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Abstract

In this paper,a prey-predator model with infectious disease in predator population
is proposed and studied. Nonlinear incidence rate is used to describe the transition of
disease. The existence, uniqueness and boundedness of the solution are discussed.
The existences and the stability analysis of all possible equilibrium points are
studied. Numerical simulation is carried out to investigate the global dynamical
behavior of the system.
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1. Introduction

Mathematical modeling becomes important
tools to analyze the spread and control of
infectious diseases. These models are known as
epidemiological models which are used to study
of the spread and control of diseases in human
or animal populations. One of the major
mathematical model in the field of epidemiology
which describe the spread of disease from
susceptible to infected and then to removal
individuals has been formulated by Kermack
and McKendric in 1927[1]. On the other hand,
its well known that in nature no species can
survive alone; and the species not only spreads
the disease but also competes with other species
for space or food or is predated by other species.

The mathematical models which describe the
dynamical behavior of an interacting species in
ecology are known as ecological models. The
first mathematical model in the field of ecology
that describes the interactions between
biological species was formulated,
independently, by Lotka (American physical
chemist) in 1925 [2] and Volterra (Italian
mathematician) in 1926 [3]. The researchers
studied the dynamics of the mathematical
models of these two fields epidemiology and
ecology independently along the years until
now [1-5], however during the last four decades
the ideas oriented to study the dynamical
behavior of eco-epidemiological models, which
represented by mathematical models merging of
the two phenomena, that is means the
demographics of interaction of interacting
species and an epidemic evolution in different
environment. In 1978 Anderson and May were
the first who merged the above two fields,
ecological system and epidemiology system,
they formulated a prey-predator model with
infectious disease spread among prey by contact
between them. In the subsequent time many
researchers proposed and studied different prey-
predator models with disease spread in prey
population [6-9]. In addition to the above there
are many investigations about prey-predator
model with disease in the predator population.
Haque [10] proposed a prey-predator model
includes an Susceptible-Infected-Susceptible
(SIS) parasitic infection in the predator
population with linear functional response and
nonlinear disease incidence rate. Hague and
Venturino [11] considered a prey-predator
model with Sl epidemic disease spread in
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predators involving linear functional response.
Das [12] studied a prey-predator model with Sl
epidemic disease in predators included Holling
type-11 as a functional response. Venturino [13]
proposed and analyzed prey-predator model
with SIS disease in predators included linear
functional response and linear disease incidence.
Haque and Venturino [14] considered a prey-
predator model with Sl epidemic disease spread
in predators included ratio-dependent functional
response and linear disease’s incidence rate.

Keeping the above in view, there are many
diseases such as influenza, typhoid fever, bird
flu and strep throat are the most diseases spread
in the human population and they classified to
be SIS epidemic diseases, which transmitted by
contact between susceptible and infected
individuals (i.e. contact nasal secretions or
inhalation of aerosols...etc).

So in this paper we proposed and analyzed a
mathematical model describing prey-predator
model having SIS epidemic disease in the
predator population with nonlinear functional
response, represented by Holling type-1l and
ratio-dependent incidence rate.

2. Mathematical Model

In this section an eco-epidemiological model
consisting of a prey-predator model with
infectious disease in the predator is proposed for
study. In order to construct our model the
following assumptions have been assumed.
1. Let X(T) and N(T) be the population

densities of the prey species and predator
species at time T respectively.

2. The prey grows logistically with intrinsic
growth rate a>0and carrying capacity

%>O.

3. The predator preys upon the prey according
to Holling type-11 functional response with
maximum attack rate c¢>0 and half
saturation constant d >0. While in the
absence of the prey the predator decay
exponentially with natural death rate 6 >0.

4. In addition to the above it is assumed that
the predator has other food sources
represented by the constant 5 >0.

Accordingly the following prey-predator
model is obtained:
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here e >0 represent the conversion rate
constant.

In addition to the above assumptions, let us

consider the following:

5. There is an SIS epidemic disease spreads
among the predator population and it
transmitted between the predator individuals
(but not the prey) by contact, according to
ratio-dependent incidence rate with infection
rate constant « >0. Therefore the total
predator population is divided into two
classes: susceptible that denoted by Y(T)

and infected that denoted by Z(T ). Hence at

any time T the total predator population is
N(T)=Y(T)+2z(T). Furthermore it is
assumed that the infected predator depends
in its feeding on the prey species only with
attack rate p>0 and the disease induced
mortality rate represented by 6 >0.

