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Abstract

The aim of this paper is the study of the influence of magnetic field on unsteady
flow of the second-grade fluid with constant viscosity. The equations which
controlled this type of fluid flow are complicated, so finding an analytical solution is
not easy, because it is a system of partial differential equations.We obtained an
expression for the velocity by using homotopy analysis method HAM.
It is found that the equations motion are controlled by many dimensionless
parameter, namely magnetic field parameter M and material constant a,
dimensionless film thickness p and unsteadiness parameter S.We have been studied
the influence of all the physical parameters, that mentioned above on the velocity
field, also a comparison study among unsteady flow and unsteady flow under the
influence of the magnetic field had been done.This study is done through drawing
about 75 graph by using the Mathematica package.

Keywords:Magnetic Field ; Unsteady Flow ; Second-grade Fluid With Constant
Viscosity
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1. Introduction

Magneto fluid dynamics (MFD) is that
branch of applied mathematics which deals with
the flow of electrically conducting fluids in
electric and magnetic fields. It unified in a
common framework the electromagnetic and
fluid-dynamic theories to yield a description of
the concurrent effects of the magnetic field on
the flow and the flow on the magnetic field.

The magneto hydro dynamic (MHD)
phenomenon is characterized by an interaction
between the hydrodynamic and boundary layer
and  the electromagnetic field. The studies of
boundary layer flows of viscous and non-
Newtonian fluids over a stretching surface have
received much attention because of their
extensive applications in the field of metallurgy
and chemical engineering, for example, in the
extrusion of polymer sheet from a dye or in the
drawing of plastic films. Such investigations of
magneto hydro dynamic (MHD) flows are very
important industrially and have applications in
different areas of researches such as petroleum
production and metallurgical processes,
it is now well known that in technological
applications the non-Newtonian fluids are more
appropriate than the Newtonian fluids. The non-
Newtonian fluids finding increasing applications
in industry such as the cooling of metallic plate
in cooling bath, wire drawing, hot rolling etc.
Glass blowing, fiber production, crystal growing
and paper production also involves the flow due
to a stretching surface. Many applications in
industry has mentioned in [1-4].

In view of the differences between the non-
Newtonian fluids and Newtonian fluids, several
models of non-Newtonian fluids have been
proposed, which cannot be described simply as
of Newtonian fluids. Such fluids have received
special status from the researchers in the  field,
as the second grade for which one can hope to
obtain an analytic solution. Since the pioneering
work of Sakiadis and Schlichting [5-7] shows
various aspects of the stretching problem
including Newtonian and non-Newtonian fluids
which have been studied by several researchers.

Hang Xu. [8], used an analytic technique,
namely the homotopy analysis method (HAM),
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to study the flow and heat transfer
characteristics in an electrically conducting fluid
near an isothermal sheet. The sheet is linearly
stretched in the presence of a uniform free
stream of constant velocity and temp-rature. The
effects of free convection and internal heat
generation or absorption are also considered.
Within the framework of boundary layer
approximations, he explicit, totally analytic and
niformly valid solutions governed by a set of
three fully coupled, highly non-linear equations
are obtained.

Hayat and Sajid [9], studied the problem of
laminar flow and heat transfer of a second grade
fluid over a radially stretching sheet is
considered. The axisymmetric flow of a second
grade fluid is induced due to linear stretching of
a sheet. The heat transfer analysis has been
carried out for two heating processes, namely (i)
with prescribed surface temperature (PST-case)
and (ii) prescribed surface heat flux (PHF-case).
Introducing the dimensionless quantities the
governing partial differential equations are
transformed to ordinary differential equations.
The developed non-linear differential equations
are solved analytically using (HAM).

