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Abstract 
     There are many factors effect on the spread of infectious disease or control it, 
some of these factors are (immigration and vaccination). The main objective of this 
paper is to study the effect of those factors on the dynamical behavior of an SVIR 
model. It is assumed that the disease is spread by contact between members of 
populations individuals. While the recovered individuals gain permanent immunity 
against the disease. The existence, uniqueness and boundedness of the solution of 
this model are investigated. The local and global dynamical behaviors of the model 
are studied. The local bifurcations and Hopf bifurcation of the model are 
investigated. Finally, in order to confirm our obtained results and specify the effects 
of model’s parameters on the dynamical behavior, numerical simulation of the SVIR 
model is performed. 
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SVIR افترضنا انتشار المرض عن طريق الاتصال المباشر بين افراد المجتمع مع اكتساب الأفراد المتعافين .
مناعة دائمية ضد المرض. تمت مناقشة وجود و وحدانية وقيود الحل للأنموذج المقترح. قمنا بدراسة السلوك 
المحلي والشامل له. كذلك بحثنا التفرعات المحلية وتفرع هوبف. واخيرا من اجل تأكيد نتائجنا وتحديد تأثير 

  على السلوك الديناميكي له اجرينا محاكاة عددية له.SVIRمعلمات الأنوذج الوبائي 
 
 

 
*Email:0Taamuhseen@gmail.com0T 

 

mailto:aamuhseen@gmail.com


Naji and Muhseen                                            Iraqi Journal of Science. Vol 54.No.2.2013.Pp 397 -408 

 

  

1. Introduction 
     It is well known that infectious diseases have 
tremendous influence on human life and hence 
controlling these diseases is very important 
issue. Consequently, many epidemic models, 
which used mathematics for describing the 
evolution of infectious diseases within the 
populations, are constructed and investigated in 
literature, see for example ref. [1] and the 
references their in. These models are different 
from each other in their formulation depending 
on the type of transmission of disease, latent 
period, resistance, immigrants, vaccination and 
many other factors. The existence of infectious 
disease divided the population into many 
compartments, depending on the type of disease, 
such as susceptible (S), infected (I), removal (R), 
vaccinated (V) and others. Since the well known 
epidemic model SIR, which proposed originally 
by Kermark and Mckendrick in 1927 [2], many 
mathematical models are formulated to describe 
the spread of infectious disease using the frame 
work of Kermark-Mckendrick model. Kribs-
Zaleta and Velasco-Hernandez in 2000 [3] 
proposed and studied the SIS epidemic model 
with vaccine for the diseases such as pertussis 
and tuberculosis, later on Arino et al. [4], 
generalized this model by allowing individuals 
recovering from the diseases to go into a 
temporarily immune class rather than directly 
back in to the susceptible class. Kribs-Zaleta and 
Martcheva [5] investigated the effects of a 
vaccination campaign upon the spread of a non-
fatal diseases such as Hepatitis A, B. Alexander 
et al.  [6] and Shim [7] are discussing the 
transmission dynamics of influenza with 
vaccination through using SVIR models. 

,d Onofrio et al. [8] gave a family of models for 
information related vaccinating behavior.  
    On the other hand, it is well known that 
immigrants play a critical role in disease 
dynamics see for example ref.[9-11] and the 
references their in. Keeping the above in view, 
Shim [10], proposed and studied an SVIR 
epidemic model with the existence of constant 
flow of incoming immigrant, in his model it is 
assumed that the disease transmitted between 
the compartments depending on simple mass 
action incident rate. He discussed the local 
stability analysis through eliminating the 
susceptible compartment from  
 

the model. In this paper however the Shim 
model is modified so that the disease transmitted 
between the compartments depending on the 
standard mass action incident rate which is more 
biologically realistic, instead of simple mass 
action incident rate. The local as well as global 
stability analysis of the modified model is 
investigated. Also, the local bifurcations, as well 
as, Hopf bifurcation are discussed. 
 