6. Finally the infected predator can be
recovered and becomes susceptible again
with recovery rate constant @ >0.

Consequently, the prey-predator model 1 with

the above two assumptions can be rewritten in

the following form:

d—x—x[a—bx G A pcz)

ar d+X d+X

d_y_Y(ecX aZ _0+’5J+wz 2

dr ~ {d+X ~ Y+z
dz _ oY L EPCX 4 o)
T _Z(Y+Z tx Y 5) ol

Clearly system (2) can be represented by the
following block diagram.

X{a-bX)

cX ¥ peX
d+ X d+X
Ay
l (V4
Susceptible Infective
Predator ¥ FPredator £
274 ¥

m'l Y+2Z lf‘ﬂ'?-' l”

Figure 1- Block diagram for system (2).
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Obviously, system (2) contains 12 parameters in
all, which makes the analysis difficult, so to
reduce the number of parameters and determine
which combinations of parameters control the
behavior of the system, it is assumed that
w=0+6>0 and pu=p-0eR. Then, the

following dimensionless variables are used in

the system (2)
X y=Y ,_Z {_
X= Y=o 25 o ,t=ecT
Now straight forward computation on system (2)

gives the following dimensionless system

dx _ (_ oy

dt_xr HXx 1+x  1+x

dy o[ x _ mz )

at ~ Y\Tix y+z+n+hz 3)

d _ Z(ﬂ+ﬂ_ )_ hy

dt y+z = 1+X
where
r=i>0 ) H=@>0, m=£>0,
ec ec ec
h=£>0, nzﬁeiR, d=1>0
ec ec ec

represent the dimensionless parameters. Clearly
the dimensionless system (3) has seven
parameters. Further, the interaction functions
Fi(x,y,z),i=123 are continuously different-
iable on the Int%R?3 = {(x y,z)eR® x>0,y>0
z >0}. In addition to that:

limF;(x,y,z)=0 Vvi=1,2,3

(x.y,2}>(0.0,0)

limFi(x,y,z)=0 Vi=1,2,3,xeR,

(x.y,2)>(x,0,0)
So, if we define that

Fi(0,0,0)=F(x,0,0)=0 Vvi=123
Then with this assumption the interaction
functions of system (3), Fj; 1=123 are
continuously differentiable on the extended
domain

%3 ={(x, y,z)eﬂ{3,x20,y20,220}.

In fact, they are Lipschizian on ‘Ri
Accordingly, the solution of the system (3) with
non negative initial condition exists and is
unique. Therefore, *}{i is invariant for the

system (3). In the following theorem the
sufficient condition for uniformly bounded of
the system (3) is established.

and
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Theorem (1): All the trajectories of the system
(3) are uniformly bounded provided that

(n<0).
Proof: From the first equation of system (3) we
get:

& < x(r —Hx)
Now, by solving the above differential

inequality we get that:
lim sup x(t) < ﬁ
t—o0

Define the function M(t)=x(t) + y(t) + z(t)
and take its time derivative along the solution of
the system (3) .
d
= rx — Hx? +ny—dz
<rx—gy-¢z where g=min{-n,d}
<(r+g¢)x—g¢M
<z-¢M where 7=(r+g¢)L
Now, by using Gronwall lemma [15] it is
obtained that:

0<M(t) < M(0)e " +%(1_e—¢t)

Hence, lim supM(t) <7 that is independent of
t—o ¢

the initial conditions. Thus the proof is
complete. [

3. Existence of equilibrium points
The system (3) has at most six non negative

equilibrium points, namely E; =(x;,yi,z;),

i=01,...,5 the existence conditions for each of

these equilibrium points are established in the
following:

