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Abstract

In this paper a prey-predator model involving Holling type 1V functional response
and intra-specific competition is proposed and analyzed. The local stability analysis of
the system is carried out. The occurrence of a simple Hopf bifurcation is investigated.
The global dynamics of the system is investigated with the help of the Lyapunov
function and poincare-bendixson theorem. Finally, the numerical simulation is used to
study the global dynamical behavior of the system. It is observed that, the system has
either stable point or periodic dynamics.
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1.Introduction

Variety of the mathematical models for
interacting species incorporating different factors
to suit the varied requirements are available in
literature, a successful model is one that meets the
objectives, explains what is currently happening
and predicts what will happen in future. The first
major attempt to predict the evolution and
existence of species mathematically is due to the

American physical chemist Lotka (1925) and
independently by the italian mathematician
Volterra (1926), see ref. [1], which constitute the
main them of the deterministic theory of
population-dynamics in theoretical biology even
today. Over the last few decades, many models for
two or more interacting species have been
proposed on the basis of Lotka-Volterra models
by taking into account the effects of crowding, age
structure, time delay, functional response,
switching, etc. [2,3,4]. Prey-predator relationships
is an interaction type which cover all kinds of
natural enemies, including typical predators and
their preys, hosts parasites, parasitoids, plants and
herbivores. Despite important modeling work by
Lotka-Volterra, there has been much less
guantitative work on predation than competition.
This mainly results from the fact that the
dynamics of the two species prey-predator models
is based on the trophic function (functional
response) type and hence it is harder to
incorporate  into  predation models  than
competition models. The functional response of
predator to prey density refers to the change in the
density of prey attacked per unit time per predator
as the prey density changes [5]. These functions
can be classified into three classes known as prey-

dependent, ratio dependent and predator
dependent [6]. The prey-dependent (including
Holling types I-1ll given in [7]), prey-predator

models have been extensively studied in literature
see for example refs. [8-11]. However, the ratio
dependent, which proposed originally by Arditie
and Ginzburg [12], prey-predator model have
been investigated by number of researchers [13-
17] and the references their in. Finally predator-
dependent, which originally proposed by
Beddington [18] and De Angelis [19], prey-
predator models have been also studied in
literature [20] and the References their in.
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Recently, Mainal Haque 2009 [21] has been
proposed and study ratio-dependent prey-predator
model involving intra-specific competition in
predator species.

In this paper however, the Haque model is
modified so that Holling type IV that suggested by
Andrews [22] is used instead of ratio-dependent
functional response. The new model has been
studied analytically as well as numerically.

2. Mathematical models
Let x(t) be the density of prey species at time t,

y(t) be the density of predator species at time t

that consumes the prey species according to
Holling type IV functional response then the
dynamics of a prey—predator model can be
represented by the following system of ordinary
differential equations.

%zx{a—bx—za—yyﬂ}zxfl(x,y)

XS+ X+

; 1)
e

oy —d+ gy | =y, (x,Y)

dt X + %+ 1B

with x(0)>0 and y(0)>0
Note that all the parameters of system (1) are
assumed to be positive constants and can be
described as following: a is the intrinsic growth
rate of the prey population; d is the death rate of
the predator population; the parameter b is the
strength of intra-specific competition among the
prey species; the parameter B can be interpreted
as the half-saturation constant in the absence of
any inhibitory effect; the parameter y is a direct
measure of the predator immunity from the prey;
a is the maximum attack rate of the prey by a
predator; e represents the conversion rate; and
finallysis the strength of intra-specific
competition among the predator species .

Obviously, the interaction function in the right
hand side of system (1) are continuously
differentiable function on

Rf:{(x, y)eRZ:XZO,yZO} and hence they
are Lipschitzian therefore for any initial value
((x(0), y(0))e R? the solution of system (1) exists
and is unique. Further all the solutions of system
(1) with non-negative initial conditions is
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uniformly bounded as shown in the following
theorem

Theorem 1: All the solutions of system (1) which
initiate in R? are uniformly bounded.