2. The mathematical model      
      Consider a simple SIR disease transmission 
model involving a constant birth rate 0>Λ  in 
the susceptible class with a proportional natural 
death rate 0>µ  in each class while there is no 
death caused by disease. This model can be 
written as follows: 

RI
dt
dR

ISI
dt
dI

SSI
dt
dS

µα

αµβ

µβ

−=

+−=

−−Λ=

)(                                      (1) 

     Here S(t) , I(t) and  R(t) represent the number 
of susceptible individuals, infected individuals 
and removal individuals at time t  respectively 
and hence the total number of population at time  
t  is )()()( tRtItSN ++= . Further, in model (1) 
it is assumed that the disease transmitted from 
class S  to class I  by contact according to simple 
mass action interaction between them with 
infection rate constant 0>β , Finally, 0>α   
represents the recovery rate constant. 
Now, by assuming, there is a constant flow, 
say 0>A , of a new members arriving into the 
population in unit time with the fraction  p  of  A  
arriving infected ( 10 ≤≤ p  ). Also, since the 
number of contacts between the susceptible and 
infected depends on the total number of 
population N, hence we will use standard mass 
action interaction for describing the direct 
contact between S and I instead of simple mass 
action interaction. Therefore the above system 
(1) can be rewritten as follows: 

RI
dt
dR

I
N
SIpA

dt
dI

S
N
SIAp

dt
dS

µα

αµβ

µβ

−=

+−+=

−−−+Λ=
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)1(

                      (2) 
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     Keeping the above in view, in order to study 
the effect of vaccination on the system (2) the 
following assumptions are made: 
 The susceptible class is vaccinated at per 
capita rate 0>ψ  and then the number of 
vaccinated individuals at time  t  can be 
represented by  V(t). 
 The infection can invade the susceptible 
class or vaccinated class depending on vaccine 
efficiency. 
 The vaccine reduces the possibility of 
infection by a factor of σ , where 10 ≤≤ σ . 
 Varying the losing vaccine immunity rate 
(failure in vaccine), that is wears off at the per 
capita rate 10 ≤≤ θ .  
 
     Accordingly, the flow of disease in system 
(2) along with the above assumptions can be 
representing in the following block diagram:  

 
Figure 1- Block diagram of system (3).Therefore system  
                (2) can be modified to: 
 

RI
dt
dR

I
N
VI

N
SIpA

dt
dI

V
N
VIS

dt
dV

VS
N
SIAp

dt
dS

µα

αµσββ

θµσβψ

θψµβ

−=

+−++=

+−−=

++−−−+Λ=

)(

)(

)()1(

              (3)      

     Clearly for 0=σ   the vaccine is completely 
affective. While, 1=σ   stand for the situation 
where the vaccine is totally ineffective. On the 
other hand, 0=θ  denotes to the case when 
immunity is life-long while 1=θ  corresponds to 
the case where there is absolutely no vaccine 
induced immunity. Therefore the total number 
population becomes )()()()( tRtItVtSN +++= .                               
     Obviously, due to the biological meaning of 
the variables S(t), V(t), I(t), and  R(t), system (3) 
has the domain 

{ }0,0,0,0,),,,( 44 ≥≥≥≥ℜ∈=ℜ+ RIVSRIVS  
which is positively invariant for system (3). 

Further, all the solutions of system (3) with non-
negative initial conditions are uniformly 
bounded as it is proved in the following 
theorem. 
Theorem 1: All the solutions of system (3), 
which are initiate in 4

+ℜ , are uniformly 
bounded.   
Proof:  
Let ( S(t), V(t), I(t), R(t) ) be any solution of the 
system (3) with non-negative initial condition       
( S(0), V(0), I(0), R(0) ), since  N(t) = S(t) + V(t) 
+ I(t) + R(t), then : 

dt
dR

dt
dI

dt
dV

dt
dS

dt
dN

+++=  

which gives   

AN
dt
dN

+Λ=+ µ       

Now, by solving the above linear differential 
equation, we get that the total population is 
asymptotically constant by: 

µ
AtN +Λ=)(     

Hence all the solution of system (3) that initiate 
in 4

+ℜ ,  are confined in the region:                
{ }0;:),,,( 4 >+≤ℜ∈=Ω +Λ

+ εεµ
ANRIVS          ■  

           
3. Existence of equilibrium points of system   
     (3) 
  
    In this section, we discuss the existence of all 
possible equilibrium points of the system (3). 
Now, since the removal class  R  is related with 
infected class only, hence knowing the value of  
I   leads directly to determine the value of  R  
from solving the fourth equation  in system (3). 
In fact, if 0=I  then R approaches to zero 
asymptotically. However, if  cII = ,  where  cI   
is a positive constant, then  R  approaches to: 

 
µ
α cIR =                                                     (4) 

     Consequently, the first three equations of 
system (3) those given below, will be analyzed 
and then equation 4 can be used to give the 
value of  R .  