1. The  vanishing equilibrium
Eo =(0,0,0) always exists.

2. The predator free equilibrium point
E,= (ﬁ,o,o) always exists.

3. The axial equilibrium point E, =(0,y,,0)
where y, is any positive number, exists if
andonly if n=0.

4. The disease free
E3 =(x3, y3,0) where:

X3 zn__+n1 and y3 =(r—Hxz)1+x3) (4)

point

equilibrium  point
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exists uniquely in interior of first quadrant
of xy—plane under the following necessary

and sufficient conditions:
ne(-10) and x3 < (5)
5. The prey free equilibrium
E4=(0,y4,24) where:
24 =Byy (6)
here y4 is any positive number and

B= %‘%%P, exists uniquely in the interior

of first quadrant of yz—plane under the

point

following  necessary and  sufficient
conditions:
m>(d+h)and n+hB =5 @)
6. The coexistence equilibrium  point
Es =(xs, Y5, 25) Where:
_ (r—Hxg )1+x5)
Y5 = ep) @
_ _ o r=Hxs)1+xs)
25 =Qys QW
PX5
it Q:m (d+h 1+X5j

px
(d +h—1+x55)
However xg represents the positive root of the
following quadratic equation:

[(Ay + Ao X Ag — p)+h(A + p)x°
+[(Ay+ Ag)Ag + Ay (Ag — p)+h(2A4 + p)lx (9)
+[AyA3 +hA,]=0
where:

A =1-p;Ay=n-As;A3=d+h;

Ay =m—(d +h)
Obviously, Eg exists uniquely in the int.inL if
and only if the following conditions are hold.

A+ Ay Az — h(A, 0
(1+ 2)( 3 P)+ ( 4+I0)> (10a)
A2A3+hA4 <0
Or
(A +Ap XAz — p)+h(Ag + p)<0 (10b)
ArAz3 +hAy >0
with
xr
X5 < (11a)
pX
m>(d+h—ﬁ)>0 (11b)
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4. The stability analysis
In this section, the local dynamical behavior
of the system (3) around each of these

equilibrium points is studied, first the Jacobian
matrix of the system (3) at each of the
equilibrium points E; ; Vi=2,...,5 is computed
and then their eigenvalues are determined.

It is easy to verify that the Jacobian matrices
at the equilibrium points Eg and E; are not

define, while that at E, has zero eigenvalue and
hence Ej is nonhyperbolic point. Therefore, the

stability analysis at these points will be study by
using other methods as shown below.

4.1 The stability analysis at Eq =(0,0,0):
Since, the system (3) cannot be linearized at
Eg, so in order to study the dynamical behavior

of system (3) near Eg, the technique of Arino et
al. [7] is used. Now, rewrite system (3) in form:
& =ABE)+o(B() (12)

dt

In which A is C! outside the origin and
homogeneous of degree 1.

A(sB)=sA(B)
for all szO,Be*R?’and @ is a ¢! function

such that in the vicinity of the origin we have:
®(B)=0(B).

To study the behavior of the system (12) at the

origin point, we use |-| that denotes the

Euclidian norm on %3and <> denotes the
associated inner product.

Let
=(by,bp,b3)=(x,.2)
A(B)=(A1(B) A2(B).A3(B))
®(B)=(01(B) @ (B) @3(B)).
Therefore, the functions Aj and ®; (i
are given by:

=12,3)

—mb, b
A]_(B)z rby, A2(B)= br:+2b33 +nby +hbg,

mb, b,
b, +b,

A3(B)= —dbg —hbg;
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_ n2  biby  pbibs
1(B)= Hby 1+b, 1+b '
b;b, pbybs

D, (B)= L+b; CD3(B)=W

Let B(t) be a solution of system (12). Assume
that:

lim inf|B(t))=0 and B is bounded. One can
t—o0

extract from the family (B(t+
B(th+.), ty >, such that
locally uniformly on s e R. Define
B(tn+s)

i Sequences
B(t, +.)— 0

Qn(5)=m (13)
Recall that: ®(B)=0(B) in the vicinity of the
origin. Then we can write @ as:

B)=[B|*0) (14)
We have:
9BtS) _ A (Bt +5))+ D(Blty +5)). (15)

ds
From (13) we have:

B(tn + 5) =0n (S)HB(tn + 5)" =0n (5)
x(B(tn +5),B(tp + s)}l/2
Now, using the derivative of
(B(ty +5),B(t, +5)) with respect to s.