Proof:
Let ((x(t), y(t)) be any solution of the system (1)

with non negative initial condition (x,,Y,) -

According to the first equation of system (1) we
have

Ll < x(a—bx)

dt
Then by solving this differential inequality we
obtain that

ax
X(t) < 0

ae™™ +bx, — xobe ™

Thus tIim Sup where

M= max{i,xo}
b

Define the function: W (t) = x(t) +%y(t)

xt)<M

So the time derivative of w(t) along the solution
of the system (1)

dw _dx 1dy

dtdt et

W _ @+ d)x—d(x+1y)
t e

‘L—Vtvmwz(am).m

Again by solving the above linear differential
inequality we get

wt)< @ Dy w e —we-d‘
Consequently, for t — oo we have
(@a+d)M
0<W(t) ST

Hence all solution of system (1) enter the
region

Q={(x(0)y(0) <R 1 x(1) +iy(t) <

+gfor any e >0}

(a+d)M
d
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3. Existence and Local Stability analysis of
system (1) with persistence

In this section, the existence and local stability
analysis of all possible non —negative equilibrium
points of system (1) are investigated. There are
three non-negative equilibrium points of system
(1) the existence and the stability analysis for each
of them are as follows:
(1) The trivial equilibrium point E; = (0,0) always
exists.

(2) The equilibrium point Elz(%,oj always

exists, as the prey population grows to the
carrying capacity in the absence of predation.

(3) There is no equilibrium point on y —axis as
the predator population dies in the absence of its
prey.

(4) The positive equilibrium point E, =(x",y")
exists in the interior of the first quadrant if and
only if there is a positive solution to the following
set of algebraic nonlinear equations:
ayy

a-bx-——=——=0 (2a)
O + 7+ 7P)
eayx
-d+—"— =0 (2b)
(X% + X+ 1)
From (2b) we have
y =—d(x2+;o<+y,8)+ea7/x 3)

S(x* +px+7P)

Clearly, y >0 if the following condition holds
2

d(x +);(/x +¥3) @)

Now by substituting 3 in 2a and then simplifying
the resulting term we obtain that

f(x)= A5x5 + A4x4 + A3x3 + Azx2

eay >

®)
+ A X+ Ay
Where
A; =-bo<0
A, = S5(a—-2by)

A; = y5(2a—by —2bp)

A, = y(285(a—by)+ay?s +ad)
A =7%(B5(2a-bp)+a(d —ea))
A, =ap?y?5+apy?d >0
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Therefore the positive equilibrium point
E, = (x*,y*), where x" is a positive root of
equation(5)  that satisfies condition 4 while
y*=y(x*) that given in Equation 3 exists
uniquely in Int R? provided that condition 4

holds a long with one set of the following sets of
conditions

a< min{by,b% +bg}

(6a)
ayd+ad <2p65(by —a)
2a>by+2bp
a>by or aj +ad >245 (by—a)>0 (6b)
d>ea or (a-bp)>alea—-d)>0
a<z2by
2a<hby+2b
a<by+2bp (6¢)

ayd+ad >266(by —a)

po(2a-bp)+a(d-ea)>0

Note that, conditions 6a - 6c guarantee that
Equation .5 has unique positive root.

Now, we will discuss the local dynamical
behavior of the solution of system 1 near these
equilibrium points. First we need to compute the
varitional matrix of eigenvalues. Assume that
J(x, )

Where
x%+ f xﬁ
= % LY (7)
2 2
y—= y—=+1,
OX oy
ofy ay(2x+y)
X (X + %+ 1B)?
oh__ o
oy (X*+x+1B)
oy _ eay(By—x*) 4 O _ o
OX (X2 4+ yB)° oy

Accordingly, by substituting the equilibrium
points E;j,i=012 in 7 and then computing the
eigenvalues, for J(E;),i=0.,2 respectively the
following results are obtained:
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The varitional matrix of system (1) at E, is
0 .
J(Ep) =(g d) clearly the eigenvalues of J(E,)

A

0y

and —d <0, where

are Agy =a>0

Aoy: 4,y Trepresent the eigenvalues of J(E,) that

describe the dynamics in the x- direction and
y — direction respectively. Hence E, is a saddle
point.

The varitional matrix of system (1) at

E, = (%,Oj IS given by

—abay
-a 2 2
_ a“ +aby+b“yB8
J(E;) = abeay
0 -d+

a?+aby+b%yp
So, the eigenvalues are 4, =-a<0
abeay
a?+aby+b%yB
Therefore, E, is locally asymptotically stable if

and only if
abeay

a’+aby+b’py

and —d +

<d (8a)

While E, = (%,0) is saddle point provided that

abeary
aZ+ aby + b2By
The varitional matrix of the system (1) at the
positive equilibrium point E, = (x*, y*) is given as
follows
_bx*+ayx*y*(2x*+y) —oyX*
R? R
eyt Broxt) g
R

>d (8b)

J(Ez):

(9)

