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Abstract 
     In this paper,a prey-predator model with infectious disease in predator population 
is proposed and studied. Nonlinear incidence rate is used to describe the transition of 
disease. The existence, uniqueness and boundedness of the solution are discussed. 
The existences and the stability analysis of all possible equilibrium points are 
studied. Numerical simulation is carried out to investigate the global dynamical 
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1. Introduction 
      Mathematical modeling becomes important 
tools to analyze the spread and control of 
infectious diseases. These models are known as 
epidemiological models which are used to study 
of the spread and control of diseases in human 
or animal populations. One of the major 
mathematical model in the field of epidemiology 
which describe the spread of disease from 
susceptible to infected and then to removal 
individuals has been formulated by Kermack 
and McKendric in 1927[1]. On the other hand, 
its well known that in nature no species can 
survive alone; and the species not only spreads 
the disease but also competes with other species 
for space or food or is predated by other species.  
     The mathematical models which describe the 
dynamical behavior of an interacting species in 
ecology are known as ecological models. The 
first mathematical model in the field of ecology 
that describes the interactions between 
biological species was formulated, 
independently, by Lotka (American physical 
chemist) in 1925 [2] and Volterra (Italian 
mathematician) in 1926 [3]. The researchers 
studied the dynamics of the mathematical 
models of these two fields epidemiology and 
ecology  independently along the years until 
now [1-5], however during the last four decades 
the ideas oriented to study the dynamical 
behavior of eco-epidemiological models, which 
represented by mathematical models merging of 
the two phenomena, that is means the 
demographics of interaction of interacting 
species and an epidemic evolution in different 
environment. In 1978 Anderson and May were 
the first who merged the above two fields, 
ecological system and epidemiology system, 
they formulated a prey-predator model with 
infectious disease spread among prey by contact 
between them. In the subsequent time many 
researchers proposed and studied different prey-
predator models with disease spread in prey 
population [6-9]. In addition to the above there 
are many investigations about prey-predator 
model with disease in the predator population. 
Haque [10] proposed a prey-predator model 
includes  an Susceptible-Infected-Susceptible   
(SIS) parasitic infection in the predator 
population with linear functional response and 
nonlinear disease incidence rate. Haque and 
Venturino [11] considered a prey-predator 
model with SI epidemic disease spread in 

predators involving linear functional response. 
Das [12] studied a prey-predator model with SI 
epidemic disease in predators included Holling 
type-II as a functional response. Venturino [13] 
proposed and analyzed prey-predator model 
with SIS disease in predators included linear 
functional response and linear disease incidence. 
Haque and Venturino [14] considered a prey-
predator model with SI epidemic disease spread 
in predators included ratio-dependent functional 
response and linear disease’s incidence rate.  

Keeping the above in view, there are many 
diseases such as influenza, typhoid fever, bird 
flu and strep throat are the most diseases spread 
in the human population and they classified to 
be SIS epidemic diseases, which transmitted by 
contact between susceptible and infected 
individuals (i.e. contact nasal secretions or 
inhalation of aerosols…etc). 

So in this paper we proposed and analyzed a 
mathematical model describing prey-predator 
model having SIS epidemic disease in the 
predator population with nonlinear functional 
response, represented by Holling type-II and 
ratio-dependent incidence rate. 

 
2. Mathematical Model 
      In this section an eco-epidemiological model 
consisting of a prey-predator model with 
infectious disease in the predator is proposed for 
study. In order to construct our model the 
following assumptions have been assumed. 
1. Let ( ) ( )TNTX and  be the population 

densities of the prey species and predator 
species at time T  respectively. 

2. The prey grows logistically with intrinsic 
growth rate 0>a and carrying capacity 

0>b
a . 

3. The predator preys upon the prey according 
to Holling type-II functional response with 
maximum attack rate 0>c  and half 
saturation constant 0>d . While in the 
absence of the prey the predator decay 
exponentially with natural death rate 0>θ . 

4. In addition to the above it is assumed that 
the predator has other food sources 
represented by the constant 0>β .  
Accordingly the following prey-predator 
model is obtained:  
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here 0>e  represent the conversion rate 
constant. 

