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Abstract

There are many factors effect on the spread of infectious disease or control it,
some of these factors are (immigration and vaccination). The main objective of this
paper is to study the effect of those factors on the dynamical behavior of an SVIR
model. It is assumed that the disease is spread by contact between members of
populations individuals. While the recovered individuals gain permanent immunity
against the disease. The existence, uniqueness and boundedness of the solution of
this model are investigated. The local and global dynamical behaviors of the model
are studied. The local bifurcations and Hopf bifurcation of the model are
investigated. Finally, in order to confirm our obtained results and specify the effects
of model’s parameters on the dynamical behavior, numerical simulation of the SVIR
model is performed.

Keywords: Epidemic models, Stability, Vaccinated, Immigrants, Local and Hopf
bifurcation.
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1. Introduction

It is well known that infectious diseases have
tremendous influence on human life and hence
controlling these diseases is very important
issue. Consequently, many epidemic models,
which used mathematics for describing the
evolution of infectious diseases within the
populations, are constructed and investigated in
literature, see for example ref. [1] and the
references their in. These models are different
from each other in their formulation depending
on the type of transmission of disease, latent
period, resistance, immigrants, vaccination and
many other factors. The existence of infectious
disease divided the population into many
compartments, depending on the type of disease,
such as susceptible (S), infected (1), removal (R),
vaccinated (V) and others. Since the well known
epidemic model SIR, which proposed originally
by Kermark and Mckendrick in 1927 [2], many
mathematical models are formulated to describe
the spread of infectious disease using the frame
work of Kermark-Mckendrick model. Kribs-
Zaleta and Velasco-Hernandez in 2000 [3]
proposed and studied the SIS epidemic model
with vaccine for the diseases such as pertussis
and tuberculosis, later on Arino et al. [4],
generalized this model by allowing individuals
recovering from the diseases to go into a
temporarily immune class rather than directly
back in to the susceptible class. Kribs-Zaleta and
Martcheva [5] investigated the effects of a
vaccination campaign upon the spread of a non-
fatal diseases such as Hepatitis A, B. Alexander

et al. [6] and Shim [7] are discussing the
transmission dynamics of influenza with
vaccination through using SVIR models.

d' Onofrio et al. [8] gave a family of models for
information related vaccinating behavior.

On the other hand, it is well known that
immigrants play a critical role in disease
dynamics see for example ref.[9-11] and the
references their in. Keeping the above in view,
Shim [10], proposed and studied an SVIR
epidemic model with the existence of constant
flow of incoming immigrant, in his model it is
assumed that the disease transmitted between
the compartments depending on simple mass
action incident rate. He discussed the local
stability analysis through eliminating the
susceptible compartment from
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the model. In this paper however the Shim
model is modified so that the disease transmitted
between the compartments depending on the
standard mass action incident rate which is more
biologically realistic, instead of simple mass
action incident rate. The local as well as global
stability analysis of the modified model is
investigated. Also, the local bifurcations, as well
as, Hopf bifurcation are discussed.

2. The mathematical model

Consider a simple SIR disease transmission
model involving a constant birth rate A >0 in
the susceptible class with a proportional natural
death rate >0 in each class while there is no

death caused by disease. This model can be
written as follows:

ds

R R

L= Sl = () M
?j—Ff=al - 4R

Here S(t) , I(t) and R(t) represent the number
of susceptible individuals, infected individuals
and removal individuals at time t respectively
and hence the total number of population at time
t is N =S(t)+I(t) + R(t) . Further, in model (1)
it is assumed that the disease transmitted from
class S to class | by contact according to simple
mass action interaction between them with
infection rate constant g >0, Finally, a>0

represents the recovery rate constant.

Now, by assuming, there is a constant flow,
say A>0, of a new members arriving into the
population in unit time with the fraction p of A
arriving infected ( 0< p<1 ). Also, since the

number of contacts between the susceptible and
infected depends on the total number of
population N, hence we will use standard mass
action interaction for describing the direct
contact between S and | instead of simple mass
action interaction. Therefore the above system
(1) can be rewritten as follows:

ds Al
= =A+(1-pA-E2 8

m +(1-p) N

dl iy

 —pA+ 2 I 2
il akiy (u+a) 2
d_R:a|—/uR

dt
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Keeping the above in view, in order to study
the effect of vaccination on the system (2) the
following assumptions are made:

% The susceptible class is vaccinated at per
capita rate w >0 and then the number of

vaccinated individuals at time t can be
represented by V(t).

