
Qasim and Abdlhadi                                         Iraqi Journal of Science. Vol 54.No.2.2013.Pp 409-418 
 

  

 
The Effect of Mhd on Unsteady Flow of A Second Grade Fluid Film Over 

an Unsteady Stret Ching Sheet 
 

Hanan F. QasimP

*1
P and Ahmed M. Abdulhadi P

2    

P

1 
PDepartment of Mathematics , College of Education Ibn Al Haytham ,University of Baghdad,Baghdad,Iraq. 

P

2
PDepartment of Mathematics,College of Science,University of Baghdad, Baghdad,Iraq. 

 
Abstract  
     The aim of this paper is the study of the influence of magnetic field on unsteady 
flow of the second-grade fluid with constant viscosity. The equations which 
controlled this type of fluid flow are complicated, so finding an analytical solution is 
not easy, because it is a system of partial differential equations.We obtained an 
expression for the velocity by using homotopy analysis method HAM. 
It is found that the equations motion are controlled by many dimensionless 
parameter, namely magnetic field parameter M and material constant α, 
dimensionless film thickness β and unsteadiness parameter S.We have been studied 
the influence of all the physical parameters, that mentioned above on the velocity 
field, also a comparison study  among unsteady flow and unsteady flow under the 
influence of   the magnetic field had been done.This study is done through drawing 
about 75  graph by using the Mathematica package.  
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1. Introduction  
     Magneto fluid dynamics (MFD) is that 
branch of applied mathematics which deals with 
the flow of electrically conducting fluids in 
electric and magnetic fields. It unified in a 
common framework the electromagnetic and 
fluid-dynamic theories to yield a description of 
the concurrent effects of the magnetic field on 
the flow and the flow on the magnetic field. 
     The magneto hydro dynamic (MHD) 
phenomenon is characterized by an interaction 
between the hydrodynamic and boundary layer 
and     the electromagnetic field. The studies of 
boundary layer flows of viscous and non-
Newtonian fluids over a stretching surface have   
received much attention because of their 
extensive applications in the field of metallurgy 
and chemical engineering, for example, in the 
extrusion of polymer sheet from a dye or in the 
drawing of plastic  films. Such investigations of 
magneto hydro dynamic (MHD) flows are very 
important industrially and have applications in 
different areas of researches such as petroleum 
production and metallurgical processes,  
it  is now well known that in technological 
applications the non-Newtonian fluids are more 
appropriate than the Newtonian fluids. The non-
Newtonian fluids finding increasing applications 
in industry such as the cooling of metallic plate 
in cooling bath, wire drawing, hot rolling etc. 
Glass blowing, fiber production, crystal growing 
and paper production also involves the flow due 
to a stretching surface. Many applications in 
industry has mentioned in [1-4].  
     In view of the differences between the non-
Newtonian fluids and Newtonian fluids, several 
models of non-Newtonian fluids have been 
proposed, which cannot be described simply as 
of Newtonian fluids. Such fluids have received 
special status from the researchers in the     field, 
as the second grade for which one can hope to 
obtain an analytic solution. Since the pioneering 
work of Sakiadis and Schlichting [5-7] shows 
various aspects of the stretching problem 
including Newtonian  and non-Newtonian fluids 
which have been studied by several researchers.  
     Hang Xu. [8], used an analytic technique, 
namely the homotopy analysis method  (HAM), 