In addition to the above assumptions, let us 
consider the following:  
5. There is an SIS epidemic disease spreads 

among the predator population and it 
transmitted between the predator individuals 
(but not the prey) by contact, according to 
ratio-dependent incidence rate with infection 
rate constant 0>α . Therefore the total 
predator population is divided into two 
classes: susceptible that denoted by ( )TY  
and infected that denoted by ( )TZ . Hence at 
any time T  the total predator population is 
( ) ( ) ( )TZTYTN += . Furthermore it is 

assumed that the infected predator depends 
in its feeding on the prey species only with 
attack rate 0>p  and the disease induced 
mortality rate represented by 0>δ . 

6. Finally the infected predator can be 
recovered and becomes susceptible again 
with recovery rate constant 0>ω . 

Consequently, the prey-predator model 1  with 
the above two assumptions can be rewritten in 
the following form: 
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Clearly system (2) can be represented by the 
following block diagram. 
 

 
Figure 1- Block diagram for system (2). 
 

Obviously, system (2) contains 12 parameters in 
all, which makes the analysis difficult, so to 
reduce the number of parameters and determine 
which combinations of parameters control the 
behavior of the system, it is assumed that 

0>+= δθψ  and ℜ∈−= θβµ . Then, the 
following dimensionless variables are used in 
the system (2) 

ecTtzyx ed
Z

ed
Y

d
X ==== ,,,  

Now straight forward computation on system (2) 
gives the following dimensionless system 
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where 
0>=

ec
ar  , 0>=

ec
dbH , 0>=

ec
m α , 

0>=
ec

h ω , ℜ∈=
ec

n µ , 0>=
ec

d ψ  
represent the dimensionless parameters. Clearly 
the dimensionless system (3) has seven 
parameters. Further, the interaction functions 

( ) 3,2,1,,, =izyxFi  are continuously different-
iable on the ( ){ 0,0,,,. 33 >>ℜ∈=ℜ+ yxzyxInt  

}0>z . In addition to that: 
( )

( ) ( )
3,2,10,,lim

0,0,0,,
=∀=

→
izyxF

zyx
i  

and  
( )

( ) ( )
+

→
ℜ∈=∀= xizyxF

xzyx
i ,3,2,10,,lim

0,0,,,
 

So, if we define that 
( ) ( ) 3,2,100,0,0,0,0 =∀== ixFF ii  

Then with this assumption the interaction 
functions of system (3), 3,2,1; =iFi  are 
continuously differentiable on the extended 
domain  

( ){ }0,0,0,,, 33 ≥≥≥ℜ∈=ℜ+ zyxzyx . 

In fact, they are Lipschizian on 3
+ℜ . 

Accordingly, the solution of the system (3) with 
non negative initial condition exists and is 
unique. Therefore, 3

+ℜ  is invariant for the 
system (3). In the following theorem the 
sufficient condition for uniformly bounded of 
the system (3) is established. 
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Theorem (1): All the trajectories of the system 
)3(  are uniformly bounded provided that 

( )0<n . 
Proof: From the first equation of system )3(  we 
get: 

)( Hxrxdt
dx −≤  

Now, by solving the above differential 
inequality we get that: 

H
r

t
tx ≤

→∞
)(suplim  

Define the function )()()()( tztytxt ++=Μ  
and take its time derivative along the solution of 
the system )3( . 

dt
dz

dt
dy

dt
dx

dt
d ++=Μ  

      dznyHxrx −+−= 2    
{ }dnwherezyrx ,min −=−−≤ φφφ         

       ( ) Μ−+≤ φφ xr  
( ) H

rrwhere φπφπ +=Μ−≤   
Now, by using Gronwall lemmaP

 
P[15] it is 

obtained that:   
( )tt eet φ

φ
πφ −− −+Μ≤Μ< 1)0()(0  

Hence,
φ
π

≤Μ
∞→

)(suplim t
t

 that is independent of 

the initial conditions. Thus the proof is 
complete.                                                         ■ 
 
3. Existence of equilibrium points 
      The system )3(  has at most six non negative 
equilibrium points, namely ( ),,, iiii zyxE =  

5,...,1,0=i  the existence conditions for each of 
these equilibrium points are established in the 
following: 
1. The vanishing equilibrium point 

( )0,0,00 =E  always exists.  
2. The predator free equilibrium point 

( )0,0,1 H
rE =  always exists. 