),,()(

),,()(

),,()()1(

3

2

1

IVSfI
N
VI

N
SIpA

dt
dI

IVSfV
N
VIS

dt
dV

IVSfVS
N
SIAp

dt
dS

=+−++=

=+−−=

=++−−−+Λ=

αµσββ

θµσβψ

θψµβ

      (5) 

     Clearly  if  0=I , ( in this case  p = 0 )  then  
the system (5)  has an equilibrium point called a 
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disease free equilibrium  point and denoted by 
)0,,(  VSE =  where: 

 










++
+Λ

=

++
++Λ

=

)(
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))((

ψθµµ
ψ

ψθµµ
θµ

AV

AS





                                  (6) 

However, if  0≠I  then system (5) has an 
endemic equilibrium point denoted by 

),,( ∗∗∗∗ = IVSE  where ∗∗ VS ,  and  ∗I  represent 
the positive solution for the following equations: 

 

0)(

0)(

0)()1(

=+−++

=+−−

=++−−−+Λ

I
N
VI

N
SIpA

V
N
VIS

VS
N
SIAp
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σββ

θµ
σβ

ψ

θψµ
β

              (7) 

Now, from the second equation of (7) we get:  

  
)( θµσβ

ψ
++

=
NI

SNV    

Substituting in the first equation of system (7) 
and then doing some computations give that: 

[ ]

[ ]
[ ]

[ ] 
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−+Λ
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+++∗++++∗





 ++∗−+Λ

=∗

)(2)()(
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)(2)()(
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θψµµψµσθµβσβ

ψ
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        (8) 

While ∗I  is a positive root for the following 
equation                                                   
 043

2
2

3
1 =+++ DIDIDID                          (9)      

here: 
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[ ](
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0)(
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θψµαµµ
σψθµσµβ

ψµσθµαµσββ
αµσβ

pAND

N
ApAND

NAND
ND

 

Clearly equation 9 has a unique positive root 
given by ∗I  if and only if one of the following 
conditions hold.   

[ ]ψµσθµαµσβ ++++<+Λ ()()()( NA            (10a) 
or 
[ ]

))((
))((
θψµαµ

µσψθµσµβ
+++×

>+++Λ+ NApA
         (10b) 

 
4. Local  Stability analysis 
     In this section, the local stability analysis of 
the equilibrium points E  and ∗E of system (5) 
is studied as shown in the following theorems.   
 

Theorem 2:  The disease free equilibrium point 
)0,,(  VSE =  of system (5) is locally 

asymptotically stable provided that: 

 1
)(

)(
<

+
+
αµ
σβ

N
VS 

                                    (11a) 

 While it is a saddle point provided that: 

 1
)(

)(
>

+
+
αµ
σβ

N
VS 

                                      (11b) 

Proof:  The Jacobian matrix of system (5) at 
)( E  can be written as: 
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+−

−
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=

)(00

)(

)(

)(

αµσββ

σβθµψ

βθψµ

N
VS
N

V
N
S

EJ






  

Then the characteristic equation of the Jacobian 
matrix J( E ) is given by : 

 [ ] 0)()( 2 =++









−+−

+ BH
N

VS λλλαµσβ 

      (12) 

Where: 

 
[ ]





>++=
>+++=

0)(
0)()(

ψθµµ
θµψµ

B
H

                       (13) 

Consequently equation  12 have the following 
roots (eigenvalues) of )( EJ : 

 0)(
2
1

2, <+±
−

= θψλ H
VS                          (14) 

 )()( αµσβλ +−
+

=
N

VS
I



                       (15) 

Where VS λλ ,  and Iλ  describe the dynamics in 
the S , V  and I  direction respectively. Clearly 

Sλ and Vλ  are negative. However the third 
eignvalue in the I-direction Iλ   is negative or 
positive depending on conditions (11a) and 
(11b) respectively. 
Therefore, E  is asymptotically stable 
equilibrium point provided that condition (11a) 
holds, while it is saddle point provided that 
condition (11b) holds and hence the proof is 
complete.                                                         ■                                                                                                                                     
Theorem 3 
    Assume that, The endemic equilibrium point 

),,( ∗∗∗∗ = IVSE  of system (5)  exists then it is 
locally asymptotically stable  provided the: 

)()(
αµ

σβ
+<

+ ∗∗

N
VS                                (16a) 