to study the flow and heat transfer 
characteristics in an electrically conducting fluid 
near an isothermal sheet. The sheet is linearly 
stretched in the presence of a uniform free 
stream of constant velocity and temp-rature. The 
effects of free convection and internal heat 
generation or absorption are also considered. 
Within the framework of boundary layer 
approximations, he explicit, totally analytic and 
niformly valid solutions governed by a set of 
three fully coupled, highly non-linear equations 
are obtained.   
     Hayat  and Sajid  [9], studied the problem of 
laminar flow and heat transfer of a second grade 
fluid over a radially stretching sheet is 
considered. The axisymmetric flow of a second 
grade fluid is induced due to linear stretching of 
a sheet. The heat transfer analysis has been 
carried out for two heating processes, namely (i) 
with prescribed surface temperature (PST-case) 
and (ii) prescribed surface heat flux (PHF-case). 
Introducing the dimensionless quantities the 
governing partial differential equations are 
transformed to ordinary differential equations. 
The developed non-linear differential equations 
are solved analytically using (HAM). 
     Kayvan Sadeghy  et.al. [10], in their paper 
the flow of an upper-convected Maxwell (UCM) 
fluid is studied theoretically above a rigid plate 
moving steadily in an otherwise quiescent fluid. 
It is assumed that the Reynolds number of the 
flow is high enough for boundary layer 
approximation to be valid. Assuming a laminar, 
two-dimensional flow above the plate, the 
concept of stream function coupled with the 
concept of similarity solution is utilized to 
reduce the governing equations into a single 
third-order ODE. It is concluded that the fluid's 
elasticity destroys similarity between velocity 
profiles; thus an attempt was made to find local 
similarity solutions. Three different methods 
will be used to solve the governing equation: (i) 
the perturbation method, (ii) the fourth-order 
Runge-Kutta method, and (iii) the finite-
difference method. The velocity profiles 
obtained using the latter two methods are shown 
to be virtually the same at corresponding 
Deborah number. The velocity profiles obtained 
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using perturbation method, in addition to being 
different form those of the other two methods, 
and are dubious in that they imply some degree 
of reverse flow. The wall skin friction 
coefficient is predicted to decrease with an 
increase in the Deborah number for Sakiadis 
flow of a UCM fluid.  
     Z. Abbas et.al. [1] studied the flow problem 
in a thin liquid film of second grade fluid over 
an unsteady stretching surface is investigated. 
By means of suitable transf-rmations, the 
governing nonlinear partial differential equation 
has been reduced to the nonlinear ordinary 
differential equation. The developed nonlinear 
equation is solved analytically by using the 
homotopy analysis method (HAM). An 
expression for analytic solution is derived in the 
form of  series. The convergence of the obtained 
series is shown explicitly through numerical 
computations. The effects of various parameters 
on the velocity components are shown through 
graphs and discussed. The values of the skin 
friction coefficient for different emerging 
parameters are also tabulated.    
     The effects of the various parameters of 
interest for the velocity are pointed out. 
The homotopy analysis method (HAM) can be  
used to solve the nonlinear problems, this 
method is a very powerful technique developed 
by Liao [11-13] to obtain the expression for 
velocity fields and characteristic by: 
• Are valid strongly nonlinear problems 

even if a given  nonlinear problems does 
not contain any small /large     parameters. 

• Provide us with a convenient way to 
adjust the convergence   region and rate of 
approximate. 

• Provide us with a freedom to use different 
basis functions to approximate a nonlinear 
problem.   

     Our problem has many applications in 
different sciences for example: 
• Oil supply system. 
• In medical science Magnetic Resonance 

Imaging . 

2. A mathematical Formulation 

     Let (x, y, z) denote the Cartesian coordinates, 
tangential and axial directions, V = (u, v, w) the 
velocity components in these directions, and t is 
the time.     

     Consider the MHD unsteady flow of a 
second-grade fluid in a pipe the fluid is 
electrically conducting in the presence of an 

applied magnetic field 0β . The electric and 
induced magnetic fields are neglected. The 
viscosity of the fluid is constant.  

     It is well known that the second grade fluid 
has Cauchy stress tensor T of the following form 
[1]: 

2
1 1 2 2 1T PI A A Aµ= − + + α + α ,  

where P is the hydrostatic pressure, I is the 
identity tensor, μ is the dynamic viscosity, 

( 1, 2)i iα =  are material constants.  

Moreover, thermodynamics imposes the follo-
wing constrains, [14]: 

0µ ≥  ,    01α ≥  ,   01 2α α+ = . 