+« The infection can invade the susceptible
class or vaccinated class depending on vaccine
efficiency.

« The vaccine reduces the possibility of
infection by a factor of o, where 0<o <1.

¢ Varying the losing vaccine immunity rate
(failure in vaccine), that is wears off at the per
capitarate 0<6<1.

Accordingly, the flow of disease in system
(2) along with the above assumptions can be

representing in the following block diagram:
A (DA

5 ofv]
— N al

Vaccinated — | Infectives — | Removal

Jinali:

BSI
N
Figure 1- Block diagram of system (3).Therefore system
(2) can be modified to:

Susceptible

LENN p)A—%—(,u-H//)S-HW

dt

VR TR

dI /81 opv! 3)
o PATY Ty el

(Zf—al LR

Clearly for o =0 the vaccine is completely
affective. While, o =1 stand for the situation
where the vaccine is totally ineffective. On the
other hand, #=0 denotes to the case when
immunity is life-long while 6 =1 corresponds to
the case where there is absolutely no vaccine
induced immunity. Therefore the total number
population becomes N =S(t) +V (t) + I (t) + R(t).

Obviously, due to the biological meaning of
the variables S(t), V(t), I(t), and R(t), system (3)
has the domain
R4 =SV, 1,R) eR*,S >0V 20,1 20,R>0}
which is positively invariant for system (3).
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Further, all the solutions of system (3) with non-
negative initial conditions are uniformly
bounded as it is proved in the following
theorem.

Theorem 1: All the solutions of system (3),

which are initiate in iRj‘, are uniformly

bounded.
Proof:
Let ( S(t), V(t), I(t), R(t) ) be any solution of the
system (3) with non-negative initial condition
(S(0), V(0), 1(0), R(0) ), since N(t) = S(t) + V()
+ I(t) + R(t), then :
dN dS dv dI drR
— =t —t—+—
dt dt dt dt dt
which gives
dN
o +uN =A+A
Now, by solving the above linear differential
equation, we get that the total population is
asymptotically constant by:
N(t) A+A

Hence all the solution of system (3) that initiate
in ER“, are confined in the region:

Q={SV. IR eR! INSAA g e50f  m

3. Existence of equilibrium points of system

(3)

In this section, we discuss the existence of all
possible equilibrium points of the system (3).
Now, since the removal class R is related with
infected class only, hence knowing the value of
I leads directly to determine the value of R
from solving the fourth equation in system (3).
In fact, if 1=0 then R approaches to zero

asymptotically. However, if 1=1,, where I
is a positive constant, then R approaches to:
R=Ze 4)
Hu

Consequently, the first three equations of
system (3) those given below, will be analyzed
and then equation 4 can be used to give the
value of R.

?jf =A+(1- p)A—ﬁ—(,u-H//)S-%—Q\/ =f(S,V,1)

_Ws_L"VI_(lu+€)V:f2(S,V,|) (5)
(:11 oA +%+0/;V' = f3(S,V,1)

Clearly if 1=0, (inthiscase p=0) then
the system (5) has an equilibrium point called a
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disease free equilibrium point and denoted by
E° =(5°,vV°,0) where:
g0 A+ A)(u+0)

+0+
u(u ) (6)
Ve = w(A+A)
ulp+0+y)
However, if 1#0 then system (5) has an
endemic  equilibrium  point  denoted by

E*=(S"V",1") where S*V* and 1" represent
the positive solution for the following equations:
A+(1- p)A—%—(yﬂ//)S-rW =0

opVi

W8 - =~ (u+ OV =0 ()
B oVl -
PA + N + N (u+a)l =0
Now, from the second equation of (7) we get:
__Nvs
ofl + N(u+6)

Substituting in the first equation of system (7)
and then doing some computations give that:
N[A+(- p)A][aﬂl* + N(y+0)}

*7

2,%2 £ 2
BN+ N[(u+6)+ o (u+ ) * + 1N (u+y +6)
2

v Y
aﬂzl*z+ﬂN[(,u+9)+0'(/1+l//)]l*+,uN2(,u+y/+0)
While 1 is a positive root for the following
equation
DI®+D,1%+ D4l +D, =0 (9)
here:
D1=—Uﬂ2N(,u+a)<O
D, = NB(oB(A+A) = N(u+a)[(u+0+o(u+y))
Dy = N2(A[pAcu+(A+ A)(u+0+oy|
~Np(p+a)u+y +0))
Dy = N3pAu(u+y +6)>0
Clearly equation 9 has a unique positive root

given by 1* if and only if one of the following
conditions hold.

