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Abstract

In this paper, we will study and prove the existence and the uniqueness theorems
of solutions of the generalized linear integro-differential equations with unequal
fractional order of differentiation and integration by using Schauder fixed point
theorem. This type of fractional integro-differential equation may be considered as a
generalization to the other types of fractional integro-differential equations
Considered by other researchers, as well as, to the usual integro-differential
equations.
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1- Introduction

Consider the linear
equation of fractional order:
D(t) = f(t) + JPu(t),0<qg,p<1 1)
u(0) = ug 1)

where DY is the Caputo fractional derivative

integro-differential

operator of order q, JP denotes the Riemann-
Liouville fractional integral operator of order p,
feC[O0, T].

in recent years, the study of fractional integro-
fractional differential equations as a basic
theoretical part of some applications are
investigated by many authors and therefore

there have been interest in the study of
fractional integro-differential equation of the

type

t
DYu(t) =f(t.u(t)+ [k(t,s, u(s))ds ,0<g<1

0
With initial condition u (0) = u.0
Where f is a continuous function on (t, u) for ue
R,a>0and 0<t<a, kisa continuous function
on(t,s,u) forue Rand0<t,s<a ,u0isareal
positive constant and DY denotes the Caputo
fractional derivative , (see[1,2,3,4 and 5]). In ref.
[6] the author justify the existence and the
uniqueness of equations 1 and 2 of the same
order p and g, while in this paper we concern
with the existence and the uniqueness of the
solutions of equations 1 and 2 with different
fractional orders p and g, and we shall use
Schauder fixed point theorem to prove the
existence of solution, while the Grounwall’s
inequality have been used to obtain the
unigueness of solutions of the fractional integro-
differential equation.
Moreover , the operator of the fractional integro-
differential equations 1 and 2 , becomes:
Au(t) = f(t) 3)
where:

Au(t) = DYu(t)
2- Preliminaries

Before proving the existence and the
uniqueness theorems of fractional integro-
fractional differential equations, some basic and
fundamental concepts which are necessary for
this work must be given first.

- JPu(t) (4)
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Definition 2.1: [7,8]

The Riemann-Liouville fractional integral
operator of order p > 0, of a function f(x), x € R
is defined by:

pr(X)—ﬁj(x P (t)dt,p>0 (5)
0
and JOf (X) = f(x).

properties of the operator P for fe
C[0,T], q,p>0 and 6>-1, we have:

bR (x) = IPHAf(x)
2 P09 (x) = J90P f(x)
3. I(p+1)=pl(p)

I'(p+0+1)

Definition 2.2: [9, 10]
The Caputo fractional derivative of f(x) of
order g can be written as:

D(x )—r( L j(x M= (M t)dt (6)
Form—l<q£m,meR,x>0,feC[O,T].

Definition 2.3: [11]:

A subset S of C[0, T] is said to be
equicontinuous, if for each € >0 , there is a 6>
0, such that

t—ty| <3 and  ue M
Ju- u(tl)“C[O,T] <€

imply

Next, equations. 1 and 2 may be written into an
equivalent form, as in the following lemma:

Lemma 2.1: [5]
The solution of the initial-value problem
given by equations.1 and 2 has the form:

ut) = up + r()(j)(t 5)4 1 (s)ds +
p-1, 7
@] j (t— {r( ) g (s—V) (v)dv}ds (7

Also, the following theorems are used later on.
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Theorem 2.1(Schauder Fixed Point) [12]:

Let X be a nonempty, closed, bounded and
convex subset of Banach space B and
T: X —— X is a compact operator. Then T has
at least one fixed point in X.

Theorem 2.2 (Arzela-Ascoli Theorem)[13]:
Suppose F is a Banach space and E is a
compact metric space. In order that a subset H
of the Banach space TF(E) be relatively
compact, if and only if H be equicontinuous
and that , for each xe E, the set H(x) = {f(x):
fe H} be
relatively compact in F.