Kayvan Sadeghy et.al. [10], in their paper
the flow of an upper-convected Maxwell (UCM)
fluid is studied theoretically above a rigid plate
moving steadily in an otherwise quiescent fluid.
It is assumed that the Reynolds number of the
flow is high enough for boundary layer
approximation to be valid. Assuming a laminar,
two-dimensional flow above the plate, the
concept of stream function coupled with the
concept of similarity solution is utilized to
reduce the governing equations into a single
third-order ODE. It is concluded that the fluid's
elasticity destroys similarity between velocity
profiles; thus an attempt was made to find local
similarity solutions. Three different methods
will be used to solve the governing equation: (i)
the perturbation method, (ii) the fourth-order
Runge-Kutta method, and (iii) the finite-
difference method. The velocity profiles
obtained using the latter two methods are shown
to be virtually the same at corresponding
Deborah number. The velocity profiles obtained
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using perturbation method, in addition to being
different form those of the other two methods,
and are dubious in that they imply some degree
of reverse flow. The wall skin friction
coefficient is predicted to decrease with an
increase in the Deborah number for Sakiadis
flow of a UCM fluid.

Z. Abbas et.al. [1] studied the flow problem
in a thin liquid film of second grade fluid over
an unsteady stretching surface is investigated.
By means of suitable transf-rmations, the
governing nonlinear partial differential equation
has been reduced to the nonlinear ordinary
differential equation. The developed nonlinear
equation is solved analytically by using the
homotopy analysis method (HAM). An
expression for analytic solution is derived in the
form of series. The convergence of the obtained
series is shown explicitly through numerical
computations. The effects of various parameters
on the velocity components are shown through
graphs and discussed. The values of the skin
friction coefficient for different emerging
parameters are also tabulated.

The effects of the various parameters of

interest for the velocity are pointed out.
The homotopy analysis method (HAM) can be
used to solve the nonlinear problems, this
method is a very powerful technique developed
by Liao [11-13] to obtain the expression for
velocity fields and characteristic by:

e Are valid strongly nonlinear problems
even if a given nonlinear problems does
not contain any small /large  parameters.

o Provide us with a convenient way to
adjust the convergence region and rate of
approximate.

e Provide us with a freedom to use different
basis functions to approximate a nonlinear
problem.

Our problem has many applications in
different sciences for example:

e Oil supply system.
e In medical science Magnetic Resonance

Imaging .

2. A mathematical Formulation

Let (x, y, ) denote the Cartesian coordinates,
tangential and axial directions, V = (u, v, w) the
velocity components in these directions, and t is
the time.

Consider the MHD unsteady flow of a
second-grade fluid in a pipe the fluid is
electrically conducting in the presence of an
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applied magnetic field B,. The electric and
induced magnetic fields are neglected. The
viscosity of the fluid is constant.

It is well known that the second grade fluid
has Cauchy stress tensor T of the following form

[1]:

_ 2
T =-PI +,uA1+oL1A2 +oc2A1 ,

where P is the hydrostatic pressure, | is the
identity tensor, p is the dynamic viscosity,

a, (i =1,2) are material constants.

Moreover, thermodynamics imposes the follo-
wing constrains, [14]:

u>20, o >0, a +a,=0.

1~ 1 72
The Rivlin-Ericksen tensors are given by, [14]:

A=W+ )

and
n =%+An_l(V\7)+(W)T An—l
Dt
Where DA, = oA,

+V-V)A
o v -V)A,

We need in our problem to calculate A, when
n=2, thus we start with:

DA oA

71:—1+(\7-V)A1

Dt ot

We should be noted that the equations which
govern the unsteady boundary layer were flow

and satisfy a—quﬂ:O, we get:
OX oYy

divT =V.T = +a,[u +
Mgy +enllyy "
uus o +vu_ o 4+U U +u U ]
yxy yyy XYy oy oYX
The momentum equation [15] is given by:
p[Z—:+ug—;+v2y—u]=divT+J xB - (2)

Where p is density, divT is the divergence of
stress tensor, and the Lorentz force is given by
using Ohm's low [16]:

J =0o(E +V xB)
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Where E is electricity strength, V is the velocity
vector and B is the applied magnetic field since
there is no electric strength then E=0 we have:

J=0oW xB)

i j K
VxB=|u v 0 :uBOIZ
0 BO 0
From which
ik
JxB=|0 0 ouB |=-oBZ
0 0
0 BO 0

Substituting the divergence of stress tensor of
the problem 1 in the momentum equation 2
we have:

+au  +uu

[au +uau W 8u]_ .
pat OX oy #W 1" yty yxy

2
WU 4U U +U U ]-ofu
yyy Xy oy yx] ﬂo

Divided the above equation by p we have:

ou ou  au %

—+U—+vV—=0u  +—Ju +uu

ot ox oy Woop Wy yxy
oﬁg

+vu +U U 44U U ]-——u

YWy XW oy oyt p
@)

Where v = H
Yo

And the corresponds conditions are:
u=U,v=0aty=0,
dh
a—”:O,v:—aty: h
oy dt

in the last equation, unsteady state, also if there
is no magnetic field, we obtain the
corresponding equation as given [17].

We can write down the momentum equation
in non-dimensional form through using scaling
and order of magnitude analysis.

Following Williams and Rhyne [5], we use the
following new similarity transformations:
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bx ' bv
u=——~F'(n) v==—F@m |,
1-at 1-at

1

n= \F(l—at)_zy
19}

The substituting of these quantities into the
momentum equation (3) gives:

abx abx b x
nf "+ f'+ fr -
2 2 2
(1-at) (1-at)

2(1-at)

2 2 2
b x b x oy 2ab x
ff " o_ f m + 7[ f m +
2 2 3
(1-at) p uv(l-at)

2 3 3
ab X b x b x
nf " + ff”"+ ———ff"
3 3 3
v(l-at)

(1-at)

2v(l—at)

3 3 2
b x b x oB bx
f //2 _ ff IV/V] _ o
3 3

v(l-at) p l-at

f ’

v(l-at)

The Multiplication of the above equation

@-at)?
by# gives:
b“x
(08
a " a ! !2 " m 1 2a m
—nf "= == [ 1"+
2b b p v(l-at)
a 2b b 9 b
nf "+ ff"+ fr - ff "]
2v(1-at) v(l-at) v(l-at) v(l-at)
2
oBn 1-at
Bt
p b
We select:
2
ba oB~ 4
S :E , o= 1 , M _7017&:
b u(dl—at) p b
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Where M is the magnetic number (or M is the
MHD parameter), s is unsteadiness parameter
and o is material constant.

Then the last equation becomes:

1
Frof 2 st el f T

1
S(Zf ”!+Enf ﬂ!()+f ”2_ff ”Il]_MfI:O“ (4)

f=0, f'=1 atn=0,

f :%ﬂs,f”:o at n=4.

We will solve Egs. (4) analytically using
HAM in the next section.

3. Analytical Solution

In order to solve the Eq. (4) by (HAM), we
select:
2-S 2

5 @B -mn
ap . (5)

as initial approximation of f, which satisfy the
linear operator and corresponding boundary
condition. We use the method of higher order
differential mapping [1] to choose the auxiliary
linear operator ['which is defined by:

fo(n)=r7—

4

d’f
[(F) = —— , such that
4
dn
3 2 B
j(cln +0277 +0377+c4)_0

where cl, c2 ,c3 and c4are arbitrary constants.

Let p € [0, 1] denote an embedding
parameter and h a non-zero auxiliary parameter.
We construct the following zeroth-order
deformation problem

(1(ér;) [ [f*(; p) = fo(n; p)] = ph NI [f*(m; p)]

0;p) =0, f"*(0;p) =1,

S
fﬂ&pﬁ=fi”ﬂﬁm=0-

Where we define a nonlinear operator
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2

*

3 *
of (mp) | o (mp)

N [f (mp)]=
1

For p=0and p = 1, we respectively have:

Pm; 0) = fom).F(m; 1) = f(n; p) .. (8)
when p increases form 0 to 1, f*(n; p) vary form

fo(m) to f(n; p).