))((2 αµσψθ
β

++<
Μ
N

                              (16b) 
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Where [ ])23()32( σβθσσψθ +++=Μ ∗∗ VS . 
Proof :   
The Jacobian matrix of system (5) at the 
endemic equilibrium point EP

*
P can be written : 

[ ] 33
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Then the characteristic equation of Jacobian 
matrix is given by: 
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2

1
3 =Ω+Ω+Ω+ λλλ                           (17) 

here: 
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     Now according to Routh-Hurwitz criterion 
∗E  will be locally asymptotically stable 

provided that 01 >Ω ;   03 >Ω  and   
0321 >Ω−ΩΩ=∆ . Clearly: 0and0 31 >Ω>Ω  

provided that condition 16a holds. While 
,0321 >Ω−ΩΩ=∆ provided that conditions  16 

(a-b) hold. Hence the proof is completed. ■       
                                                                                                                                                                    
5. Global stability analysis of system (5)     
      In this section, the global dynamics of 
system (5) is studied with the help of Lyapunov 
function as shown in the following theorems. 
  
Theorem 4:  
     Assume that, the disease free equilibrium 
point E  of system (5) is locally asymptotically 
stable. Then the basin of attraction of E , say 

3)( +ℜ⊂Β E , satisfy the following conditions 
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Proof:   Consider the following positive definite 
function:  

I
V
VLnVVV

S
SLnSSSW +−−+−−= )()(1 




   

Clearly, RRW →+
3

1 :  is a continuously 
differentiable function such that 

0)0,,(1 = VSW , 
and  0),,(1 >IVSW  , )0,,(),,(  VSIVS ≠∀ .  
Further, we have:  
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  By simplifying this equation we get:  
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     Therefore, according to condition (18a) it is 
obtained that: 
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     Obviously 01 <dt
dW  for every initial points 

satisfying condition (18b) and then 1W  is a 
Lyapunov function provided that conditions 
(18a-18b) hold. Thus E  is globally 
asymptotically stable in the interior of )( EΒ , 
which means that )( EΒ  is the basin of attraction 
and that complete the proof.          ■                                                               
 
Theorem 5: Let the endemic equilibrium point 

)( ∗E of system (5) is locally asymptotically 
stable. Then the basin of attraction of ∗E , say 

3)( +
∗ ℜ⊂Β E , satisfy the following conditions 

)()( αµσβ +<+ ∗∗ NVS                                  (19a)      
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Proof: Consider the following positive definite 
function: 
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tiable function such that  0),,(2 =∗∗∗ IVSW    and   
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have: 
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By simplifying this equation we get: 
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     Therefore, according to the conditions  19a-
19d we obtain that: 
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     Clearly, 02 <
dt

dW , and then 2W  is a                 

Lyapunov function provided that the given 
conditions hold. Therefore, ∗E  is globally 
asymptotically stable in the interior of )( ∗Β E , 
which means that )( ∗Β E  is a basin of attraction 
of ∗E  and the proof is complete . ■                  
             
6. The local bifurcation analysis of  system (5)                            In this section, the occurrence of local 
bifurcations (such as saddle-node, transcritical 
and pitchfork) near the equilibrium point of 
system (5) is studied in the following theorem.  
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Theorem 6: System (5) has a transcritical 
bifurcation near the disease free equilibrium 
point E , but neither saddle-node bifurcation, 
nor pitchfork bifurcation can accrue at the 
parameter 

  µσβα −
+

=
N

VS )( 

 .                  (20) 

UProof: U   It is easy to verify that the Jacobian 
matrix of system (5) at ),( 

 αE  can be written 
as:    
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     Clearly, the third eigenvalue  Iλ  in the I – 
direction is zero ( 0=Iλ ), while  Sλ  and  Vλ  
those are given in equation 14 are negative. 
Further, the eigenvector (say K= Tkkk ),,( 321 ) 
corresponding to Iλ  satisfy the following:     
  0== JKthenKJK λ  
 Thus  
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From which we get that:   

0)( 321 =−++− k
N
Skk
βθψµ          (21a) 

0)( 321 =−+− k
N
Vkk
σβθµψ                      (21b) 

So by solving the above system of equations we 
get: 

3231 ; qkkzkk ==  
Where : 

[
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Here 3k  be any non zero real number. Thus 
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Similarly the eigenvector TwwwW ),,( 321=  
corresponding to Iλ  of TJ  can be written: 