(8)

oB(A+A) <N(u+a)[(u+0)+o(u+y] (10a)

or

BlpAcu + (A + A)(u+0+oy)]> Nu (10b)
x(u+a)(ut+y+0)

4. Local Stability analysis

In this section, the local stability analysis of
the equilibrium points E° and E*of system (5)
is studied as shown in the following theorems.
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Theorem 2: The disease free equilibrium point

E°=(S°v°,00 of system (5) is locally
asymptotically stable provided that:
BE+oVT) 4 (11a)
N(u+a)
While it is a saddle point provided that:
BE +oVT) (11b)
N(u+a)
Proof: The Jacobian matrix of system (5) at

(E°) can be written as:

“(u+y) 6 I
IEY=| w —(u+0) o
0 0 M_(#Jra)

Then the characteristic equation of the Jacobian
matrix J(E®) is given by :

B(S° +oV°)

N

Where:

H =[(u+t//)+(u+6’)]>0}

B=u(u+0+y)>0
Consequently equation 12 have the following
roots (eigenvalues) of J(E°):

-4ﬂ+m—1}ﬁ+Hi+ﬂ=o (12)

(13)

Asy :%i%(z//+¢9)<0 (14)
3 =B i) (15)

Where 4,4, and A, describe the dynamics in

the S,V and | direction respectively. Clearly
Asand A, are negative. However the third
eignvalue in the I-direction 4, is negative or
positive depending on conditions (11la) and
(11b) respectively.
Therefore, E° is asymptotically stable
equilibrium point provided that condition (11a)
holds, while it is saddle point provided that
condition (11b) holds and hence the proof is
complete. [
Theorem 3

Assume that, The endemic equilibrium point
E"=(S"V", 1) of system (5) exists then it is
locally asymptotically stable provided the:

B(S™ +oV™)

N
% <20+oy)(u+a) (16b)

<(u+a) (16a)
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Where M = s*(29+3m//)+av*(39+2a/3)].
Proof :

The Jacobian matrix of system (5) at the
endemic equilibrium point E” can be written :

. -5
N (u+y) 0 N
IED-| v B (u+0) e
A B B +ropy”
N N N

= [bij ]3x3

Then the characteristic equation of Jacobian

matrix is given by:

B 022 +Q92+Q3=0
here:

Q= by + by +bgs]

- ('BL +(u+w)J+["f" +(u+9)J

_[M_(ﬂﬂx)]

N

Qj = byybyy —byoboy +bygbsg —byzhay +baobss
—Dbo3bs)
Qg = —bg3(b11bsy — 1oy )~ brobyghas
—Dy3b1035 + By 32ob3y +bygbazbsy

* * 2 *2
:[—ﬂ(s ;GV ) (u+ a)][—oﬁN;

s opl”
+ N (u+0)+ N

)
N N
p2s*1* | op*
+ NE; T+(y+9)
Further:

APy NFETE *
{2 e
A=00, -0y

=—(byy +05)(brabgy —by05y)
= (by1 +b33)(by1baz —by3bas)
= (b7 +b33)(byobsz —bashsy)
— 2by3bp5b33 + byobp30gy +byabagbs,

—(u+a)

(ﬂ+V/)+ﬂ2+#9+#'//J
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* * P
_ [[ﬂ'il +(;I+W)J+[C’N' +(Az+6)ﬂ[7aﬁNl

Vi ofl
N N

+Hﬂ,'f +(u+w)]+[(u+a)—@ﬂ

M%—(uw)}[w—(qu

N
,BZS*I*
5]

+K%I*+ (/14—0)] +[(/¢ +a) —Mﬂ

+ (1 +0)+

(e +wy)+ p? +/1(1+ﬂl//}

N

M% (u+ 0)}(% (u+ a)J

2 pd g *yp*
B
o]
—ZM“N”' —(u+v1)][_6,\lﬂl —(u+6’)]

(253200

+[—Gﬂ20\/*l*j+[—o—ﬂzws*l*]
N2 N2

Now according to Routh-Hurwitz criterion

E* will be locally asymptotically stable
provided that ©;>0; Q;>0 and

A=00,-0,>0. Clearly: ;>0 and Q3>0
provided that condition 16a holds. While
A=0,0,-Q5 >0, provided that conditions 16
(a-b) hold. Hence the proof is completed. m

5. Global stability analysis of system (5)

In this section, the global dynamics of
system (5) is studied with the help of Lyapunov
function as shown in the following theorems.