Using Taylor's theorem and Egs. (8), we can
write:

* B 0 m
fmp) =t m+ X f_(p
m=1 . (9)

o™t (i p)

1
Where f () = —

p=0

The convergence of the series (9) depends
upon h. We choose h in such a way that the
series (9) is convergence at p = 1; then due to
equation. 8 we have:

f(77)=f0(77)+ > fm(n)
m=1

Differentiating m times the zero-order
deformation equation.6 with respect to p and
then dividing it by m! and finally setting p = 0,
we get the following high-order deformation
equation:

[ Tfn(m) = Xm fna (W] = h Ry (Frna(m)]

fO=f ©@©=f (A= (5=0
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O,m<1
where X = and
m Im>1

f ,
m(m—li7

(m —1)! P

Substituting the equation. 7 in to equation. 10
we have:

For the solution of the high-order problem,
we use the symbolic computation software
MATHEMATICA up to first few order of
approximation.

It is found that the general solution of
momentum equation is given by:

5m +3 n
fam="% n'a
n=0 . (12)
Where a are the coefficient of f () for
m,n m

m=>1.
Now, we try to find the above coefficient:
1. The initial approximation fo(n) defined by

equation. 5 has the same structure as equation.
11.

If we assume that the first (m-1) solutions
fk (m (k=01 2,..., m-1) have the same

structure as (11), then we want to prove that
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fm (7) has the same structure as (11) to prove

this, we have form equation. 11:

of 5m + 3 5m + 3
M- Y nn—l = X (n+Da 17n
on qoq MmN n -0 m,n+1
5m +3 n
=2 bm n’
n=0 " . (12)

0 fm =5m +3C )
2 m,n
on~  n=0 . (13)
0 fm 5m +3 n
-y d n
3 m,n
o~ n=0 . (14)
0 fm :5m +3e nn
4 m,n
on- n=0 .. (15)
Where
b = 1
m,n (n+ )am,n+1
= b
Cm,n (n+1) m,n+1
d = 1
n (n+ )Cm, +1

=(n+
m,n m,n+1

m-1 0f  m-15m-1-k)+3 )
xf re X X a k
k=0"1 5% k=0 n-o MUK

5k +3

z ck nn

n=0 N

m-1 min{n, 5k + 3} n
= X )

Ck .a n
K =0 = maxq0,n —5m +5k +2p ) M-tk

From above equation, we have:

. (16)
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m-1 min{n, 5k + 3}
a = X z c .a
m,n ) K,j m-1-k,n-j
k =0j = max{0,n —5m + 5k + 2}
_10f of
m-1 m-1-k k _ 2n
2 _ﬁm n’
k=0 O on . (17)
3
m-1 0 fk 2n
> f ——=0_ 7
m-1-k 3 m,n
k=0 an . (18)
2 2
_10°f o f
mzl m-1-k k _y 2n
2 2 m,n
k = on on . (19)
4
m-1 0 fk 2n
> f — = n
m-1-k 4 m,n
k=0 on . (20)
Where
m-1 min{n,5k +3}
B =3 2 b, b .
m.n k =0 j =max{0,n—-5m +5k +2} k. m--k.n-]
m-1 min{n, 5k + 3}
s = X > d a
m,n . k,j m-1-k,n—j
k =0j = max{0,n —5m + 5k + 2}
m-1 min{n, 5k + 3}
v = Z > c c
m,n . k,j m-1-k,n-j
k =0j = max{0,n —5m + 5k + 2}
m-1 min{n, 5k + 3}
® = X z e a
m,n k,j m-1-k,n—j

k =0j = max{0,n - 5m + 5k + 2}

Substituting equations.12, 13, 14, 15,16,17, 18
and 19 into equation. 20, we have:

n 5m -2
n -s{ X bm
n=0
n 5m -2
n }+as{2 X d n
n m-1,n
n=0

n

n

m-1,n -1n

n
5m -2

M"I-M X b
n
n= n=0

77n +
m-1,n

2n 2n 2n
o - +a(26 +
{m’nn ’Bm,n” ( mon”