(@) 202

Where R = (x*2 + ]/X* +0)
Note that according to the stability theorem for

the two dimensional dynamical system,
E, =(x*y*) is locally asymptotically stable
provided that
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Detl’lment (J (Ez)) = D = allazz + a128.21 > O
Now since

T :%[— (ox" + & IR +a’y (2x" + }/)] (10a)
x*y"

R3
Therefore positive
E,=(x,y") system (1) s

asymptotically stable in Int R> under
following necessary and sufficient conditions
ax*y (2x" + ) < (bx* +8y*)R? (11a)

boR® +ea?y?(yp - X" )>aydy” (2x" +7)R (11b)
In the following the persistence of the system
(1) is studied. It well known that the system is

said to be persists if and only if each species is
persist.

Mathematically, this is means that, system (1)
is persists if the solution of the system with
positive initial condition does not have omega
limit sets on the boundary planes of its domain.

However, biologically means that, all the
species are survivor. In the following theorem the
persistence condition of the system (1) is
established using the Gard and Hallam technique
[23].

D:

ey (p-x" )+ éR(bRZ —ay (2K + }/))] (10b)

the
of

equilibrium  point

locally
the

Theorem 2: The system (1) is uniformly persist
provided that condition (8b) holds.

Proof:

consider the following
function, o(x,y)=x>y*2 where S;j,i=12
undetermined positive constants. Obviously,

o(x,y) is C! positive function defined on R?,
and o(x,y) —»0,if x>0 or y—0. Now since

’

(X, X
w(X, Y)=M=Sl— S, A
o(x,y) X y
Therefore
X
w(X,y)=s l:a—bx—a—}
' (X* + + 1)

eayx
e~
(X2 + X+ ypB)

+s{-d cﬂ
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Note that, since E, =(0,0) and E, =(%,0) are the

only possible omega limit sets of the solution of
system (1) on the boundary of Int R?, in addition
w(Eq) =s,a—s,d
eayab

aZ + yab + 02
Clearly w(E,)>0 for all sufficiently
positive value of s; with respect to s, , while
w(E;)>0, for all wvalues of s, under
condition (8b). Hence o represents persistence

function and system (1) is uniformly persistent.
|
Theorem (3): Assume that condition (11b) holds

then the System (1) possesses a Hopf bifurcation,
near the positive equilibrium point E, at the

(bx” + &y*)R?
X*Y*(2X*+y)

and y(E;) =s,(-d + )>0

large

parameter value o =

Proof:
According to the varitional matrix(9), the

eigenvalues of J(E,) can be written as
X, y:%i%\/Tz —4D

Here Tand D are given by equation (10a) and
(10b) respectively.

Cleary D >0 under condition (10b) and T =0
ata = a* then we obtain

Ay :i%«/—4D =+iy/D

further
8Re(ixyy) _i(l)| B
da At by 2 la=

My (2x +y)#0
So according to hopf bifurcation theorem the
proof is completed. [

4. Global dynamical behavior of the system (1)

In this section the global stability for the
equilibrium points of system (1) is investigated in
the IntR?> by using the Lyapunov method as
shown in the following theorems.
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Theorem 4: Suppose that El:(%’oj is locally

asymptotically  stable, then it’s globally
asymptotically stable if the following condition
holds:

(12)

Proof:
The proof is based on a Lyapunov direct method.
Consider the following positive definite function

Vi (X, y) =cl(x—§<—§(lné)+czy
X

Clearly V,;;R*> »>R is a continuously differential

function and V;(X0)=0 with V;(x,y)>0
V(x,y) = (X,0)
Now
dv, X—X, dx dy
—=C —+C, —
i T g oy
dv, - - ay
— = (X=X)[-b(X—X) ——————]—c,dy +
Ol G e AL
Creapxy 2
- ‘- - C (g/
(X% +x+7P)
dv o2 ayxy 2
—=—Cb(Xx—X)* ———————(c; —C,e)—C
T e i vy CRL LR
CiapX
(e, -———)
(X +x+7p)

1
choose ¢; =1 and ¢, ==
e

yoX

(X + X+ )

dv, o2 fd
—=<-b(xX-X)" -y ——
prak y(e

|

Now, if d zae—“ then we get OIi<0Hence
bs dt
V; is a Lyapunov function therefore the
equilibrium  point  E; =(x,00 is globally
asymptotically point. [

Now, the global stability of the positive
equilibrium point is investigated in the following
theorem.