 0

0

0)(
0)(

3

2

1

=















⋅





















−−
+−

+−

w
w
w

N
V

N
S  σββ

θµθ
ψψµ

  

This gives:  

 















=

3

0
0

w
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     Here 3w  is any non-zero real number. Now 
rewrite system (5) in a vector form as: 

)(Xf
dt
dX

=   

     Where TIVSX ),,(=  and  Tffff ),,( 321=  with  
3,2,1, =ifi  given in system (5), and then 

determine αα
f

d
df

=  we get that: 
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−
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0
0

),(0
0


 ααα Efthen

I
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 Therefore: 
0),( =⋅ 

 αα EfW T   
     Consequently, according to Sotomayor 
theorem [12] the system has no saddle-node 
bifurcation near E  at α . 
Now in order to investigate the accruing of other 
types of bifurcation, the derivative of αf  with 
respect to vector X, say ),( 

 αα EDf , is 
computed  

















−
=

100
000
000

),( 
 αα EDf  

So 
[ ] 0),( 33 ≠−=⋅⋅ wkKEDfW T


 αα  

 Again, according to Sotomayor theorem, if in 
addition to the above the following holds 

[ ] 0),(),(2 ≠⋅⋅ KKEfDW T


 α    
Here ),( 

 αEDf  is the Jacobian matrix at 


 α and E , then the system (5) possesses a 
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transcritical bifurcation but no pitch-fork 
bifurcation can occur. Now since we have that: 

[ ]
























+−

=⋅

N
kqz

N
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N
kz

KKEfD
2
3

2
3

2
3

2

)(2

2

2

),(),(

σβ

σβ

β

α
    

Therefore:   

0)(2)],(),([ 3
2
32 ≠

+−
=⋅⋅

N
wkzqKKEfDW T σβ

α
  

Then the system (5) has a transcritical 
bifurcation at E  when the parameter α  passes 
through the bifurcation value α .■           
                                   
7. The Hopf-bifurcation analysis of system (5)   
      In this section, the occurrence of Hopf-
bifurcation near the endemic equilibrium point 
is studied below.  
According to the local stability analysis of 
system (5) at ∗E , we have that the coefficients 
of the characteristic equation  3,2,1, =Ω ii   are 
positive provided that condition 16a holds. 
However, 321 Ω−ΩΩ=∆   is positive provided 
that condition  16b  holds and hence there is no 
Hopf-bifurcation in this case. 
Now, suppose that 0321 =Ω−ΩΩ=∆   then 
there is possibility to occurrence of Hopf-
bifurcation if and only if the Jacobian matrix of 
system (5) near ∗E  has two complex conjugate 
eigenvalues, say 21 ρρλ ii ±=   with the third 
eigenvalue is real and negative. In addition the 
following two conditions are hold at the specific 
parameter  say ∗= ll  : 

0)(1 =∗lρ                                                (22a)          

01 ≠
∗=lldl

dρ                                         (22b)     

Now, from  0321 =Ω−ΩΩ=∆ , We obtain that 
011

2
11 =++ CBbMb                                   (23a) 

Where : 

[ ]
[ ] [ ]32213331133123222112

332232233322

2
332231132112
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)(
)(
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bbM

++++
−+=

+−+=

>+−=

 

Clearly for 0<C   we have two real roots of 
equation 23: 

MCB
MM

Bb 4
2
1

2
2

11 −±
−

=  

Since 0)(11 <+−−=
∗

ψµβ
N
Ib , then we get  

MCBb MM
B 42

2
1

211 −−−=    and hence  

04
2
1

2
)( 2 =






 −+−++

∗
MCB

MM
B

N
I ψµβ     (23b)   

Which gives 0)( =∗ψf , and hence ∗=ψψ   
represents root of  equation  23b. Consequently 
for ∗=ψψ   we have  321 Ω=ΩΩ   from which 
the characteristic equation can be written as: 

0))(()( 2
2

13 =Ω+Ω+= λλλp                    (24)        
     Hence in such case (i.e ∗=ψψ ) the 
eigenvaluesare 23,211 0 Ω±=<Ω−= iand λλ . 
So the first condition 22a for the Hopf-
bifurcation is satisfied at ∗=ψψ ,  that is 

,0)(1 =∗ψρ  while 22 Ω=ρ . Let as now check 
the second condition  22b Since, in general, the 
complex eigenvalues for any value of  ψ  can be 
written as: 