The above equation is the right hand side of
the following equation

[ [fa(M) = Xm f-1()] =h Rin(n)
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By solving the last equation, we found that
the general solution is given by:

5m -2 n
f = Y a
m(77) X m—1n”
n=0
5m -2
m-1,n
[T nn+4
n=o (n+H(n+2)(n +3)(n +4)
b
5m -2 1
-s{ X m-=n Un+4+

n=o0 (M+H(n +2)(n +3)(n +4)

15m -2 ¢

m-1n
Ty 77n+5}+
2 n =g (n+2)(n +3)(n +4)(n +5)
d
5m -2
m-1n
as{2 ¥ L

n=0 (n+2)(n +2)(n +3)(n +4)

e
15m -2 m-1n
Ty ) n+5}+

n
2 020 (n+2)(n+3)(n+4)(n+5) . (21)

Where

1 5m -2 P
c =—1I|y > n(n-1pB a -
1 64 m n=0 m-1,n

ﬂn+2a
5m —2 m-1n+1
M

n=0 n+2

2n +2
B (a -8B +aly 6 -—o )
h[ m,n m,n m,n m,n m,n

(2n +1)(2n + 2)

+2

a
m-1n+1 15Mm-2
+— X

2n=0

n
5m—2ﬂ
-s( Z

n=0 n+2

n+3
(n+1)p a 5m _ 2

m-1,n+2 n+2
)+ X (n+3)B a
n+3 n=0 m-1,n+3

5m -2 1
+aS( X (n +3)ﬂn +2a -
n=0

5m -2
3
T (+nm+ap" T a
n=0 '

1 5m -2
A -t M
m m-1n
128 n=0
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n+3
a
sm -2 7 m-1n+1
Y2 —+h(
n=0 n+2
M2 —p taly +6 e )
m,n m,n m,n m,n m,n
(2n +1)(2n + 2)
n+2
5m—2ﬁ _ 1
(3 m 1,n+2+7
n=0 n+2 2
5m—2(n+1)'3n+3am_1n+2 5m - 2
> ' ) > (n+3)
n=0 n+3 n=0
n+2 5m -2 n+2
B a +sa(2 X (n+3)p  “«a
m-1,n+3 m-1,n+3
n=20
15m—2
28 Tmanm+ap" 3 M) +
2n—0 m-1n+4
n+4
5m -2 sm-2/8 @
68y > pa My . m-bn+l
m oo m-1n n_o (N+2)(n+3)(n+4)
2n +4
N —p valy 46— )
h( m,n m,n m,n m,n m,n —S(
(2n +1)(2n + 2)(2n + 3)(2n + 4)
n+4 n+5
a 1 a
5m272ﬂ m-1n+1 £5m72(n+)ﬂ m—l,n+2)
neo M+2)n+3)n+4) 2, _g4 (n +3)(n +4)(n +5)
n+4 n+4
sm-2/ @ sm-2/ @
r Y m—1,n+3+$0t(2 5 m-1n+3
n=0 (n+4) n=0 (n+4)
n+5
15m -2 (n+1)pB a 1 4
X TS,
2nh=0 (n+5)
1 3 5m -2 n_o
CZ=—73(—ﬁ (Zm 2z n(n-1p
4 n=0
n+2
sm -2/ qn —1n+1
a -M X '
m-1n n=o n+2
2 2
B e B +aly +5 —o )
+h( m,n m,n m,n m,n m,n
(2n +1)(2n +2)
n+2
a
sm -2/ m-1n+1 1
-s( X +—

n+3
n+1 a
5m 2 ( )b m-1n+2

> )+
n=0 n+3

5m -2
s n+3p" %
n=0

+sa(2
m-1n+3

5m -2
s m+3p" %

1 3+
n=0 m-1n+

15m -2
- X
2n=0

(n+D(n+ 4)ﬂn * 3a

IRVELTIE

n+4

5m—2ﬂ a
-M X
n=0 (n+2)(n +3)(n +4)