The Rivlin-Ericksen tensors are given by, [14]: 

1A = ( )v∇


+ ( )Tv∇


  

and  

1
1 1( ) ( )n

n n n
DA TA A v v A

Dt
−

− −= + ∇ + ∇
   

Where ( )n n
n

DA A v A
Dt t

∂
= + ⋅∇

∂


                                                                

We need in our problem to calculate nΑ  when 
n=2, thus we start with:  

1 1 ( )
1

D A
v A

Dt t

Α ∂
= + ⋅ ∇

∂


                             

     We should be noted that the equations which 
govern the unsteady boundary layer were flow 

and satisfy 0u v
x y
∂ ∂

+ =
∂ ∂

, we get: 

[1
]

divT T u uyy yty
uu vu u u u uyxy yyy x yy y yx

µ α= ∇ ⋅ = + +

+ + +
 .. (1)  

The momentum equation [15] is given by: 

[ ]u u uu v div J B
t x y

ρ ∂ ∂ ∂
+ + = Τ + ×

∂ ∂ ∂
           .. (2)                                             

Where ρ is density, divT is the divergence of 
stress tensor, and the Lorentz force is given by 
using Ohm's low [16]: 

( )J E V Bσ= + ×  
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Where E is electricity strength, V is the velocity 
vector and B is the applied magnetic field since 
there is no electric strength then E=0 we have: 

( )J V Bσ= ×  

0 0
0 00

i j k
V B u v uB k

B

 
 

× = = 
 
  

  

From which 

20 0 0
0 00

i j k
J B uB B uo

B

σ σ

 
 
 × = = −
 
 
 

 

Substituting the divergence of stress tensor of 
the problem  1 in the   momentum equation  2 
we have: 

[ ] [
1

2]
0

u u u
u v u u uu

yy yty yxyt x y

vu u u u u u
yyy x yy y yx

ρ µ α

σβ

∂ ∂ ∂
+ + = + +

∂ ∂ ∂

+ + + −

 

Divided the above equation by ρ we have: 

1 [

2
0]

u u u
u v u u uu

yy yty yxyt x y

vu u u u u u
yyy x yy y yx

α
υ

ρ

σβ

ρ

∂ ∂ ∂
+ + = + +

∂ ∂ ∂

+ + + −

  

                                                          .. (3)                

Where υ µ
ρ

=     

  And the corresponds conditions are: 

u = U, v = 0 at y = 0,                                                                                   

0,
u dh

y dt
ν

∂
= =

∂
at y = h                                                                                    

in the last equation, unsteady state, also if  there 
is no magnetic field, we obtain the 
corresponding equation as given [17]. 

     We can write down the momentum equation 
in non-dimensional form through using scaling 
and order of magnitude analysis. 

Following Williams and Rhyne [5], we use the 
following new similarity transformations: 

( )
1

bx
u f

at
η′=

−
  , ( )

1

b
v f

at

υ
η= −

−
    , 

1

2(1 )
b

at yη
υ

−
= −  

The substituting of these quantities into the 
momentum equation (3) gives: 

2
2

2 2 2
2(1 ) (1 ) (1 )

2 2 2
21 [

2 2 3
(1 ) (1 ) (1 )

2 3 3

3 3 3
2 (1 ) (1 ) (1 )

abx abx b x
f f f

at at at

b x b x ab x
ff f f

at at at

ab x b x b x
f f f f f

at at at

′′ ′ ′η + + −

− − −

α
′′ ′′′ ′′′= + +

ρ− − υ −

′′′′ ′ ′′′ ′ ′′′η + +

υ − υ − υ −

 

23 3
2 0]

3 3
1(1 ) (1 )

Bb x b x bx
f ff f

atat at

σ
′′ ′′′′ ′+ − −

ρ −υ − υ −

 

The Multiplication of the above equation 

by
2(1 )

2
at

b x

−
 gives: 

22 1 [

2 (1 )

a a a
f f f ff f f

b b at

α

′′ ′ ′ ′′ ′′′ ′′′η + + − = + +

ρ υ −

2 2
]

2 (1 ) (1 ) (1 ) (1 )

a b b b
f f f f ff

at at at at

′′′′ ′ ′′′ ′′ ′′′′η + + −

υ − υ − υ − υ −

1
2
0B at

f

b

σ −
′

ρ

−         

We select: 

a
s

b
=  , 1

(1 )

b

atµ

α
α =

−
 ,  

2
10

B at
M

b

σ −
=

ρ
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Where M is the magnetic number (or M is the 
MHD parameter), s is unsteadiness parameter 
and α is material constant. 