Theorem 4:

Assume that, the disease free equilibrium
point E° of system (5) is locally asymptotically
stable. Then the basin of attraction of E°, say
B(E°) = %3, satisfy the following conditions

(LZT . {uj(m_ﬂj (182)
S VvV S \Y

PAS” _ B(S"+ V")
S(a+ p)l N(x + 1)

(18b)
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Proof: Consider the following positive definite
function:

W, = (S—S° —S°Ln—)+ (V =V —v°Ln-1)+1
s° Ve
Clearly, W;:R®*—>R is a continuously
differentiable function such that
W (S°,v°,00=0,
and Wy (S,V,1)>0
Further, we have:

dw, [S—S"]ds (V—V"Jdv di
— =+ +

V(S,V,1)%(S°,V°,0).

dt S Jdt | v Jdt dt
By simplifying this equation we get:
%:—M(S—S")Z+[§+%}(S—S°)(\/—V°)

dt S
0 +p) o2, PAS’
7 -V b
v v ) S
+'BZ ! +Gﬂ’:|/ ! —(a+ )l

Therefore, according to condition (18a) it is
obtained that:

2
AWy _ | [+ o aoy (B0 G
o {_s G- (VV’}

+ pAéS +ﬂ|(S ’\TOV )—(a+y)l
Obviously %w for every initial points
satisfying condition (18b) and then W, is a
Lyapunov function provided that conditions
(18a-18b) hold. Thus E° is globally
asymptotically stable in the interior of B(E°),
which means that B(E°) is the basin of attraction
and that complete the proof. [

Theorem 5: Let the endemic equilibrium point
(E")of system (5) is locally asymptotically
stable. Then the basin of attraction of E*, say
B(E*) « %3, satisfy the following conditions

B(S" +oV™) < N(u+a) (19a)
©+1)2 <[ﬂl+(/'1\l+w)N}[Uﬁ|+(’/\‘l+9)N} (19b)
[ﬁq _ﬁs*jz < (Bl +(u+y)IN) (19C)

(=B8" —opV" + (1 + a)N)

(Gﬂl 70_/;\/*)2<(o'ﬂ|+(‘u+9)N) (19d)

(/8" —opv " +(u+a)N)
Proof: Consider the following positive definite
function:
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*y2 *y2 *y2
_G-5) vV (-1)
2 2 2
Clearly, w,:R® >R is a continuously different-

tiable function such that w,(s*,v*,1*)=0 and
W,(S,V,1)>0,V(S,V,1)=(S",V*,1"). Further, we

have:
dw,
dt
By simplifying this equation we get:
aw, 1 s 1 .
d_t2 = _qul(s -s")? —EQ22(V VY

+0p2(S-S*)(V -V™)
-5t~ Lggn -1y
2(111 2%3
+053(S-S™)(1-17)
1 w2 1 12
S Y (VA VAD o (Y
ZCIzz( ) 2Q33( )

+0(V -V)(I-17)

W,

S e dV Lol
=(S=S")—+(V -V )—+(I-1")—
( )dt+(V )dt+( )dt

With

iy = %4'(/”'//)}%2=(9+V/)|CI22={UI€—I+(#+9)}
g1 ps* _BS* gpV*

th3 = %—ﬁN }QSs‘{ﬁT—%ﬂlﬁa)}
|t v’

O23 = N N

Tﬁerefore, according to the conditions 19a-
19d we obtain that:

2
aw, 011 * 22 *
o o] s _sny- [d22(v _y
" { > ( ) > \% )

2
| (%1 e ey (Y33
{—Z(SS) —2(ll)}

2
| (922 ) vEy . [933 4 g
{—ZNV) —2(||)}

Clearly, dﬁ%<0, and then W, is a

Lyapunov function provided that the given
conditions hold. Therefore, E* is globally
asymptotically stable in the interior of B(E™),
which means that B(E™) is a basin of attraction
of E and the proof is complete . m

