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Abstract 
     In this paper a prey-predator model involving Holling type IV functional response 
and intra-specific competition is proposed and analyzed. The local stability analysis of 
the system is carried out. The occurrence of a simple Hopf bifurcation is investigated. 
The global dynamics of the system is investigated with the help of the Lyapunov 
function and poincare-bendixson theorem. Finally, the numerical simulation is used to 
study the global dynamical behavior of the system. It is observed that, the system has 
either stable point or periodic dynamics.       
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1.Introduction 
     Variety of the mathematical models for 
interacting species incorporating different factors 
to suit the varied requirements are available in 
literature, a successful model is one that meets the 
objectives, explains what is currently happening 
and predicts what will happen in future. The first 
major attempt to predict the evolution and 
existence of species mathematically is due to the      
     American physical chemist Lotka (1925) and 
independently by the italian mathematician 
Volterra (1926), see ref. [1], which constitute the 
main them of the deterministic theory of 
population-dynamics in theoretical biology even 
today. Over the last few decades, many models for 
two or more interacting species have been 
proposed on the basis of Lotka-Volterra models 
by taking into account the effects of crowding, age 
structure, time delay, functional response, 
switching, etc. [2,3,4]. Prey-predator relationships 
is an interaction type which cover all kinds of 
natural enemies, including typical predators and 
their preys, hosts parasites, parasitoids, plants and 
herbivores. Despite important modeling work by 
Lotka-Volterra, there has been much less 
quantitative work on predation than competition. 
This mainly results from the fact that the 
dynamics of the two species prey-predator models 
is based on the trophic function (functional 
response) type and hence it is harder to 
incorporate into predation models than 
competition models. The functional response of 
predator to prey density refers to the change in the 
density of prey attacked per unit time per predator 
as the prey density changes [5]. These functions 
can be classified into three classes known as prey-
dependent, ratio dependent and predator 
dependent [6]. The prey-dependent (including 
Holling types I-III given in [7]), prey-predator 
models have been extensively studied in literature 
see for example refs. [8-11]. However, the ratio 
dependent, which proposed originally by Arditie 
and Ginzburg [12], prey-predator model have 
been investigated by number of researchers [13-
17] and the references their in. Finally predator-
dependent, which originally proposed by 
Beddington [18] and De Angelis [19], prey- 
predator models have been also studied in 
literature [20] and the References their in. 

Recently, Mainal Haque 2009 [21] has been 
proposed and study ratio-dependent prey-predator 
model involving intra-specific competition in 
predator species. 
In this paper however, the Haque model is 
modified so that Holling type IV that suggested by 
Andrews [22] is used instead of ratio-dependent 
functional response. The new model has been 
studied analytically as well as numerically. 
     
 2. Mathematical models 
Let )(tx  be the density of prey species  at time t , 
( )ty  be the density of predator species  at time t  

that consumes the prey species according to 
Holling type IV functional response  then the 
dynamics of a prey–predator model can be 
represented by the following system of ordinary 
differential equations. 
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with 0)0( ≥x  and 0)0( ≥y  
Note that all the parameters of system (1) are 
assumed to be positive constants and can be 
described as following: a  is the intrinsic growth 
rate of the prey population; d  is the death rate of 
the predator population; the parameter b  is the 
strength of intra-specific competition among the 
prey species; the parameter β  can be interpreted 
as the half-saturation constant in the absence of 
any inhibitory effect;  the parameter γ  is a direct 
measure of the predator immunity from the prey; 
α is the maximum attack rate of the prey by a 
predator; e  represents the conversion rate; and 
finallyδ is the strength of intra-specific 
competition among the predator species . 