Then the last equation becomes: 

12 ( ) 2
2

f f ff s f f f f′′′ ′ ′′ ′ ′′ ′ ′′′− + − + η + α[ +  

1 2(2 ) ] 0
2

s f f f ff Mf′′′ ′′′′ ′′ ′′′′ ′+ η + − − = .. (4)   

0f =   ,     1f ′ =     at 0η = ,  

1
2

f Sβ= , 0f ′′ =   at η β= . 

     We will solve Eqs. (4) analytically using 
HAM in the next section.  

3. Analytical Solution  

     In order to solve the Eq. (4) by (HAM), we 
select: 

2 2( ) (3 )
0 24

S
f η η β η η

β

−
= − −

                     .. (5)                                      

as initial approximation of f, which satisfy the 
linear operator and corresponding boundary 
condition. We use the method of higher order 
differential mapping [1] to choose the auxiliary 
linear operator ʆ which is defined by:    

ʆ (f) 
4

4
d f

dη
=             , such that                                                                  

ʆ 3 2( ) 0
1 2 3 4

c c c cη η η+ + + =                                                                   

where 
1

c , 
2

c ,
3

c and 
4

c are arbitrary constants. 

     Let p ∈  [0, 1] denote an embedding 
parameter and h a non-zero auxiliary parameter. 
We construct the following zeroth-order 
deformation problem 

(1-p) ʆ [f*(η; p) – fR0R(η; p)] = ph Ɲ1 [f*(η; p)] 
..(6)                                         

f*(0; p) = 0, * (0; ) 1f p′ =  , 

* ( ; )
2

S
f p

β
β = , * ( ; ) 0f pβ′′ = .           

Where we define a nonlinear operator  

2
3 * *

( ; ) ( ; )*
[ ( ; )]

1 3

f p f p
N f p

η η
η

ηη

∂ ∂
= − +

∂∂

 
 
 
 

2 * * 2 *
( ; ) ( ; ) 1 ( ; )*

( ; )
2 22

f p f p f p
f p s

η η η
η

ηη η

∂ ∂ ∂
− + η

∂∂ ∂

 
 
 
 

* 3 * 3 * 4 *
( ; ) ( ; ) ( ; ) 1 ( ; )

2 2
3 3 42

f p f p f p f p
s

η η η η

η η η η

∂ ∂ ∂ ∂
+α[ + + η

∂ ∂ ∂ ∂

 
 
 
 

2
2 * 4 * *

( ; ) ( ; ) ( ; )*
( ; ) ]

2 4

f p f p f p
f p M

η η η
η

ηη η

∂ ∂ ∂
+ − −

∂∂ ∂

 
 
 
 

   (7)                                                                                                          

     For p = 0 and p = 1, we respectively have: 

f*(η; 0) = fR0R(η),f*(η; 1) = f(η; p)  .. (8)                                                      
when p increases form 0 to 1, f*(η; p) vary form 
fR0R(η) to f(η; p).  

     Using Taylor's theorem and Eqs. (8), we can 
write: 

* ( ; ) ( ) ( )
0 1

mf p f f p
mm

η η η
∞

= + ∑
=          .. (9)                                                       

Where  
*1 ( ; )

( )
!

0

m f p
f
m mm p p

η
η

∂
=

∂ =

                                              

     The convergence of the series (9) depends 
upon h. We choose h in such a way that the 
series (9) is convergence at p = 1; then due to 
equation. 8 we have: 

( ) ( ) ( )
0 1

f f f
mm

η η η
∞

= + ∑
=                                                                     

     Differentiating m times the zero-order 
deformation equation.6 with respect to p and 
then dividing it by m! and finally setting p = 0, 
we get the following high-order deformation 
equation:   

ʆ [fRmR(η) – xRmR fRm-1R(η)] = h RRmR (fRm-1R(η)]                                                       

f
m

 (0) = ' ''(0) ( ) ( ) 0f f f
m m m

β β= = =                                                     
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where  {0, 1
1, 1

m
x

m m
≤

=
>

  and  

1 *
[ ( ; )]1 1( , )

1 1( 1) !