6. The local bifurcation analysis of system (5)
In this section, the occurrence of local
bifurcations (such as saddle-node, transcritical
and pitchfork) near the equilibrium point of
system (5) is studied in the following theorem.
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Theorem 6: System (5) has a transcritical
bifurcation near the disease free equilibrium
point E°, but neither saddle-node bifurcation,
nor pitchfork bifurcation can accrue at the
parameter

P(S°+0oV°)
Y
Proof: It is easy to verify that the Jacobian
matrix of system (5) at (E°,a,) can be written
as:

(20)

J = Df(E°,ax.)
B -5
(u+y) 0 N
- v o) T2
0 0 0

Clearly, the third eigenvalue 2, in the | —
direction is zero (4, =0), while A5 and 4,
those are given in equation 14 are negative.
Further, the eigenvector (say K=(k;,k,,ks)")
corresponding to A, satisfy the following:

JK =K then JK=0

Thus
~(u+y) 0 ==
N ) kl
v —ro) ZZ |k |=0
0 0 0 ks

Fror_n which we get that:

—(Iu+l//)k1+9k2—ﬂSTOk3 =0 (21&)
vy — (1 + O, - ks =0 (21b)
So by solving the above system of equations we
get:

kl = st; k2 = qk3
Where :

_ _IB 2\/0
L uury N [O'H(y+l//) v

+8°u® + 1P @2y +0)+ Oy u+v)+ puy*}
_—BlSw+o(u+y)V']
plu+y + 0N
Here k; be any non zero real number. Thus

q
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Zk3
K = qu
ks
Similarly the eigenvector W =(w;,w,,ws)’
corresponding to 4, of 3T can be written:

—(u+y) 7 0 (w

0 —(u+6) 0]-|w,|=0
_ﬂs" _Gﬂvo 0 W3

N N

This gives:
0
W=|0
W3

Here w, is any non-zero real number. Now

rewrite system (5) in a vector form as:

dXx

= = (X

m (X)

Where x =(s,v,1)" and f=(f,,f,,f3)" with

f; ,i=123 given in system (5), and then

determine 3—f= f, we get that:
(24

0 0
f =| 0| then f,(E°a.)=|0
y 0

Therefore:

WT.f, (Ea)=0

Consequently, according to Sotomayor
theorem [12] the system has no saddle-node
bifurcation near E° at «, .
Now in order to investigate the accruing of other
types of bifurcation, the derivative of f, with
respect to vector X, say Df,(E’,a,), IS
computed

00 O
Df (E°,a.)=[0 0 0
00 -1

So

W [Df, (E°,a.) - K |= —kqws £ 0
Again, according to Sotomayor theorem, if in
addition to the above the following holds

wT -[sz(E",ao)-(K,K)] #0
Here Df(E°,a.)
E° anda,, then the system (5) possesses a

is the Jacobian matrix at



Naji and Muhseen

transcritical bifurcation but no pitch-fork
bifurcation can occur. Now since we have that:
223
N
2qopk3
N
—2p(z+qo)ki
N

D?f(E°,a.)-(K,K)|=

Therefore:

~2p(q+ zo)kdws
N

Then the system (5) has a transcritical

bifurcation at E° when the parameter « passes

through the bifurcation value «, .m

W' .[D?f(E°,a.) (K,K)]= 0

7. The Hopf-bifurcation analysis of system (5)
In this section, the occurrence of Hopf-
bifurcation near the endemic equilibrium point
is studied below.
According to the local stability analysis of
system (5) at E*, we have that the coefficients
of the characteristic equation ;,i=123 are
positive provided that condition 16a holds.
However, A=Q,Q, -Q, is positive provided
that condition 16b holds and hence there is no
Hopf-bifurcation in this case.
Now, suppose that A=0Q,Q,-Q;=0 then
there is possibility to occurrence of Hopf-
bifurcation if and only if the Jacobian matrix of
system (5) near E* has two complex conjugate
eigenvalues, say 4 =p, tip, Wwith the third
eigenvalue is real and negative. In addition the
following two conditions are hold at the specific
parameter say I=1":

p1(1")=0 (22a)
i g (22b)
dl -y
Now, from A=0Q,Q, -Q; =0, We obtain that
MbZ +Bby; +C =0 (23a)
Where :

M = —(b22 + b33) >0

B = byohyg + bygha; — (b +b33)?
C = (byy + ba)[bpghsy — byobss ]
1y [01075 + bygbay |+ bya[031b35 + 13, |
Clearly for C<0 we have two real roots of
equation 23:

B 1 [
-2+ — \B2-4MC
TV Ty
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Since by =-A"—(u+y)<0, then we get

by = —Br - BZ_4Mmc and hence

2M
A" (B, 1 Jg2_ -
N +(u+y) [2M+2M mj_o (23b)
Which gives f(y")=0, and hence y=y"

represents root of equation 23b. Consequently
for y=y* we have Q,Q,=0Q; from which
the characteristic equation can be written as:
p3(4) = (A + Ql)(ﬂv2 +Q,;)=0 (24)
Hence in such case (i.e w=y") the
eigenvaluesare 4 =—-Q,<0 and 7,3 = +i,/Q, .
So the first condition 22a for the Hopf-
bifurcation is satisfied at y =y, that is

py”) =0, while p, =/Q, . Let as now check
the second condition 22b Since, in general, the
complex eigenvalues for any value of  can be
written as:

Aoz =p(W) Tip, ()

Then by substituting 4, = p,(w) +ip,(w)

into the equation 24, and calculating the
derivative with respect to the bifurcation
parameter y , that is %m(i): p3(4)=0 and

then comparing the two sides of this equation
with equating their real and imaginary parts, it is
obtain that :

W) pi(w) - () pa(w) = —H(t//)} 25)
O(w)pi(y) +n(w)pz(w) =-T(y)

where :
1) =3(p1(y))* + 22, (W), (v) + Q, (w)

=3(p,W))?,
O(y) =6p () o (W) + 2 (W) 2 (v),

0) = (o)’ U W) + QW) py(w)

+ Q3 (1) - QW) (P2 (W),

(W) =2p.(y) p2 (W)U () + Q5 (W) P2 ().
Solving the linear system (25) for the unknown
pi(w) and p5(w), itis obtain that :

no+Tro
7]2+(I)2
Hence, the second condition 22b of Hopf-
bifurcation will be reduces to verifying that:

n(y oW ) + Ty )O(y")#0 (27)
Straight forward computation shows that:
Q) =-1; Q) = _(bzz +by, +b33)
Q5 =—-Q,p — (b, +by, +bgs)

AW =) = (26)
%
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Thus for w =y™ we have:

0 = —Ql(bzz + blz + b33) and

I'= —(bzz +byp + b33)\/§22
Therefore, substituting in equation 27, we get
that 8 +T'® =0. Hence the system (5) dose not

undergoes a Hopf-bifurcation around E”.

8. Numerical analysis of system (3)

In this section the global dynamics of system
(3) is studied. The objectives of this study are
confirming our analytical results and understand
the effects of immigration and the existence of
vaccine on the dynamics of SVIR epidemic
system. Consequently, system (3) is solved
numerically for different sets of initial
conditions and different sets of parameters. It is
observed that, for the following set of
hypothetical parameters, system (3) is solved
numerically for different sets of initial values
and then the trajectories of system (3) as a
function of time are drawn in figure 2
E =400, A=100, p=0, #=0.4, =0.5,

6=0.05 4=010=01a=02
Note that : In the following figures, we will
used the following representations: Solid line for
S; dashed line for V; dash dot line for I; dotted
line for R.
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Figure 2- Time series of trajectories of system (3) for data
given in equation 28. (a) trajectories starting at

(900,700,500,500) and (b) trajectories starting at
(1500,1200,900,800).

Obviously, figure 2 shows clearly the
converg-ence of system (3) to the disease free
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equilibrium point E° =(1153,3846,0,0) from two
different initial data.

However, for the data given equation 28
with p=0.1. The trajectories of system (3)
starting from different sets of initial data are
drawn in figure.. 3
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Figure 3-Time series of the solution of system (3). (a)
trajectories starting at (800,700,600,300) and
(b) trajectories starting (1500,1300,1000,900).

Similarly, figure 3 shows the approaching of
system (3) to the endemic equilibrium point

E" = (1118, 3716,55,110) from two different

initial data.

Now the effect of varying the fraction of
immigrant individuals, which arrive infected, on
the dynamics of system (3), is studied. So,
system (3) is solved for the parameters values
p=0.01,0.3,0.75 respectively, keeping other
parameters fixed as given in equation 28, and
then the trajectories of system (3) are drawn in
figures 4 (a-c) respectively.
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obos i " " " N N
o 1000 2000 3000 4000 S000 6000 7000 2000

Figure 4- Time series of the solution of system (3).
(a) For p=0.01, (b) For p=0.3, (c) For p=0.75

According to these figures, as the fraction of
infected immigrant individuals  increases
(through increasing p), the disease free
equilibrium point of system (3) becomes
unstable point and the trajectory of system (3)
approaches asymptotically to the endemic
equilibrium point. In fact as p increases it is
observed that the number of susceptible and
vaccinated individuals decrease and the number
of removal individuals increases whereas the
number of infected individuals increases
slightly.