)()( 213,2 ψρψρλ i±=  
     Then by substituting  )()( 212 ψρψρλ i+=   
into the equation 24, and calculating the 
derivative with respect to the bifurcation 
parameter  ψ , that is  0)()( 33 =′= λλψ ppd

d   and 
then comparing the two sides of this equation 
with equating their real and imaginary parts, it is 
obtain that : 





Γ−=′+′Φ
−=′Φ−′

)()()()()(
)()()()()(

21

21

ψψρψηψρψ
ψθψρψψρψη

            (25) 

where : 
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1

ψρψψψρψρψ
ψρψψ

ψρψψψρψθ

ψρψψρψρψ
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Ω′+Ω′=Γ
Ω′−Ω′+

Ω′+Ω′=

Ω+=Φ
−

Ω+Ω+=

 

Solving the linear system (25) for the unknown  
)(1 ψρ′  and  )(2 ψρ′ ,  it is obtain that : 

2211 )()(
Φ+
ΓΦ+

−==′
η
ηθψρ

ψ
ψρ

d
d                  (26) 

Hence, the second condition 22b of Hopf-
bifurcation will be reduces to verifying that: 

0)()()()( ≠ΦΓ+ ∗∗∗∗ ψψψθψη                 (27) 
Straight forward computation shows that: 

;11 −=Ω′ ( )3312222 bbb ++−=Ω′      
)( 331222123 bbb ++Ω−Ω−=Ω′  
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Thus for  ∗=ψψ  we have: 

( )
( ) 2331222

3312221

212 ;2;2

Ω++−=Γ

++Ω−=

ΩΩ=ΦΩ−=

bbb

andbbbθ

η
     

Therefore, substituting in equation  27, we get 
that 0=ΓΦ+ηθ . Hence the system (5) dose not 
undergoes a Hopf-bifurcation around  ∗E . 
 
8. Numerical analysis of system (3)  
      In this section the global dynamics of system 
(3) is studied. The objectives of this study are 
confirming our analytical results and understand 
the effects of immigration and the existence of 
vaccine on the dynamics of SVIR epidemic 
system. Consequently, system (3) is solved 
numerically for different sets of initial 
conditions and different sets of parameters. It is 
observed that, for the following set of 
hypothetical parameters, system (3) is solved 
numerically for different sets of initial values 
and then the trajectories of system (3) as a 
function of time are drawn in figure 2 

2.0,1.0,1.0,05.0
,5.0,4.0,0,100,400

====
=====

ασµθ
ψβpAE             (28)  

UNote that : U   In the following figures, we will 
used the following representations: Solid line for 
S; dashed line for V; dash dot line for I; dotted 
line for R.  

 

 
Figure 2- Time series of trajectories of system (3) for data  
                 given in equation  28. (a) trajectories starting at      
                 (900,700,500,500) and (b) trajectories starting at  
                 (1500,1200,900,800). 

 
      Obviously, figure 2 shows clearly the 
converg-ence of system (3) to the disease free 

equilibrium point ,0,0)(1153,3846=E  from two 
different initial data.   
     However, for the data given equation 28  
with p=0.1. The trajectories of system (3) 
starting from different sets of initial data are 
drawn in figure.. 3  
                      

 
Figure 3-Time series of the solution of system (3). (a)  

                  trajectories starting at (800,700,600,300) and     
                     (b) trajectories starting (1500,1300,1000,900). 
 
     Similarly, figure 3 shows the approaching of 
system (3) to the endemic equilibrium point 

)110,55,3716,1118(=∗E  from two different 
initial data.  
Now the effect of varying the fraction of 
immigrant individuals, which arrive infected, on 
the dynamics of system (3), is studied. So, 
system (3) is solved for the parameters values 

75.0,3.0,01.0=p  respectively, keeping other 
parameters fixed as given in equation  28, and 
then the trajectories of system (3) are drawn in 
figures 4 (a-c) respectively. 
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Figure 4- Time series of the solution of system (3).  
           (a) For p=0.01, (b) For p=0.3, (c) For p=0.75 

 
     According to these figures, as the fraction of 
infected immigrant individuals increases 
(through increasing p), the disease free 
equilibrium point of system (3) becomes 
unstable point and the trajectory of system (3) 
approaches asymptotically to the endemic 
equilibrium point. In fact as p increases it is 
observed that the number of susceptible and 
vaccinated individuals decrease and the number 
of removal individuals increases whereas the 
number of infected individuals increases 
slightly. 
Now, in order to discuss the effect of varying 
the infection rate on the dynamical behavior of 
system (3), the system is solved for different 
values of infection rate 9.0,6.0,01.0=β  
respectively, keeping other parameters fixed as 
given in equation  28  with  p = 0.1, and then the 
solution of system (3) is drawn in figures 5 (a-c) 
respectively. 
 