Obviously, the interaction function in the right 
hand side of system (1) are continuously 
differentiable function on 

 { }0,0:),( 22 ≥≥∈=+ yxRyxR   and hence they 
are Lipschitzian therefore for any initial value 
( ) 2)0(),0(( +∈Ryx  the solution of system (1) exists 
and is unique. Further all the solutions of system 
(1) with non-negative initial conditions is 
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uniformly bounded as shown in the following 
theorem 
 
Theorem 1: All the solutions of system (1) which 
initiate in 2

+R  are uniformly bounded.  
Proof: 
Let ( ))(),(( tytx  be any solution of the system )1(  
with non negative initial condition ),( 00 yx . 
According to the first equation of system (1) we 
have  

     )( bxax
dt
dx

−≤  

Then by solving this differential inequality we 
obtain that  
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So the time derivative of )(tw  along the solution 
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  Again by solving the above linear differential 
inequality we get  
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Consequently, for ∞→t  we have  
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3. Existence and Local Stability analysis of 
system (1) with persistence 

In this section, the existence and local stability 
analysis of all possible non –negative equilibrium 
points of system (1) are investigated. There are 
three non-negative equilibrium points of system 
(1) the existence and the stability analysis for each 
of them are as follows:  
(1) The trivial equilibrium point )0,0(0 =E  always 
exists. 

(2) The equilibrium point 





= 0,1 b

aE  always 

exists, as the prey population grows to the 
carrying capacity in the absence of predation. 
(3) There is no equilibrium point on  axisy −  as 
the predator population dies in the absence of its 
prey.  
(4) The positive equilibrium point ),( **

2 yxE =  
exists in the interior of the first quadrant   if and 
only if there is a positive solution to the following 
set of algebraic nonlinear equations:       
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the resulting term we obtain that 
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  Therefore the positive equilibrium point 
*)*,(2 yxE = , where *x  is a positive root of 

equation )5(   that satisfies condition 4 while 

)( ** xyy =  that given in Equation 3 exists 
uniquely in Int 2

+R  provided that condition 4 
holds a long with one set of the following sets of 
conditions    

)(2
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Note that, conditions 6a - 6c guarantee that 
Equation .5 has unique positive root.  

Now, we will discuss the local dynamical 
behavior of the solution of system 1 near these 
equilibrium points. First we need to compute the 
varitional matrix of eigenvalues. Assume that 
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Accordingly, by substituting the equilibrium 
points 2,1,0, =iEi  in  7 and then computing the 
eigenvalues, for 2,1,0),( =iEJ i  respectively the 
following results are obtained:  

The varitional matrix of system (1) at 0E  is 
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describe the dynamics in the −x  direction and 
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The varitional matrix of the system )1(  at the 
positive equilibrium point *)*,(2 yxE =  is given as 
follows 
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Where )( *2* γβγ ++= xxR  
 Note that according to the stability theorem for 

the two dimensional dynamical system, 
*)*,(2 yxE =   is locally asymptotically stable 

provided that  
    Trace  0))(( 22112 <+== aaTEJ  
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Detriment 0))(( 211222112 >+== aaaaDEJ  
Now since 
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Therefore the positive equilibrium point 
),( **

2 yxE =  of system (1) is locally 
asymptotically stable in Int 2

+R  under the 
following   necessary and sufficient conditions  
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In the following the persistence of the system 
)1(  is studied. It well known that the system is 

said to be persists if and only if each species is 
persist. 

Mathematically, this is means that, system (1) 
is persists if the solution of the system with 
positive initial condition does not have omega 
limit sets on the boundary planes of its domain.  

However, biologically means that, all the 
species are survivor. In the following theorem the 
persistence condition of the system (1) is 
established using the Gard and Hallam technique 
[23]. 
 
Theorem 2: The system (1) is uniformly persist 
provided that condition )8( b  holds.  
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only possible omega limit sets of the solution of 
system (1) on the boundary of Int 2
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Clearly 0)( 0 >Eψ  for all sufficiently large 
positive value of 1s  with respect to 2s , while   

0)( 1 >Eψ , for all values of 2s  under 
condition ).8( b  Hence σ  represents persistence 
function and system (1) is uniformly persistent. 
                                                                          ■                                            
Theorem (3): Assume that condition  )11( b  holds 
then the System (1) possesses a Hopf bifurcation, 
near the positive equilibrium point 2E  at the 

parameter value 
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Proof:  
According to the varitional matrix )9( , the 
eigenvalues of )( 2EJ  can be written as 
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Here T and D  are given by equation (10a) and 
)10( b  respectively. 
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So according to hopf bifurcation theorem the 
proof is completed.                                             ■               
 