m-1n+1

+h(

+6 - )

m,n m,n

(a -B
m,n

+a(y
m,n m,n

(2n +1)(2n + 2)(2n + 3)(2n + 4)

n+4
sm-2#8 2
s( 2
n=o (N+2)(n+3)(n+4)

m-1n+1

n+5
15m_2(n+1)ﬁ a

5 m-1n+2
L=
2420 (n +3)(n +4)(n +5)
n+4
sm-2/ 2
m-1n+3
z +
n=0 (n+4)
n+4
[04
sm 2/ m-1n+3 1
sa(2 X +—
n=o0 n+4 2
n+5
n+1 a
5m — 2 ( 1A m-1n+4
2 ).
n+5

n=20
cg=0forallm>0andc, =0 forallm > O.

Finally, to obtain the coefficient am of the

function fm (77) , substitute the cland c, values

into equation (21) and equating the equal power
of ».

We obtain in fact the following explicit,
totally analytic solution of the present flow.

f(n)= X frn
m=0
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=i {SM{S[ 5%/| a_ 7 ﬂ (22) 0} T
- Im " / S -
Mo>oln=1m=n-1™" wh e Tt — %700
P - 0=0.3
4. Convergence of the solution w0 e /,',7/

It is noticed that the explicit, analytical i &7 " =
expression (11) contains auxiliary parameter h. 7N A a=1.0
As pointed out by Liao [12], the convergence 0t o /
region and rate of approximations given by O.sz,'[ \
homotopy analysis method are strongly )
dependent upon h. figure 1 portray the h-curve B EETI S S v

of the velocity profile. The range for admissible )

value of h for the velocity is ~1.3<h <-0.2.  Figure 3- Together, M=1,8=0.2,3=1,h=-0,8.
We see that series given by equations. (22) As dimensionless film thickness "B"
converges in the whole region of » when jncreases, there is an increasing in the
h =-0.8. This value of h lie in the admissible velocity range. See figure 4.

range of hf *'(0)

‘ 10000 - J—
010F TN
S000F A e, RRED
N ‘ L e T —— o B =0.2
o [ 5 5 N 10 0051 3
‘\ 3000 \\\ ‘.I,r‘"" . . - B =0.5
h | Cooo | S ‘
J‘ — ‘\ 2 06 . 08 w-=-- p=08
| \ .
‘ [ 20000 F ~w ot \ ,,,,, B =1.0
Figure 1- H-curve for velocity at second-order '
approximation [0 :
5. Results and Discussion sl \
we have studied the effects of MHD Figure 4

pressure "M", material constant "o,
dimensionless film thickness "g" and
unsteadiness parameter "S".

As unsteadiness parameter "s"
increases, there is an increasing in the

. ) velocity range. See figure 5.
As MHD parameter increases, there is small

decreasing in the velocity range. See figure 2.

030t
011
— 0251 -~ =
010 _ M=4 P _S=02
— 00f
009 - M=3
— M=2 015
008}

. M=1 010F
007 |-

005 -

[ 02 04 06 08 10

Figure 2- Together, S=0.2, =1, a=0.2, h=0,8.

Figure 5

n.n

As material constant "o increases,
there is a decreasing in the velocity
range. See figure 3.
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The comparison will be given in following
table 1.

Table 1-Velocity Comparison between unsteady
flow and unsteady flow under the

influence of the magnetic field for a =
02,8=0.2,S=0.2,h=-0.8,1=0.5.

Unsteady flow
with out magnetic
field

unsteady flow
under the

influence of the

magnetic field

0.104122 0.1021400

0.104122 0.1001180
O 104122 O 0980559
l 0.104122 0 0959555

From table 1 we can see that, as expected, the
velocity in unsteady flow is greater than the
velocity in unsteady flow under the influence
of the magnetic field.
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