 

 

 

 
Figure 5-Time series of the solution of system (3).  

                  (a) For 01.0=β  , (b) For 6.0=β   (c)For  
                  9.0=β   
 
     Obviously from these figures, as the infection 
rate increases the endemic equilibrium  point of 
system (3), still coexists and stable but the 
number of susceptible and vaccinated 
individuals decrease while the number of the 
infected and removal individuals increases. 
     The effect of varying the vaccination 
coverage rate on the dynamical behavior of 
system (3) is studied too. The system is solved 
for different values of 02.0=ψ , 0.6, 0.9 keeping 
other parameters fixed as given in equation  28 
with p=0.1 , and then the solution of system (3) 
are drawn in figures 6 (a-c) respectively. 

 

 
Figure 6-Time series of the solution of system (3).  

(a) For 02.0=ψ  , (b) For 6.0=ψ  , (c)For 
9.0=ψ . 
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     From these figures, as the rate of vaccination 
coverage increases the endemic equilibrium 
point of system (3), still coexists and stable but 
the number of susceptible, infected and removal 
individuals decrease whereas the number of 
vaccinated individuals increases. 
Similarly the effect of varying the number of 
individuals who lose vaccine immunity and 
return to susceptible (failure in vaccine), on the 
dynamical behavior of system (3) is 
investigated. The system is solved for the value 

2.0,01.0=θ and 0.5 keeping the rest of 
parameters fixed as given in equation  28 with 
p= 0.1 and then the trajectories are drawn in 
figures 7 (a-c). In this case, it is observed that 
increasing  θ  causes increasing in the 
susceptible, infected and removal while the 
number of vaccinated decreases but the system 
(3) in this case still approaches to endemic 
equilibrium point. 
 

 

 
Figure 7-Time series of the solution of system (3).      

(a) For 01.0=θ ,(b) For 2.0=θ ,(c) For  
5.0=θ . 

 
     Finally the effect of vaccine efficiency 
against the disease on the dynamical behavior of 
system (3), is studied too then the system is 
solved for different values of 02.0=σ , 0.5, 0.8, 

keeping other parameters as given in equation 
28 with p= 0.1, and then the solutions of system 
(3) are drawn in figures 8 (a-c) respectively. 
     From these figures, as the vaccine efficiency 
decreases, the endemic equilibrium point of 
system (5), still coexists and stable, but the 
number of susceptible and vaccinated 
individuals decrease and the number of infected 
and removal individuals increase. 
 

 

 
Figure 8- Time series of the solutions of system (3).  

                (a) For 02.0=σ  , (b) For 5.0=σ  (c) For    
                8.0=σ  . 
9. Discussion and conclusions 
     In this paper, a mathematical model has been 
studied and analyzed to study the effect of 
vaccine and immigrants on the dynamical 
behavior of SIR epidemic model. The existence 
and the stability analysis of all possible 
equilibrium point are studied analytically as well 
as numerically. It is observed that the system (3) 
has a transcritical bifurcation near the disease 
free equilibrium point, but neither saddle node 
nor pitchfork bifurcation can accrue. Further the 
system dose not has a Hopf bifurcation near the 
endemic equilibrium point. Finally according to 
the numerically simulation the following results 
are obtained: 
     The SVIR system (3) dose not have periodic 
dynamic, instead it is approaches either to the 
disease free equilibrium point or else to endemic 
equilibrium point. 
     As the fraction of the infected immigrant 
individuals increases, the asymptotic behavior of 
the system transfers from approaching to disease 
free equilibrium point to the endemic 
equilibrium point. 
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     As the losing vaccine immunity  rate )(θ  
increases, then SVIR system still coexist at the 
endemic equilibrium point with increasing in the 
S, I and R while the number of vaccinated 
individual decreases. 
     As the vaccine efficiency against the disease 
decreases then the  SVIR  system still 
approaches to the endemic equilibrium point 
with increasing in the  I  and  R, while the 
number of  S and  V  decreases.     
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