4. Global dynamical behavior of   the system (1) 

In this section the global stability for the 
equilibrium points of system )1(  is investigated in 
the 2. +RInt    by using the Lyapunov method as 
shown in the following theorems. 
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Theorem 4: Suppose that 





= 0,1 b

aE  is locally 

asymptotically stable, then it’s globally 
asymptotically stable if the following condition 
holds: 

β
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Proof: 
The proof is based on a Lyapunov direct method. 
Consider the following positive definite function 
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dt
dV Hence 

1V  is a Lyapunov function therefore the 
equilibrium point )0,ˆ(1 xE =  is globally 
asymptotically point.                                        ■                                                                                                                                                                                                                                                                                       

 
 Now, the global stability of the positive 

equilibrium point is investigated in the following 
theorem. 
 
Theorem  5: Assume that the positive equilibrium 
point *)*,(2 yxE =  of the system (1) is locally 
asymptotically stable in Int 2

+R . Then it is a 
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 Obviously ),( yx∆  does not change the sign and is 
not identically zero in the regain B. and hence 
according to Bendixson-Dulic [24] criteria, there 
is no periodic dynamic    

Also, since 2E  is a unique positive equilibrium 
point for system (1) in 2. +RInt  and all solution of 
system (1) initiated in 2

+R  are uniformly bounded, 
then according to Poincare-Bendixson theorem 

2E  is globally asymptotically stable.    ■ 
 

5. Numerical analysis 
In this section the global dynamics of system )1(  
is studied numerically. The system )1(  is solved 
numerically for different sets of parameters and 
for different sets of initial condition, by using six 
order Runge-Kutta method  with predictor-
corrector method, and then the attracting sets and 
their time series are drown as shown  below. 
Now, for the following set of hypothetical 
parameters 
        

0.01 0.75,e 0.01,d
 1, 0.75, 0.50,    0.2,b,1

===
=====

δ
βγαa  (14)                                                                                                    

The attracting sets along with their time       
series of system )1(  are drown in Figure (1a) – 
(1b). 
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Figure 1-(a) Globally asymptotically stable positive point of  
                  system )1( for the data given in Equation.14    
                  starting from different initial values. (b) Time  
                  series of the attractor given by Figure 1(a).  

 
Clearly, as shown in figure 1a-1b, the system 

(1) approaches asymptotically to the positive 
equilibrium point )99.3,71.4(2 =E  from different 
initial points. However, for the parameters values 
given by Equation. 1 with the maximum attack 
rate parameter 75.0=α , system (1) approaches 
asymptotically to the globally stable limit cycle, as 
shown in the following figureure.     
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Figure  2-Globally asymptotically stable limit cycle of  
                 system(1) for the data given by Equation 14    
                 with 75.0=α . (a) The solution approaches   
                 tolimit cycle from inside (b) The solution   
                 approaches to limit cycle from outside (c) Time  
                 series for figure 1a   (d) Time series for figure 1b. 

 
Further analysis shows that, for the parameter 

75.0<α  with the rest of parameters as given in 
Equation. 14, system (1) has a globally 
asymptotically stable positive point, while for 

75.0≥α the system (1) approaches to periodic 
dynamic. Now, in order to investigate the effect of 
other parameters on the dynamics of system (1), 
the system (1) is solved numerically with varying 
the other parameters in two different cases.    

Case 1: In which the system (1) has 
asymptotically stable point. Thus Equation. 14 
will be used here. 

Case 2: In which the system (1) has periodic 
dynamic, and hence Equation 14  with 75.0=α  
will be used in this case.  

Now, the effects of varying the intrinsic growth 
rate of the prey, the parameter a , on the 
dynamical behavior of system (1) is studied. It is 
observed that, for case 1, the system (1) 
approaches asymptotically to periodic dynamic for 

6.0≤a , see for example figure 3, otherwise it 
approaches asymptotically to stable positive point. 
However, in case 2, the system (1) has 
asymptotically stable point in 2

+IntR  for 6.0>a , as 
shown in figure 4.  
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Figure  3- Time series for periodic dynamic of system (1) in  
                case 1 with. 5.0=a . 
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Figure. 4-Time series for stable point attractor of system (1)  
                 in case 2 with 5.1=a  