d _ dB(t,+s)
o (B(t, +5),B(t, +5))= 2<B(tn +s), Blars) >
Put it in (16) and take derivative of B(t, +5)

with respect to s, we obtain:

(16)

dB(dS+S) dqn "B X|
qn( ) dB(tn +S)
ety (Bl +9) ),

Therefore, we have:
AB(ty +5))+ O(B{t, +5)) = 2B, +5)|

s))+ ®(B(t, +3)))
Now dividing by [B(t,+s) and replacing
B(t, +5)/|B(ty + )| by dn(s), we obtain:

n(s)
JFM(B&n +5),A(Bt, +

A(B(t, +S)) ®(B(ty+s)) _ day(s)
[B(t,+s) IB(t, +s]\ ds
to+s)  A(B(t,+s)+®(B(t,+s))
+0n ><Bt Ts H [Bltyrs) >

Hence:
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= N+ T
—0n (S><Qn (S)v A(Qn (5)) q)}gB(t;; >

= Adn(s)) - an(sXan(s), Alan ()

4th+sw_%£§?_q4g

i (B
<Qn (S)’ HB(tn+s)H2 >]

Which is equivalent to:

dqn [A Qn Qn XQn qn( ))>]
+||B n +S]|[(D Qn )aQn( )

x(Gn(s), @(qn(s)))

Clearly, dn(s) is bounded, |q,(s)|=1,Vs, and

dqg( s) is bounded too.

So, applying the Ascoli-Arzela [16] theorem,
one can extract from q(s) a subsequence — also
denoted by q(s) —which converges locally
uniformly on R towards some function g, such
that:

”B(tn + SM[CD(qn (s))—an(s)

(an(s), @(ap ()] 2220
And q satisfy the following system:

& = Alalt) - altXa(®)hA6(0) (7)
here ||q )||=1Vt. Equatlon (17) is defined for all
teR.

So by study of equation (17) we get that, the
steady state of A are vectors K satisfying:

A(K)=K(K,A(K)).
This is a so—called nonlinear eigenvalue. Note
that the equation can be alternatively written as:

A(K)=7K. (18)
with [K[=1; it then holds that 7 =(K,A(K)).
These stationary solutions correspond to fixed
directions that the trajectories of equation (17)

may reach asymptotically. Now, equation (18)
can be written as:

(n—r)ky =0; (19a)
[(7+m=n—hks+(r-nkJk, ki =0  (19b)
[(7-m+d+hk, +(+d+hksks=0.  (19c)
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Now, we are in a position to discuss in detail the
possibility of reaching the origin following fixed
direction.
Case 1: when k; =0
(a) k2 =0 and k3 #0.
In this case, there is a possibility to reach
the origin following the z-—axis, with
h=0and n=-d.
(b) k2 #0 and k3 =0.
In this case, there is a possibility to reach
the origin following the y—axis, with
n=n when n<0;
OR
cannot reach the origin when n > 0.
(c) ko #0 and k3 =0.
In this case, we obtain different results
depending on the parameters:
Sub case 1: If (-m+d +n)<0 then:
(i) We reach the origin if
(~m+d+n)d+(d+n)h<0.
(if) We cannot reach the origin if
(~m+d+n)d+(d+n)h>0.
Sub case 2: If (~m+d +n)>0 then:
(i) We cannot reach the origin if
(-m+d+n)d+(d+n)h<0.
(if) We reach the origin if
(~m+d+n)d+(d+n)h>0.
Case 2: when k; =0
(@) ko =0 and k3 =0.
In this case, we cannot reach the origin
following the x —axis, with 7 =r.
(b) k2 =0 and k3 #0.
In this case, there is a possibility to reach

the origin following the z-—axis, with
n=-d when h=0. while it cannot reach

the origin following the x-—axis with
n=r.

(c) ko #0 and k3 =0.
In this case, there is a possibility to reach
the origin following the y-—axis, with
n=n when n<0;and cannot reach the
origin following x —axis, with 7=r.
OR
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it cannot be reaching the origin following
both axes (y-—axis and x—axis ) with

n=n when n>0and n=r.
(d) ko #0 and k3 #0.