Theorem 5: Assume that the positive equilibrium
point E, = (x*,y*) of the system (1) is locally

asymptotically stable in Int R?2. Then it is a
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globally asymptotically stable for any initial point
in the region
B={(x,y)eR?:x>0,y>0,bx+dy >

ayxy(2x+y) } (13)
(0 +px+78)°
Proof:
consider the following function

H X, y)=xiy,h1(x, ) = Xf; (% )

ha (X, y) = ¥f2 (X, Y)
Clearly, H(x,y)>0 for all (x,y)eIntR? and its

c* function in Int.R? of xy-plane. Further, it is

observed that
AGLY) = a(:xhl) N a(:yhz>

A(x,y):;—yl(a‘y+bx>+ ay(2x+7)

2+ x4 75)?
Obviously A(x, y) does not change the sign and is
not identically zero in the regain B. and hence
according to Bendixson-Dulic [24] criteria, there
is no periodic dynamic

Also, since E, is a unique positive equilibrium

point for system (1) in Int.R? and all solution of

system (1) initiated in R? are uniformly bounded,

then according to Poincare-Bendixson theorem
E, is globally asymptotically stable. =

5. Numerical analysis
In this section the global dynamics of system (1)

is studied numerically. The system (1) is solved

numerically for different sets of parameters and
for different sets of initial condition, by using six
order Runge-Kutta method  with predictor-
corrector method, and then the attracting sets and
their time series are drown as shown below.
Now, for the following set of hypothetical
parameters

a=1b=02, a«=050,y=075p=1,

d=0.01,e=0.75,6 = 0.01

The attracting sets along with their time

series of system (1) are drown in Figure (1a) —

(1b).

(14)
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@)

Stable point

ash (4.71,3.99)

initial point

initial point
(3.0,3.0) 1

(6.0,3.0)

251 initial point
(4.0,2.0)

3.5 4.5 5.5 6.5

(b)

prey

3.75

Populations

Predator

25

(o} 5000 10000 15000

Time

Figure 1-(a) Globally asymptotically stable positive point of
system (1) for the data given in Equation.14
starting from different initial values. (b) Time
series of the attractor given by Figure 1(a).

Clearly, as shown in figure la-1b, the system
(1) approaches asymptotically to the positive
equilibrium point E, =(4.71,3.99) from different
initial points. However, for the parameters values
given by Equation. 1 with the maximum attack
rate parameter « =0.75, system (1) approaches
asymptotically to the globally stable limit cycle, as
shown in the following figureure.

12

10

initial poirt

initial point
(6.0,4.0)
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8r prey
g
< sf
g
a
> /
predator
o
o 2 a 6 8 10 12
Time 10°
d
12
10

population

2 predator

o 2 4 6 8
Time

10 12

Figure 2-Globally asymptotically stable limit cycle of
system(1) for the data given by Equation 14
witha = 0.75. (a) The solution approaches
tolimit cycle from inside (b) The solution
approaches to limit cycle from outside (c) Time
series for figure 1a (d) Time series for figure 1b.

Further analysis shows that, for the parameter
a <0.75 with the rest of parameters as given in
Equation. 14, system (1) has a globally
asymptotically stable positive point, while for
a >0.75the system (1) approaches to periodic
dynamic. Now, in order to investigate the effect of
other parameters on the dynamics of system (1),
the system (1) is solved numerically with varying
the other parameters in two different cases.

Case 1: In which the system (1) has
asymptotically stable point. Thus Equation. 14
will be used here.

Case 2: In which the system (1) has periodic
dynamic, and hence Equation 14 with «=0.75
will be used in this case.

Now, the effects of varying the intrinsic growth
rate of the prey, the parameter a, on the
dynamical behavior of system (1) is studied. It is
observed that, for case 1, the system (1)
approaches asymptotically to periodic dynamic for
a<0.6, see for example figure 3, otherwise it
approaches asymptotically to stable positive point.
However, in case 2, the system (1) has
asymptotically stable point in IntR? for a> 0.6, as

shown in figure 4.
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predator

population
N
d w

N

o 1 2 3 4 5 6 7 8 9
x 10"

Figure 3- Time series for periodic dynamic of system (1) in
case 1 with.a=0.5.