 
The effect of varying the intra specific 

competition of the predator species on the 
dynamical behavior of system (1) shows that: in 
case 1 for 005.0≤δ  the system becomes 
periodic as shown in the typical figureure given by 
Figure 5, while it is still approaches to positive 
equilibrium point otherwise. In case 2, it is 
observed that the system (1)  approaches 
asymptotically to a positive equilibrium point 
when 005.0>δ  as shown in figure 6, while it has 
periodic dynamic otherwise.  
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Figure 5- Time series for periodic dynamics of system (1) in  
                case 1 with 003.0=δ  
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Figure 6- Time series for stable point of system (1) in case 2  
                with 03.0=δ  

 
     Further, the effect of death rate of predator 
species on the dynamical behavior of system (1) is 
also studied. It is observed that, in case 1, system 
(1) still has an asymptotically stable point in 
the 2

+IntR , for 03.0≤d  while for 03.0>d  there is 
an extinction in a predator species and the 
system )1(  approaches asymptotically to 







= 0,1 b

aE  as shown in figure 7. Moreover, in 

case 2, for 01.0≤d the system (1) have periodic 
attractor while it has a stable point in the 2

+IntR  
when 01.0>d .
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Figure 7- (a) The system (1) approaches as- ymptotically   
              to stable point ( )0,51 =E  for  case 1 with 04.0=d   
             starting from (3, 3), (b) Time series of the attractor  
             given by figure 1 (a). 
 
     Finally, the system (1) still has the same 
dynamical behavior as in case 1, for all values 
of e and ,βγ , however the effect of these 
parameters on the dynamical behavior of system 
(1) in the case 2 is shown below. 

It is observed that for 75.0<γ  the system (1) 
has an asymptotically stable positive point as 
shown in figure 8. While it still has periodic 
attractor otherwise.  
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Figure 8- Time series for stable point of the system )1(  in   
                 case 2 with 60.0=γ  

 
For 1.1>β  the system (1) has an 

asymptotically stable positive point as shown in 
the typical figureure given by figure 9 while it still 
has periodic attractors for 1.1≤β   
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Figure 9- Time series for stable point of the system (1) in  
                case 2 with 5.1=β  

 
     Finally, for 75.0<e  the system approaches 
asymptotically to a positive equilibrium point see 
for example figure 10, while it has periodic 
dynamics when 75.0≥e       
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Figure 10- Time series for stable point of the system )1(  in      
                   case 2 with 50.0=e  

 
6. Conclusion 
     In this paper, a mathematical model consisting 
of a Holling type IV prey predator model with 
intra specific competition has been studied 
analytically as well as numerically. 

 The condition for the system )1( to be 
uniformly bounded and persistence have been 
derived. The local as well as global stability of the 
proposed system has been studied. The occurrence 
of a Hopf-bifurcation in system )1(  is 
investigated.  

The effect of each parameter on the dynamical 
behavior of system )1(  is studied numerically and 
the trajectories of the system are drowned.                
According to these figureures the following 
conclusions are obtained. 
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1. As the intrinsic growth rate of the prey species 
increases then the system )1(  approaches to an 
asymptotically stable positive equilibrium 
point, otherwise the system has periodic 
dynamics. So this parameter has a stabilizing 
effect on the system. 

2. The intra specific competition parameter 
)  e..( δi  has the same effects, as that of a , on 

the dynamics of the system )1( . 
3. The death rate of the predator species d) ..( ei  

has the same effect, as those of δ and  a  on 
the dynamical behavior of system )1( . But, it 
is observed that increasing this parameter 
further than a specific value wills causes 
extinction of predator species and then the 
trajectory of system  )1(  approaches to 

equilibrium point 





= 0,1 b

aE .  Hence in such 

case the system loss the persistence. 
4. When the system )1(  approaching to the 

positive equilibrium point, then it is observed 
that the parameters e and  , βγ  have no effect 
on the dynamical behavior of the system. 

5. When the system )1(  has a periodic dynamics 
then it is observed that, decreasing the 
parameters eor  γ  , where γ  represents the 
direct measure of the predator immunity 
and e  represents the conversion rate, causes 
stabilizing the system. While increasing the 
parameter β  will has stabilizing effect on the 
system.                         
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