In this case, we obtain different results
depending on the parameters as these in
sub case 1 and sub case 2 above:
So, under the above conditions, the trajectories
may follow a fixed direction, that is contained in
the positive octant to reach the fixed point Eg .

4.2 The stability analysis at E; = (ﬁ,0,0):

In this subsection the stability of the system
(3) near E; is studied using the method of
Lyapunov function as shown in the following

theorem.
Theorem 2: The predator free equilibrium
point E; is globally asymptotically stable in
%3 ifand only if:
; d

Xq < mm{— n,F} (20)
Proof: Consider the function

V[l]z(x—xl—xllnxi)erJrz (21)

1

Clearly, VI : %% % and VI(E;)=0 with
VI(E)x0 VE=E; and EeR3. Hence it
is positive definite function in the ‘Ri .

Now, the derivative of VM with respect to the
time t is given as follows.
dv® X% dx , dy | dz

dt _[ X :ldt+dt+dt

= x(r — Hx)— x ( Hx — - IDZ)+ny dz

1+x
=—H(x—x ) + y(ﬁ+n)— z(d —%)
< —H(x=x, ) + y(x, +n)—z(d - px, )

d\ét <0 under the sufficient condition

(20), then vl s a Lyapunov function.
Therefore by using the Lyapunov Theorem for
stability E; is locally asymptotically stable

dviH
Tt

domain iRi then E; is a globally asymptoti-
cally stable too. [

Hence,

inﬂﬁ. Further more, since <0 on the
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4.3 The stability analysis at E; :
The Jacobian matrix of the system (3) at E, is
given by:
r-y 0 0
J,=J(Ez)=| y, 0 —m+h (22)
0 Om-d-h
Clearly J, has zero eigenvalue and hence E,

is nonhyperbolic point. Therefore in the
following theorem we will study the stability of
E, using Lyapunov function.

Theorem 3: The axial equilibrium point E, is

locally asymptotically stable in the ‘Jﬁ if the
following conditions hold:

yo > (r — Hx)1+ x); (23a)
> My, (23b)
y+z y

Proof: Consider the following function:
V[2]=x+[y—y2—yzlnyij+z (24)
2

Clearly, VI2: %3 - % and VIZ(E,)=0 with
VI2I(E)20 VE=E, and EeR3. Hence it
is positive definite function in the SRE .

Now, the derivative of v 2 with respect to the
time t can be written as

dv_m_%+(ujﬂ+ﬂ
dt dt d
dt Uy

_X(r_HX j n(y-y,)*
1+x y

_z(hﬁ_mm)
y y+z

Since Ejexists if and only if n=0, further
conditions (23a) and (23b) guarantees that
dv
dt

Therefore by using the Lyapunov Theorem for
stability E, is locally asymptotically stable in
the ‘Ri [
Note that, according to condition (23) it is easy
to verify that E, is locally asymptotically stable
but not globally.

<0 then V4 js a Lyapunov function.
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4.4 The stability analysis at E3:
The Jacobian matrix of the system (3) at Ej3 is

given by:
J3=J(E3)=
r—2Hx; — n
s 14%g ) P (25)
_ Vs _
o} 0 m-+h
0 0 m-np-d-h

So, the characteristic equation of J3 can be
written by

(m-np—d—h)-p,)
2 [, .
x| u r —2Hxs .y jy

Y3 —
" (_ n (1+x5 ) D =0

from which, we obtain that:
pz =(m-np-d-h)
and

(26a)

iy z(r el (1+yx33>2j (26b)

_| _~Nys
ILlX ILly _[(1+X )2
Here 1,1y and u, denote to the eigenvalues

in the x-—direction,

z —direction, respectively.
So, it is easy to verify that, all the eigenvalues
have negative real parts if and only if

y —direction  and

m<np+d+h (27a)
Y3 27
r<2Hxs + o P (27b)

Therefore, the equilibrium point Egz is locally

asymptotically stable in the ERE if and only if
the conditions 27a and 27b hold.