3. The axial equilibrium point ( )0,,0 22 yE =  
where 2y  is any positive number, exists if 
and only if 0=n . 

4. The disease free equilibrium point 
( )0,, 333 yxE =  where: 

  13 +
−= n

nx  and ( )( )333 1 xHxry +−=      (4) 

exists uniquely in interior of first quadrant 
of −xy plane under the following necessary 
and sufficient conditions: 
    ( )0,1−∈n  and H

rx <3                          (5) 
5. The prey free equilibrium point 

( )444 ,,0 zyE =   where: 
    44 Byz =                                             (6) 
here 4y  is any positive number and 

( )
( )hd

hdmB +
+−= , exists uniquely in the interior 

of first quadrant of −yz plane under the 
following necessary and sufficient 
conditions:  
   ( )hdm +>  and B

mBhBn +=+ 1               (7) 
6. The coexistence equilibrium point 

( )5555 ,, zyxE =  where:  
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However 5x  represents the positive root of the 
following quadratic equation: 
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Obviously, 5E  exists uniquely in the int. 3
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and only if the following conditions are hold. 
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4. The stability analysis 
       In this section, the local dynamical behavior 
of the system ( )3  around each of these 
equilibrium points is studied, first the Jacobian 
matrix of the system ( )3  at each of the 
equilibrium points 5,...,2; =∀iEi  is computed 
and then their eigenvalues are determined. 
      It is easy to verify that the Jacobian matrices 
at the equilibrium points 0E  and 1E  are not 
define, while that at 2E  has zero eigenvalue and 
hence 2E  is nonhyperbolic point. Therefore, the 
stability analysis at these points will be study by 
using other methods as shown below. 
 
4.1 The stability analysis at ( )0,0,00 =E : 
      Since, the system (3) cannot be linearized at 

0E , so in order to study the dynamical behavior 
of system (3) near 0E , the technique of Arino et 
.al. [7] is used. Now, rewrite system (3) in form: 

( )( ) ( )( )ttdt
dB ΒΦ+ΒΛ=                                )12(  

In which Λ  is 1C  outside the origin and 
homogeneous of degree 1. 

( ) ( )ΒΛ=ΒΛ ss  

for all 3,0 ℜ∈Β≥s and Φ  is a 1C  function 
such that in the vicinity of the origin we have: 

( ) ( )Β=ΒΦ o . 
To study the behavior of the system (12) at the 
origin point, we use ⋅  that denotes the 

Euclidian norm on 3ℜ and ⋅⋅,  denotes the 
associated inner product. 
Let 

( ) ( )zyxbbb ,,,, 321 ==Β  
( ) ( ) ( ) ( )( )ΒΛΒΛΒΛ=ΒΛ 321 ,,   
( ) ( ) ( ) ( )( )ΒΦΒΦΒΦ=ΒΦ 321 ,, . 

Therefore, the functions iΛ  and ( )3,2,1=Φ ii  
are given by: 
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Let ( )tΒ  be a solution of system (12). Assume 
that: 

( ) 0inflim =Β
∞→

t
t

 and Β  is bounded. One can 

extract from the family ( )( ) 0. ≥+Β tt  sequences 
( ) ∞→+Β nn tt ,. , such that ( ) 0. →+Β nt  

locally uniformly on .ℜ∈s  Define 
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n
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Recall that:  ( ) ( )Β=ΒΦ o  in the vicinity of the 
origin. Then we can write Φ  as: 

( ) ( )12ΟΒ=ΒΦ                                       (14) 
We have: 

( ) ( )( ) ( )( ).stst nnds
std n +ΒΦ++ΒΛ=

+Β   (15) 

From (13) we have: 
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Now, using the derivative of 
( ) ( )stst nn +Β+Β ,  with respect to s . 
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Put it in (16) and take derivative of ( )stn +Β  
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Therefore, we have: 
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Now dividing by ( )stn +Β  and replacing 
( ) ( )stst nn +Β+Β  by ( )sqn , we obtain: 
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Hence: 
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Which is equivalent to: 
( ) ( )( ) ( ) ( ) ( )( )[ ]
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Clearly, ( )sqn  is bounded, ( ) ,,1 ssqn ∀=  and 
( )

ds
sdqn  is bounded too. 