Theorem 2.3 (Grounwall’s Inequality)[5]:
Let u(t) and b(t) be a nonnegative continuous
functions for t > o and let:

t
u®)<a+ [ b(s)u(s)ds, t>a
o
where a is a nonnegative constant, then:

} b(s)ds
u(t) <ae« 1>
3- The Main Results
This section concerned with the proof of the
main theorems of the existence and the
uniqueness of solutions of equations.1 and 2

Theorem 3.1 (The Existence Theorem):

Let uand u™ be a real nonnegative function
in C[0, T], and that te [0, T],0<q, p <1. Then
egs. (2.1)-(2.2) has a solution u.

Proof:

First, let us define B = C[0, T] to be the Banach
space with the supremum norm. In order to
discuss the condition for the existence for the
solution of egs.(1.1) and (1.2), so let:
U={ueC[o,T]:ul< ¢, u™] < ¢p,6,C,
>0, m=>0}

and suppose that f C[0, T] is bounded function
at to, there exist M e R", such that:

IfO <M, Vtel0,T].

Now, in order to use Schauder fixed point
theorem, then it sufficient to prove that U is a
nonempty closed, bounded and convex subset of
the Banach space B and then the operator
A : U —— U is compact operator, where the
operator A was defined in equation.4.
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It can be seen that the set U is nonempty since
from the properties of the norm we have 0 e U
:on the other hand it is closed and bounded
subset of Banach space (from the definition of
U).

To prove that U is convex set, let u, u, e U,
such that:

m
< e, ui™s e

m
i<y, ui™ <,

i.e., to prove that u(t), u™(t) e C[0, T] and
Moreover , to prove that |u(t)]] € U and
U™ € U ,where

u(t)=Aus(t) + (1 - A)u(t)

) =2.0{™ @ + @ - ui™ @, 2e0]
since we can prove easily:

lu@®)ll < cq and [lu™ ()] < ¢,

as follows:

U@l = lIAuL () + (1 - Auz()l

< fu @I + 12 = Mu20)l

= [MlJuz (O + 1 = Af [lu2 )

SACH(1-2)

:Cl

and
Il =12 ud™ @ + @ -2 u™

<p.uf™ @+ i - ud™ I

m m
= ud™ o+ 12 -2 1Tu™
<ACo+ (1-1)Cy
Therefore, u satisfies the conditions of U, so:
u(t) =duy(t) + (L —=uy(t) e U
Hence, U is a convex set.
Now, we have to show that the operator A in
equation. 4 is completely continuous, in order to
see that equations.1 and 2 has a solution first,
one can prove that A is relatively compact.
Let v(t)=Au(t),to prove v(t) eU

vl =

f et —syM=a-1,(M) gy gs
F(m—q)é(t s) u (s)ds

T PN |
F(p)é(t s) u(s)ds
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< 1

m—-q-1,,(m)
T(m_ q)f(t s) Iut™ (s)llds*

m!(t P71 us) Il ds

sup [u(M (1)

te[0,T] _am—g-1 +
M=o (j)(t S) ds
. S|:l6pT] lu®1,
€0, p—1
—r(p+1) (j)(t s)F ~ds
(m) sup  [u(t)|
= testL(j)[,DT] el (Mm—q + wtp
r(m-q+1) I(p+1)
sup_|u(™ ()]
< te[0,T] Thm-a,
r(m-q+1)
sup |u(t)|
te[0,T] TP
I'(p+1)
T TP
<SCH—— +
r(m-q+1) I'(p+1)
=c
That is v(t) is bounded.
V) =
1 m-q-1,,(km)
I(t s) (s)ds—
r(m-a)g
_I(t S)p -1 (k)dS<
I'(p)o
1 m—qg-1, . (km)
I(t s) | u (s)[lds +
F(m— )0
—I(t P u® (5) ) ds
I'(p)o
sup_|uk™ ()]
_ te[0,T] [t _S)m—q—ldS +
Im-a) o
sup_ 1w
te[0,T] | (t—s)p_lds
I'(p) 0
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sup [uM () sup JuK ()|

te[0,T] M0 4 t<[0.T] P
r'(m-q+1) I'(p+1)
m—q P
< cy_T +Cy_T
r(m—q+1) I(p+1)
< c .

Proving that A maps U into itself. Moreover, A
is bounded operator.