0

m
N f p

R f
m m mm p

p

η
η

−
∂

=
− −− ∂

=

(10) 

Substituting the equation. 7 in to equation. 10 
we have: 

3 2
11 1 1[ ( )] ( )

1 3 22

3 4
11 1 1(2 )

3 42

f f f
m m mR f S

m m

f f f
m m mS M

η η
ηη η

α η
ηη η

∂ ∂ ∂
− − −= − +

− ∂∂ ∂

∂ ∂ ∂
− − −+ + − +

∂∂ ∂

2
1 1[

1 20

f f fm k m k kf
m kk η ηη

∂ ∂ ∂− − −∑ − +
− − ∂ ∂= ∂

 

3 2 2
1(2

1 3 2 2

4

)]
1 4

f f f
k m k kf

m k

f
kf

m k

α
η η η

η

∂ ∂ ∂
− −+ −

− −
∂ ∂ ∂

∂

− −
∂

                                                 

     For the solution of the high-order problem, 
we use the symbolic computation software 
MATHEMATICA up to first few order of 
approximation.  

     It is found that the general solution of 
momentum equation is given by:  

5 3
( )

,0

m nf a
m m nn

η η
+

= ∑
=                          .. (11)                                                             

Where 
,

a
m n

 are the coefficient of ( )f
m

η  for 

1m ≥ . 

     Now, we try to find the above coefficient: 

1. The initial approximation ( )
0

f η  defined by 

equation. 5 has the same structure as equation. 
11.  

If we assume that the first (m-1) solutions 
( )f

k
η  (k = 0, 1, 2,…, m-1) have the same 

structure as (11), then we want to prove that 

( )f
m

η  has the same structure as (11) to prove 

this, we have form equation. 11: 

5 3 5 31
( 1)

, , 1
1 0

f m mn nm na n a
m n m n

n n
η η

η

∂ + +−
∑ ∑= = +

+∂ = =
 

         

5 3

,0

m nb
m nn

η
+

= ∑
=                            .. (12)                                                            

By the same way, we have: 

2
5 3

,2 0

f m nm c
m nn

η
η

∂ +
= ∑

=∂                         .. (13)                                                     

3
5 3

,3 0

f m nm d
m nn

η
η

∂ +
= ∑

=∂                        .. (14)                                                       

4
5 3

,4 0

f m nm e
m nn

η
η

∂ +
= ∑

=∂                          .. (15)                                              

Where 

( 1)
, , 1

b n a
m n m n

= +
+                                                       

 
( 1)

, , 1
c n b

m n m n
= +

+              

( 1)
, , 1

d n c
m n m n

= +
+    

( 1)
, , 1

e n d
m n m n

= +
+   

Now, from equations. 11 and 13, we have: 

1 1 ,

2
1 1 5( 1 ) 3

20 0 0
m k m k n

fm m m k nkf a
k k n

η

η
− − − −

∂− − − − +
∑ ∑ ∑=

= = =∂
                                    

5 3

,
0

k n
c

k n
n

η
+
∑

=
 

1 ,

1 min{ , 5 3} 2
,

0 max{0, 5 5 2}
m k n j

m n k n
c a

k j
k j n m k

η
− − −

− +
∑ ∑=

= = − + +

From above equation, we have: 

  

2
1 2

1 ,20

fm nkf
m k m nk

α η
η

∂−
=∑

− −
= ∂        .. (16)                                                  

Where 
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1 min{ , 5 3}

, 1 ,
0 max{0, 5 5 2}

,

m n k

m n m k n j
k j n m k

c a
k j

α
− +

− − −
= = − + +

∑ ∑=

1 21
,0

f fm nm k k
m nk

β η
η η

∂ ∂− − − =∑
∂ ∂=           .. (17)                                                       

3
1 2

1 ,30

fm nkf
m k m nk

δ η
η

∂−
=∑

− −
= ∂          .. (18)                                                                