So, applying the Ascoli–Arzela [16] theorem, 
one can extract from ( )sq  a subsequence – also 
denoted by ( ) −sq which converges locally 
uniformly on ℜ  towards some function q , such 
that: 

( ) ( )( ) ( )[
( ) ( )( ) ] 0,  →Φ

−Φ+Β
∞→nt

nn

nnn

sqsq

sqsqst
 

And q  satisfy the following system: 
( )( ) ( ) ( ) ( )( )tqtqtqtqdt

dq Λ−Λ= ,                       (17) 

here ( ) ttq ∀= 1 . Equation (17) is defined for all 
ℜ∈t . 

So by study of equation (17) we get that, the 
steady state of Λ  are vectors Κ  satisfying: 

( ) ( ) ., ΚΛΚΚ=ΚΛ  
This is a so–called nonlinear eigenvalue. Note 
that the equation can be alternatively written as: 

( ) .Κ=ΚΛ η                                           (18) 
with 1=Κ ; it then holds that ( )ΚΛΚ= ,η . 
These stationary solutions correspond to fixed 
directions that the trajectories of equation (17) 
may reach asymptotically. Now, equation (18) 
can be written as: 

( ) ;01 =− krη                                        ( )a19  
( ) ( )[ ] 02

3223 =−−+−−+ hkkknkhnm ηη       ( )b19  
( ) ( )[ ] .0332 =+++++− kkhdkhdm ηη       ( )c19  

Now, we are in a position to discuss in detail the 
possibility of reaching the origin following fixed 
direction. 
Case 1: when 01 =k  

(a) 02 =k  and .03 ≠k  
In this case, there is a possibility to reach 
the origin following the −z axis, with 

0=h  and d−=η . 
(b) 02 ≠k  and .03 =k  

In this case, there is a possibility to reach 
the origin following the −y axis, with 

n=η  when ;0<n   
OR  
cannot reach the origin when .0>n  

(c) 02 ≠k  and .03 ≠k  
In this case, we obtain different results 
depending on the parameters: 

Sub case 1: If ( ) 0<++− ndm  then: 
(i) We reach the origin if  

( ) ( ) .0<++++− hnddndm  
(ii) We cannot reach the origin if  

( ) ( ) .0>++++− hnddndm  
Sub case 2: If ( ) 0>++− ndm  then: 

(i) We cannot reach the origin if  
( ) ( ) .0<++++− hnddndm  

(ii) We reach the origin if  
( ) ( ) .0>++++− hnddndm  

Case 2: when 01 ≠k  
(a) 02 =k  and .03 =k  

In this case, we cannot reach the origin 
following the −x axis, with .r=η  

(b) 02 =k  and .03 ≠k  
In this case, there is a possibility to reach 
the origin following the −z axis, with 

d−=η  when .0=h  while it cannot reach 
the origin following the −x axis with 

r=η . 
(c) 02 ≠k  and .03 =k  

In this case, there is a possibility to reach 
the origin following the −y axis, with 

n=η  when ;0<n and cannot reach the 
origin following −x axis, with .r=η  
OR 
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it cannot be reaching the origin following 
both axes ( −y axis and −x axis ) with 

n=η  when 0>n and .r=η  
(d) 02 ≠k  and .03 ≠k  

In this case, we obtain different results 
depending on the parameters as these in 
sub case 1 and sub case 2 above: 

So, under the above conditions, the trajectories 
may follow a fixed direction, that is contained in 
the positive octant to reach the fixed point 0E . 
 