To prove that A is continuous, let u, v € U,
then:

IAu(t) — Av(t) = |(Du(t) - Ju(t)) - (Dv(t) -

Pv(b))l

- 1 m-q-1,(m)
T(m— q)(j)(t s) (s)ds —

mg)(t s)P1y(s)ds

1t m-q-1,(m)
j(t—s) =M () ds —
I'(m-q)g
i} s)PLy(s)ds
F(p)o

<

§ (=)™ 9™ () (M) 5y s
I'(m-q )o

—5)PL(u(s) - v(s))ds

F(p) 0

sup [ul™ () —v(Mp)|
< te[0,T]

r'(m-q)

sup [ u(t)—v(t)|
+ te[0,T]

r'(p)

t
[ (t—s)M 9 1gs
0

t
[ (t-s)Pds
0

sup [u™ (t)—v(M(p) |
< te[0,T] Tm-q +
I'(m-qg+1)
sup  [u(t)—v(t)]
te[0,T] TP
I'(p+1)
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Let w=u-v

sup_ [w(™ ()]
< te[0,T] Tm-q
I'(m-qg+1)
sup|w(t)]
N te[0,T] T <¢
I'(p+1)
Which means that Au is bounded operator led to
Au is continuous.
Now, to prove that A is equicontinuous,
Letu e Uandty, t, € [0, T], then:
JAu(t:)-Au(tz)| = [[D%(t:)-3*u(ts)] — [Du(tz)-
Ju(t2)]]

1M meael (M) g e
l:F(m—q)g)(tl s) ur/(s)ds

2 m
_gym-g-1 (m)
r(m-q) g) (279 e ds}

t
N %(tl—s)p_lu(s)ds—

I'(p) o
t
1 2 -1
—— [ (ty=s)P s)ds
r(p)(f)(z )T Tu(s) }
tsflcj)loT]ltl(m)(s)| ]
e t1 —s m_q_lds—
r(m-a) y
t
[ (tz—s)™ 9 s +
0
sup [u(s)| t
te[0,T] t ol Prn p-1,
) (j)(tl—s) ds— (j)(tz s) S
sup [u(™ ()]
(el0.7] T vl
I'(m-g+1)
ts[l(l)loT]IU(S)l
[0, PP
+ T 1t - 6l

<% qm-q, 29 4P
r(m-q+21) I'(p+1)
<cC.
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Au is equicontinuous operator, is relatively
compact and this implies that A is completely
continuous by Arzela-Ascoli theorem.

Then by Schauder fixed point theorem, A has a
fixed point, which corresponds the solution of
equation.3. =

Now, to study the uniqueness of the solution of
equations.1 and 2, we shall prove the following
theorem:

Theorem 3.2 (The Uniqueness Theorem):
The initial value problem given by
equations.1 and 2 has a unique solution on the
interval [0, T] if u and u™ are continuous
functions in the region:
D={(t,u)|0<t<T,|t—to] <b} and u(0)=uo
and satisfy the conditions:
t
J’L(S_G)p—lu((j)_
olT'(@)

1 el
1ﬂ(q)(S c)" y(o)

for some positive constant L.

do <Lu-y|

Proof:
Let u and y be two solutions to equations 1
and 2, then:

t
[(t—s)97 L f(s)ds +

W e
%i(t-s)q‘l{ﬁi(s—o)p‘lu(cs)do}ds
yO = vo %i(t—s)q‘lf(s)dw +
%i(t—s)q‘l{ﬁfgf—o)p‘ly(cs)dc}ds
this implies to:

1t _1{ 1
-y (t)|< t—g)d™i —_
lu(t)-y() F(q)(I)( s)

'(p)
t
Js-0)P L u(o) - y(o) |dc}ds
0

forany e >0and 0 <t<T. Hence:
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L
I'(p)

Where (t—s)p_lis non negative since the limit
of the integration e [0, T], and it is
differentiation for all t not equal to s ,hence it is
continuous function with respect to t.

Then, by using theorem 2.3, we get:

Lt _g)P1
F(p)é(t s)Fds

t
Uty e+ ——[ (t=5)P L u(s) - y(s) |ds
0

u(®) -yl <ze

Since ¢ is arbitrary, then as ¢ —— 0, which
implies to u(t) = y(t), forallt € [0, T]. =
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