1,7=1
Figure 3- VelocityU (,7)versus 7 for
different values of A, when other
parameters are fixed.
057 - —0.1
™~ 1—0.3
T~ 1—>0.5
) - 1—=0.7
02 04 06 08
5]  0=0.3,p=0.8,11=2,
— A2=1.5,33=1,M=1

Figure 4-  VelocityU (n,7) versus n for
different values of 7z when other
parameters are fixed.

03,
r a—0.2, M->3
02h ———— 450.2, M5
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o1l \\{f;«»\nh 0—0.6, M—5
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o1
. p0.8,1152,1251,
2f A3—53,120.2
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Figure 5- VelocityU (n7,7) versus 7 for different

values of «, M when other

parameters are fixed.

Results and discussion

We interpret these results with respect to the
variation of emerging parameters of interest. The
exact analytical solutions for accelerated flows
have been obtained for a Burgers’ fluid and a
comparison is made with the results for those of
the fractional Oldroyd-B fluid.
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Figure 1 is prepared to show the effects of
non-integer fractional parameters « on the
velocity field, as well as a comparison between
the fractional Oldroyd-B fluid and fractional
Burgers® fluid for fixed values of other
parameters. As seen from this figures that for
time 7 =0.5 the smaller the & , the more slowly
the velocity decays for both the fluids.
Moreover, for time 7 =0.5 the velocity profiles
for an Oldroyd-B fluid are greater than those for
a Burgers’ fluid. Its also observed that for time
T =0.5 the velocity profiles for Burgers’ fluids
approach the velocity profile of the fractional
Oldroyd-B fluid and after some time it will
become the same. Thus, it’s obvious that the
relaxation and retardation times and the orders
of the fractional parameters have strong effects
on the velocity field.

Figure 2 is prepared to show the effects of
non-integer fractional parameters /£ on the

velocity field, as well as a comparison between
the fractional Oldroyd-B fluid and fractional
Burgers® fluid for fixed values of other
parameters. It is observed that for time 7 =0.5
the velocity will increase by the increase in the
parameter 3. It is also observed that for time

T =0.5 the velocity profiles for Burgers’ fluids
approach the velocity profile of the fractional
Oldroyd-B fluid and after some time it will
become the same.

Figure 3 shows the effects of new material
parameter on the velocity field for fixed values
of other parameters. It is observed that for time
T =1 the velocity will decrease by the increase

in new material parameter A, .

Figure 4 shows the variation of time on the
velocity field for fixed values of other
parameters. It’s observed that the velocity will
increase by the increase in time and after some
time it will become the same.

Figure 5 shows the velocity changes with the
fractional parameters and the magnetic field
parameter. It is observed that for o <0.2 the
velocity will decrease by the increase in the
magnetic field M. However, one can see that an
increase in the magnetic field M for « <0.6 has
quite the opposite effect to that of ¢ <0.2.
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