4.2 The stability analysis at ( )0,0,1 H

rE = : 
     In this subsection the stability of the system 
(3) near 1E  is studied using the method of 
Lyapunov function as shown in the following 
theorem. 
Theorem 2: The predator free equilibrium 
point 1E  is globally asymptotically stable in 

3
+ℜ   if and only if: 

{ }p
dnx ,min1 −<                                     (20) 

Proof: Consider the function  

zyxxxV x
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3]1[ :V  and ( ) 01

]1[ =EV  with 

( ) 3
1

]1[ and0 +ℜ∈≠∀≠ EEEEV . Hence it 

is positive definite function in the 3
+ℜ . 

Now, the derivative of ]1[V  with respect to the 
time t  is given as follows. 

( ) ( ) dznyHxrxHxrx x
pz

x
y
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x
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2
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1
11

pxdznxyxxH
dznyxxH x

px
x

x

−−++−−≤
−−++−−= ++  

Hence, 0
]1[
<dt

dV  under the sufficient condition 

(20), then ]1[V  is a Lyapunov function. 
Therefore by using the Lyapunov Theorem for 
stability 1E  is locally asymptotically stable 

in 3
+ℜ . Further more, since 0

]1[
<dt

dV  on the 

domain 3
+ℜ  then 1E  is a globally asymptoti-

cally stable too.                                                  ■ 

4.3 The stability analysis at 2E : 
The Jacobian matrix of the system (3) at 2E  is 
given by: 

( )














−−
+−

−
=≡

hdm
hmy

yr
EJJ

00
0

00
2

2
22        (22) 

Clearly 2J  has zero eigenvalue and hence 2E  
is nonhyperbolic point. Therefore in the 
following theorem we will study the stability of 

2E  using Lyapunov function. 
Theorem 3: The axial equilibrium point 2E  is 

locally asymptotically stable in the 3
+ℜ  if the 

following conditions hold: 
( )( ) ;12 xHxry +−>                      )23( a  

;22
y

hy
zy

myd −>
+

                           )23( b  
Proof: Consider the following function: 

zyyyxV y
y +





 −−+=

2
ln22

]2[          (24) 

Clearly, ℜ→ℜ+
3]2[ :V  and ( ) 02

]2[ =EV  with 

( ) 3
2

]2[ and0 +ℜ∈≠∀≠ EEEEV . Hence it 

is positive definite function in the 3
+ℜ . 

Now, the derivative of ]2[V  with respect to the 
time t  can be written as 






 +−−

+





 −−=

+




+=

+

−
+

−

dz

Hxrx

td
xd

zy
ym

y
yh

y
yyn

x
y

td
zd

td
yd

y
yy

td
Vd

22

2
22

2
]2[

)(
1  

Since 2E exists if and only if 0=n , further 
conditions )23( a  and )23( b  guarantees that 

0
]2[
<td

Vd  then ]2[V  is a Lyapunov function. 

Therefore by using the Lyapunov Theorem for 
stability 2E  is locally asymptotically stable in 

the 3
+ℜ .                                                          ■ 

Note that, according to condition )23(  it is easy 
to verify that 2E  is locally asymptotically stable 
but not globally. 
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4.4 The stability analysis at 3E : 
The Jacobian matrix of the system (3) at 3E  is 
given by: 

( )

( )

( )




















−−−

+−

−−

=≡

+

+

hdnpm

hm

npnHxr

EJJ

x
y

x
y

00

0

2

2
3

3

2
3

3

1

13

33

             (25) 

So, the characteristic equation of 3J  can be 
written by  

( )( )

( )

( )
0

2

2
3

3

2
3

3

1

13
2

=










−+












 −−−×

−−−−

+

+

x
y

x
y

z

n

Hxr

hdnpm

µµ

µ

 

from which, we obtain that:  
( )hdnpmz −−−=µ                          )26( a  

and 

( )

( )
0

2

2
3

3

2
3

3

1

13

>






=⋅








 −−=+

+

−

+

x
ny

yx

x
y

yx Hxr

µµ

µµ
         )26( b  

Here yx µµ ,  and zµ  denote to the eigenvalues 
in the −x direction, −y direction and 
−z direction, respectively. 