4.5 The stability analysis at E4 :
The Jacobian matrix of the system (3) at

E4 is given by:
Ja=J(Es)
r—ya(l+ pB) 0 0
Ve S CEE T (28)
PBY, (m—(crin+h))2 (d *r'nh)z —d=h

Similarly, the characteristic equation of J, is
given by:
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(r—ys@+ pB)-5y)
«(6% ~(n—(m (d+h
+(( (d+h )(d+h )) o

Therefore, the elgenvalues of J, satisfy the
following:

Sy =T — Y41+ pB)

and
Sy +6,=(n=(m-(d +h))

Sy -0, =[%(d8 n)j

Here Jy,6yand &, denote to the eigenvalues in

the x—direction, y—direction and z —direction,

respectively.
So, all the eigenvalues have negative real parts if
and only if

r<ys(d+ pB) (29a)
n<-4-(m—(d+h) (29b)
Thus, the equilibrium point E, is locally

asymptotically stable in Sﬁ if and only if the
conditions 29a and 29b hold.

4.6 The stability analysis at Eg :
The Jacobian matrix of the system (3) at Eg
is given by:

35 =3(Es)= (a5, , (30)
where:
lgl[i]_r_ZHx ( ) ﬂ:{g]_(%

5 —PXs . 5 y
A3 =gy ﬂgl]_(l :

+X5) '
2
[6] _ X pX .
ﬂZZ - i1+§(5 ) _ﬁ( (d +h— il+xii)) +n;

2
o CRUET I

A =2{m-(d+n _(%j) R =
ﬁg;’]:—l( (d+h %D(d+h ﬁj)

Theorem 4: The coexistence equilibrium point
Eg of the system (3) is locally asymptotically
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stable in the IntR® if and only if the following
conditions are satisfied:

I —2Hxs < min (r:)'(:?’) ,
(r HX5 [1 mpxs /[(1+ %5 )1+ pQ) (31a)

( (d+h %D(dm—&ﬂﬂ

2
n+ 1+X <%(m—(d +h—(%)j (31b)
<%(d+h—zl%555j2——(d+h (&jjz (31c)

Proof: According to the Jacobian matrix Jg at
the equilibrium point Eg, the characteristic
equation of Js can be written by:

}/3 + D17’2 +Dyy+D3=0 (32)
where the coefficients:

D, - (ﬂ[5]+ﬂ[5]+/3§5)
Dz—(ﬂls] e ﬂm) (ﬂ[51 [5]
pElg (ﬂ[S] 51 _ pls [51)
(ﬁ[fz] [5 ﬁl[gl ﬂ[fz]) [51(@] pLl
ﬂl?ﬂ[“ b2 g2
A=D,D, D, =- 1[5] 5] ﬂ[S]) [5 (33)
< B8 (18 pl) ) . ﬂltfa](ﬂl[g] /3[5] 15 [5])
[51) 51 ) + g8 (pt8
N ﬂ[51ﬂ[51)+ 5[51( 151 515 ﬁ£§] 3[3])
+ IS B gI51 | 181 pis g

Now, by substituting the elements of Jg in

the equation.33 and then simplifying the
resulting terms we obtain that:

D, =—(r - 2Hx, - {22))
sl faen— e ) 1)
+2(m-(d+h-g)la -2
0, =Ly - +lm-loen -2 o
([ 2Hx; ~ r1+Hx:5)>F (1+Xin(or)(1H+X§:)

(r—ZHx —{%Xm (d+h 11’1—1555))
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Therefore, it is easy to verify that D; >0 for
i=1,3 and A>0 provided that the conditions

31a, 31b and 31c hold.

So according to Routh-Hurwitz criterion the
equilibrium point Eg is locally asymptotically
stable. [

5. Numerical Simulation

In this section the dynamical behavior of
system(3) is studied numerically. The system (3)
is solved numerically for different sets of
parameters values and different sets of initial
points. The objectives are confirming our
analytical results and investigate the effect of
varying the infection rate parameter on the
dynamical behavior of system (3). Now for the
following set of hypothetical parameters values:

r=1 ,H=01 ,p=07 ,m=0.35

n=-08 ,h=01 ,d=06
The trajectories of the system (3) are drawn in
the figure 2.

(34)

Initial Point
(854,2.5)

Stable Point
(512525

Initial Poitt
(3,L5,1.5)

Initial Point
(0.75,0.75,0.75)
0o

Figure 2- Phase plot of system (3) starting from
different initial points.
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According to the above figure, the system
(3) approaches asymptotically to the stable
coexistence equilibrium point Ez =(51.25,2.5)
starting at different initial points.