2 2
1 21

,2 20

f fm nm k k
m nk
γ η

η η

∂ ∂− − − =∑
= ∂ ∂    .. (19)                                                      

4
1 2

1 ,40

fm nkf
m k m nk

ω η
η

∂−
=∑

− −
= ∂         .. (20)                                                      

Where  

min{ ,5 3}1

, 1 ,, max{0, 5 5 2}0

n km

k j m k n jm n j n m kk

b bβ
+−

− − −
= − + +=

∑∑=

1 min{ , 5 3}

, , 1 ,
0 max{0, 5 5 2}

m n k

m n k j m k n j
k j n m k

d aδ
− +

− − −
= = − + +

∑ ∑=

1 min{ , 5 3}

, , 1 ,
0 max{0, 5 5 2}

m n k

m n k j m k n j
k j n m k

c cγ
− +

− − −
= = − + +

∑ ∑=

min{ , 5 3}1

, , 1 ,
0 max{0, 5 5 2}

n km
e a

m n k j m k n j
k j n m k

ω
+−

∑ ∑=
− − −

= = − + +

 

Substituting equations.12, 13, 14, 15,16,17, 18 
and 19 into equation. 20, we have:  

5 2 5 2
{

1, 1,0 0

m mn nR d s b
m m n m nn n
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     The above equation is the right hand side of 
the following equation 

         ʆ [fRmR(η) – xRmR fRmR-1(η)] =h RRmR(η)                                                          

     By solving the last equation, we found that 
the general solution is given by: 
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cR3R = 0 for all m > 0 and cR4R = 0 for all m ≥  0. 

     Finally, to obtain the coefficient 
,

a
m n

 of the 

function ( )f
m

η , substitute the 
1

c and 
2

c  values 

into equation (21) and equating the equal power 
of η .     

     We obtain in fact the following explicit, 
totally analytic solution of the present flow. 
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  

  
(22)  

4. Convergence of the solution 

     It is noticed that the explicit, analytical 
expression (11) contains auxiliary parameter h. 
As pointed out by Liao [12], the convergence 
region and rate of approximations given by 
homotopy analysis method are strongly 
dependent upon h. figure 1 portray the h-curve 
of the velocity profile. The range for admissible 
value of h for the velocity is 1.3 0.2h− ≤ ≤ − . 
We see that series given by equations. (22) 
converges in the whole region of η  when 

0.8h = − . This value of h lie in the admissible 
range of hf '''(0) 

       

 

 

h 

   
 Figure 1- H-curve for velocity at second-order                          

                    approximation 

5. Results and Discussion  

     we have studied the effects of MHD 
pressure ''M'', material constant ''α'', 
dimensionless film thickness ''β'' and 
unsteadiness parameter ''S''.  

     As MHD parameter increases, there is small 
decreasing in the velocity range. See figure 2. 
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Figure 2- Together, S=0.2, β=1, α=0.2, h=0,8. 

     As material constant ''α'' increases, 
there is a decreasing in the velocity 
range. See figure 3. 
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Figure 3- Together, M=1,S=0.2,β=1,h=-0,8. 

     As dimensionless film thickness ''β'' 
increases, there is an increasing in the 
velocity range. See figure 4. 
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                    Figure 4 

     As unsteadiness parameter ''s'' 
increases, there is an increasing in the 
velocity range. See figure 5. 
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     The comparison will be given in  following 
table 1. 

Table 1-Velocity Comparison between unsteady   

            flow and unsteady flow  under  the  

            influence of the magnetic field for α =  

            0.2, β = 0.2, S = 0.2, h = -0.8, η = 0.5. 

M Unsteady flow 
with out magnetic 

field 

unsteady flow 
under the 

influence of the 
magnetic field 

1 0.104122 0.1021400 

3 0.104122 0.1001180 

7 0.104122 0.0980559 

10 0.104122 0.0959555 

 

     From table 1 we can see that, as expected, the 
velocity in unsteady flow is greater than the 
velocity in  unsteady  flow under the  influence 
of the magnetic  field.  
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