So, it is easy to verify that, all the eigenvalues 
have negative real parts if and only if  

hdnpm ++<                                     ( )a27  

( )23

3

132
x

yHxr
+

+<                               ( )b27  

Therefore, the equilibrium point 3E R Ris locally 

asymptotically stable in the 3
+ℜ   if and only if 

the conditions 27a and 27b hold. 
 
4.5 The stability analysis at  4E  : 
       The Jacobian matrix of the system (3) at 

4E  is given by: 
( )
( )

( )( ) ( )

( )( ) ( ) 

















−−

++

+−

≡

++−

+−+−−

hdpBy

hny

pByr

EJJ

m
hd

m
hdm

m
hd

m
hdm

22

22

4

4

4

44

001      
(28)

 

Similarly, the characteristic equation of 4J  is 
given by: 

( )( )
( )( )( )(

( )( )( ) ( )( )) 0

1
2

4

=−+

+−−−×

−+−

++− ndB

hdmn

pByr

m
hdhdm

x

δδ

δ

 

Therefore, the eigenvalues of 4J  satisfy the 
following: 

( )pByrx +−= 14δ  
and 

( )( )( )
( )( )( ) ( )





 −=⋅

+−−=+

++− ndB

hdmn

m
hdhdm

zy

zy

δδ

δδ
 

Here yx δδ , and zδ  denote to the eigenvalues in 
the −x direction, −y direction and −z direction, 
respectively. 
So, all the eigenvalues have negative real parts if 
and only if  

( )pByr +< 14                                      )29( a  

( )( )hdmn hd
d +−<
+

                           )29( b  

Thus, the equilibrium point 4E  is locally 

asymptotically stable in 3
+ℜ , if and only if the 

conditions 29a  and 29b  hold.  
 
4.6 The stability analysis at 5E  : 

  The Jacobian matrix of the system (3) at 5E  
is given by: 

( ) ( )
33

]5[
55 ×
=≡ ijEJJ β                                   (30)        

where: 
 

( )
( ) ( )

( ) ( )

( ) ( )

( )

( ) ( )
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
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+
−

+
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;

;
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x
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x
xp

m

x
xp
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x
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Theorem 4: The coexistence equilibrium point 

5E R Rof the system (3) is locally asymptotically 
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stable in the 3. +ℜInt  if and only if the following 
conditions are satisfied: 

( )
( ){

( )
( ) ( )( )[[

( ) ( ) 










 −+





 





 −+−×

++−

<−

++

+
−

+
−

5
5
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x
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
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
 −+−



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m
Q

x
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m hdhdh   )31( c  

 
Proof: According to the Jacobian matrix 5J  at 
the equilibrium point 5E , the characteristic 
equation of 5J  can be written by: 

032
2

1
3 =+++ DDD γγγ                         (32) 

where the coefficients: 
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


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     Now, by substituting the elements of 5J  in 
the equation.33  and then simplifying the 
resulting terms we obtain that: 
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Therefore, it is easy to verify that 0>iD  for 
3,1=i  and  0>∆  provided that the conditions 

31a , 31b  and 31c  hold. 
So according to Routh-Hurwitz criterion the 
equilibrium point 5E  is locally asymptotically 
stable.                                                                 ■ 
 
5. Numerical Simulation  
      In this section the dynamical behavior of 
system(3) is studied numerically. The system (3) 
is solved numerically for different sets of 
parameters values and different sets of initial 
points. The objectives are confirming our 
analytical results and investigate the effect of 
varying the infection rate parameter on the 
dynamical behavior of system (3). Now for the 
following set of hypothetical parameters values: 

  
6.0,1.0,8.0

35.0,7.0,1.0,1
==−=

====
dhn

mpHr
     )34(  

The trajectories of the system (3) are drawn in 
the figure 2.  
 

 
Figure 2- Phase plot of system (3) starting from  
               different initial points. 
 