8

7.5

7
G.Sf\

prey

o
5 =)

population

3

Ed
n

/4

predator

IS

w
o

w

0 02 04 06 08 1

Time

12 14 16 18 2

x10°
Figure. 4-Time series for stable point attractor of system (1)
in case 2 with a=1.5

The effect of varying the intra specific
competition of the predator species on the
dynamical behavior of system (1) shows that: in
case 1 for ©6<0.005 the system becomes
periodic as shown in the typical figureure given by
Figure 5, while it is still approaches to positive
equilibrium point otherwise. In case 2, it is
observed that the system (1) approaches
asymptotically to a positive equilibrium point
when 6 >0.005 as shown in figure 6, while it has
periodic dynamic otherwise.
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population

predator

o N b O ®

<)

2 4 6 8
Time

10 12

Figure 5- Time series for periodic dynamics of system (1) in
case 1 with 6 =0.003

5

4.5F

prdamr “
0 02 04 06

0.8 1
Time

prey

a

population
w
o

w

N
)

N

12 1.4 1.6 1.8 2

x 10*
Figure 6- Time series for stable point of system (1) in case 2
with 6 =0.03

Further, the effect of death rate of predator
species on the dynamical behavior of system (1) is
also studied. It is observed that, in case 1, system
(1) still has an asymptotically stable point in

the IntR?, for d <0.03 while for d >0.03 there is

an extinction in a predator species and the
system(l)  approaches  asymptotically to

E, :(%,Oj as shown in figure 7. Moreover, in

case 2, for d <0.01the system (1) have periodic
attractor while it has a stable point in the IntR?
whend > 0.01.
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a prey.

population

predator

o5

o

3 3.2 3.4 3.6 3.8 a 4.2 4.4 4.6 a.8 5

Figure 7- (a) The system (1) approaches as- ymptotically
to stable point E;, = (5,0) for case 1 with d=0.04

starting from (3, 3), (b) Time series of the attractor
given by figure 1 (a).

Finally, the system (1) still has the same
dynamical behavior as in case 1, for all values
ofy,pande, however the effect of these

parameters on the dynamical behavior of system
(1) in the case 2 is shown below.

It is observed that for y <0.75 the system (1)
has an asymptotically stable positive point as
shown in figure 8. While it still has periodic
attractor otherwise.

6

5.5

predator
sk

4.5H

population

a

3.5

3

o 1 2

Time x 10°

Figure 8- Time series for stable point of the system (1) in
case 2 with ¥ =0.60

For p>11 the system (1) has an
asymptotically stable positive point as shown in
the typical figureure given by figure 9 while it still
has periodic attractors for g<1.1
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/

predator

population
o

a

/4

0.4 0.6

prey

o] 0.2 0.8 1

Time

12 14 16 18 2

Figure 9- Time series for stable point of the system (1) in
case 2with =15

Finally, for e<0.75 the system approaches
asymptotically to a positive equilibrium point see
for example figure 10, while it has periodic
dynamics when e >0.75

IS
®

»
o

»
IS

prey

»
N

g

predator

population
w oW w
RS

w
N

@

[}

0.2 04 06 08 1

Time

1.2 1.4 1.6 1.8 2

Figure 10- Time series for stable point of the system (1) in
case 2 with e =0.50

6. Conclusion

In this paper, a mathematical model consisting
of a Holling type IV prey predator model with
intra specific competition has been studied
analytically as well as numerically.

The condition for the system (1)to be
uniformly bounded and persistence have been
derived. The local as well as global stability of the
proposed system has been studied. The occurrence
of a Hopf-bifurcation in system (1) is
investigated.

The effect of each parameter on the dynamical
behavior of system (1) is studied numerically and
the trajectories of the system are drowned.
According to these figureures the following
conclusions are obtained.
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As the intrinsic growth rate of the prey species
increases then the system (1) approaches to an
asymptotically stable positive equilibrium
point, otherwise the system has periodic
dynamics. So this parameter has a stabilizing
effect on the system.

The intra specific competition parameter
(ie.5) has the same effects, as that ofa, on
the dynamics of the system (1).

The death rate of the predator species (i.e.d)
has the same effect, as those of a and § on
the dynamical behavior of system (1). But, it
is observed that increasing this parameter
further than a specific value wills causes
extinction of predator species and then the
trajectory of system (1) approaches to

equilibrium point E; :[%,Oj. Hence in such

case the system loss the persistence.

When the system (1) approaching to the
positive equilibrium point, then it is observed
that the parameters y, gande have no effect
on the dynamical behavior of the system.
When the system (1) has a periodic dynamics
then it is observed that, decreasing the
parameters yore , where y represents the
direct measure of the predator immunity
and e represents the conversion rate, causes
stabilizing the system. While increasing the
parameter B will has stabilizing effect on the

system.
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