Now, in order to discuss the effect of varying
the infection rate on the dynamical behavior of
system (3), the system is solved for different
values of infection rate B=0.01,0.6,0.9

respectively, keeping other parameters fixed as
given in equation 28 with p = 0.1, and then the
solution of system (3) is drawn in figures 5 (a-c)
respectively.
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Figure 5-Time series of the solution of system (3).
(@) For f=0.01, (b) For #=0.6 (c)For
B=09

Obviously from these figures, as the infection
rate increases the endemic equilibrium point of
system (3), still coexists and stable but the
number of susceptible and vaccinated
individuals decrease while the number of the
infected and removal individuals increases.

The effect of wvarying the vaccination
coverage rate on the dynamical behavior of
system (3) is studied too. The system is solved
for different values of y =0.02, 0.6, 0.9 keeping
other parameters fixed as given in equation 28
with p=0.1, and then the solution of system (3)
are drawn in figures 6 (a-c) respectively.
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Figure 6-Time series of the solution of system (3).
(a) For v =0.02 , (b) For w =0.6 , (c)For
w=009.
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From these figures, as the rate of vaccination
coverage increases the endemic equilibrium
point of system (3), still coexists and stable but
the number of susceptible, infected and removal
individuals decrease whereas the number of
vaccinated individuals increases.

Similarly the effect of varying the number of
individuals who lose vaccine immunity and
return to susceptible (failure in vaccine), on the
dynamical behavior of system (3) is
investigated. The system is solved for the value
©=0.01, 0.2 and 0.5 keeping the rest of

parameters fixed as given in equation 28 with
p= 0.1 and then the trajectories are drawn in
figures 7 (a-c). In this case, it is observed that
increasing @ causes increasing in the
susceptible, infected and removal while the
number of vaccinated decreases but the system
(3) in this case still approaches to endemic
equilibrium point.
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Figure 7-Time series of the= solution of system (3).
(@) For#=0.01,(b) For =0.2,(c) For
6=05.

Finally the effect of vaccine efficiency
against the disease on the dynamical behavior of
system (3), is studied too then the system is
solved for different values of o =0.02, 0.5, 0.8,
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keeping other parameters as given in equation
28 with p= 0.1, and then the solutions of system
(3) are drawn in figures 8 (a-c) respectively.

From these figures, as the vaccine efficiency
decreases, the endemic equilibrium point of
system (5), still coexists and stable, but the
number of susceptible and vaccinated
individuals decrease and the number of infected
and removal individuals increase.

population

L e L - : L
0 1000 2000 3000 4000 5000 6000 7000 8000
time

populition

0 1000 2000 3000 4000 5000 6000 7000 8000
time

Figure 8- Time series of the solutions of system (3).
(a) For 0 =0.02 , (b) For o =0.5 (c) For
0=08.

9. Discussion and conclusions

In this paper, a mathematical model has been
studied and analyzed to study the effect of
vaccine and immigrants on the dynamical
behavior of SIR epidemic model. The existence
and the stability analysis of all possible
equilibrium point are studied analytically as well
as numerically. It is observed that the system (3)
has a transcritical bifurcation near the disease
free equilibrium point, but neither saddle node
nor pitchfork bifurcation can accrue. Further the
system dose not has a Hopf bifurcation near the
endemic equilibrium point. Finally according to
the numerically simulation the following results
are obtained:

The SVIR system (3) dose not have periodic
dynamic, instead it is approaches either to the
disease free equilibrium point or else to endemic
equilibrium point.

As the fraction of the infected immigrant
individuals increases, the asymptotic behavior of
the system transfers from approaching to disease
free equilibrium point to the endemic
equilibrium point.
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As the losing vaccine immunity rate (9)

increases, then SVIR system still coexist at the
endemic equilibrium point with increasing in the
S, I and R while the number of vaccinated
individual decreases.

As the vaccine efficiency against the disease
decreases then the  SVIR  system still
approaches to the endemic equilibrium point
with increasing in the 1 and R, while the
number of Sand V decreases.
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