      According to the above figure, the system 
(3) approaches asymptotically to the stable 
coexistence equilibrium point ( )5.2,25.1,55 =E  
starting at different initial points. 
     Now observe the dynamical behavior of the 
system (3) for the set of parameter values given 
by Equation. )34(  while the infection rate m  
varying at the values 8.0,2.0,1.0=m  
respectively and then the trajectories of system 
(3) are drawn in figure 3a-3c  and I figure 4a-4c 
respectively.  

 
Figure 3-Phase plots of system (3). )(a  periodic   
               attractor of system(3) for 1.0=m , )(b   
               periodic attractor of system(3) for 2.0=m ,  
              )(c  asymptotically stable of system (3) for  
               8.0=m . 

 
Note that, we will use the following lines types 
(―); (–۰–) and (▬) in the figure 4a-4c to 
describe the prey species, susceptible predator 
and infected predator species respectively. 
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Figure 4- Time series of the solution of system(3);  
         )(a  time series for the attractor in Figure )3( a ,    
         )(b  time series for the attractor in Figure )3( b ,  
         )(c time series for the attractor in Figure )3( c . 
 
     Observe that, as the infection rate increases, 
say 217.0>m , the dynamical behavior of the 
system transfers from periodic dynamics to 
asymptotically stable at the coexistence 
equilibrium point. Thus the infection rate 
constant works as a stabilizing parameter in the 
system (3). 
Now to understand of dynamical behavior  of 
the system (3) at the vanishing equilibrium point 

0E  the following set of hypothetical parameter 
values is chosen: 

1.0,1.0,01.0
3.0,7.0,0001.0,01.0

==−=
====

dhn
mpHr

  )35(  

and then the trajectories of the system (3) are 
drawn in the figure 5 and figure 6a-6c starting 
from different initial values. Again, in figure 6 

we will use (―) to describe the trajectory 
starting at (0.75,0.75,0.75); (▬) to describe the 
trajectory starting at (0.65,0.65,0.65) and (–۰–) 
to describe the trajectory starting at  
(0.45,0.45,0.45). 
      According to these figures it is clear that, the 
system (3) approaches asymptotically to the 
vanishing equilibrium point ( )0,0,00 =E , 
which insure our analytical result. 

 
Figure 5- Phase plot of the system (3) starting from  
                 different initial points. 
 

   

 
Figure 5-Time series of figure 5; ( )a  trajectory of    
                x  as a function of time, ( )b  trajectory of      
               y  as a function of time, ( )c  trajectory of   
               z  as a function of time. 
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6. Conclusions 
      In this paper, an eco-epidemiological model 
has been proposed and analyzed to study the 
dynamical behavior of a Holling-type II prey–
predator model with ratio-dependent incidence 
rate for the disease in predator species. The 
model consists of three non-linear autonomous 
differential equations that describe the dynamics 
of three different populations namely prey ( )x , 
susceptible predator ( )y , infected predator ( )z . It 
is observed that, the system (3) is bounded if the 
net growth rate of the susceptible predators n  is 
negative (i.e. the naturally mortality rate larger 
than the alternative source of food). The 
conditions for existence and stability for each 
equilibrium points are obtained.  
In order to confirm our analytical results and 
understand the effect of varying the infection 
rate m  parameter on the dynamical behavior of 
the system (3), system (3) has been solved 
numerically for different sets of initial points 
and different sets of parameters and the 
following observations are made: 
1. For the set of hypothetical parameters values 

given by Equation.34, the system (3) 
approaches asymptotically to globally stable 
point ( )5.2,25.1,55 =E . 

2. It is observed that, for the values of 
infection rate m  in the range 121.0 << m , 
system (3) has asymptotically stable point in 
the 3. +ℜInt . While decreasing the value of m  
further leads to periodic dynamics in 
the 3. +ℜInt . Therefore, the infection rate 
parameter play vital role in controlling the 
stability of system (3). 

3. For the set of parameters values given by 
Equation 35 the system approaches 
asymptotically to vanishing equilibrium 
point 0E  which conform our analytic. 
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