Now observe the dynamical behavior of the
system (3) for the set of parameter values given
by Equation. (34) while the infection rate m

varying at the values m=0.1,02,08
respectively and then the trajectories of system

(3) are drawn in figure 3a-3c and | figure 4a-4c

respectively.
03 @)

Iritial Poirit
(0.75.0.75.0.75)

Initial Point.
(0.75,0.75,0.75)

Stable Point
(5.53,0.53,3.42)

4 _| nitial Point
(0.75,0.75,075)

Figure 3-Phase plots of system (3). (a) periodic
attractor of system(3) for m=0.1, (b)
periodic attractor of system(3) for m=0.2,
(c) asymptotically stable of system (3) for
m=0.8.

Note that, we will use the following lines types
(—); (-=-) and (==) in the figure 4a-4c to
describe the prey species, susceptible predator
and infected predator species respectively.
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@)

Pepulations

[n) 1000 2000 3000

Populations

Fopulations

Tirmez

Figure 4- Time series of the solution of system(3);
(a) time series for the attractor in Figure (3a) ,

(b) time series for the attractor in Figure (3b) ,
(c) time series for the attractor in Figure (3c) .

Observe that, as the infection rate increases,

say m>0.217, the dynamical behavior of the
system transfers from periodic dynamics to
asymptotically stable at the coexistence
equilibrium point. Thus the infection rate
constant works as a stabilizing parameter in the
system (3).
Now to understand of dynamical behavior of
the system (3) at the vanishing equilibrium point
E, the following set of hypothetical parameter
values is chosen:

r=001 ,H=00001 ,p=07 ,m=0.3

n=-001 ,h=01 ,d=01
and then the trajectories of the system (3) are
drawn in the figure 5 and figure 6a-6¢ starting
from different initial values. Again, in figure 6

(35)
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we will use (—) to describe the trajectory
starting at (0.75,0.75,0.75); (==) to describe the
trajectory starting at (0.65,0.65,0.65) and (—*-)
to describe the trajectory starting at
(0.45,0.45,0.45).

According to these figures it is clear that, the
system (3) approaches asymptotically to the
vanishing equilibrium point E;=(0,0,0),
which insure our analytical result.

(0.75,0.75,0.75)

Initial Point
(0.65,0.65,0.65)

Initial Point
(0.45,0.45,0.45)

00

Figure 5- Phase plot of the system (3) starting from
different initial points.

@

2000 2500

o 500 1000 1500 2000 2500
Time

Figure 5-Time series of figure 5; (a) trajectory of
x as a function of time, (b) trajectory of
y as a function of time, (c) trajectory of
z as a function of time.
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6. Conclusions

In this paper, an eco-epidemiological model
has been proposed and analyzed to study the
dynamical behavior of a Holling-type Il prey—
predator model with ratio-dependent incidence
rate for the disease in predator species. The
model consists of three non-linear autonomous
differential equations that describe the dynamics
of three different populations namely prey (x),

susceptible predator (y), infected predator (z). It

is observed that, the system (3) is bounded if the
net growth rate of the susceptible predators n is
negative (i.e. the naturally mortality rate larger
than the alternative source of food). The
conditions for existence and stability for each
equilibrium points are obtained.
In order to confirm our analytical results and
understand the effect of varying the infection
rate m parameter on the dynamical behavior of
the system (3), system (3) has been solved
numerically for different sets of initial points
and different sets of parameters and the
following observations are made:

1. For the set of hypothetical parameters values
given by Equation.34, the system (3)
approaches asymptotically to globally stable
point Es =(5,1.25,2.5).

2. It is observed that, for the values of
infection rate m in the range 0.21<m<1,
system (3) has asymptotically stable point in
the Int%%. While decreasing the value of m
further leads to periodic dynamics in
the IntR3. Therefore, the infection rate

parameter play vital role in controlling the
stability of system (3).

3. For the set of parameters values given by
Equation 35 the system approaches
asymptotically to vanishing equilibrium
point E, which conform our analytic.
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