

Conclusion Empirical Equations of Asymmetry Parameter for Magic Nuclei in N for (n, α) **Reaction of Incident Neutron Energy (14.5 MeV)**

Hadi D. Al-Attabi

Department of Physics, College of Sciences, University of Wasit, Wasit, Iraq.

Abstract

In this study, the magic nuclei is divided into two groups, one of them is light group and the other is middle group, it was calculated shell corrections for all nuclei, and also it was concluded the relationship between cross sections for nuclear reactions (n, α) and the mass number (A) for all nuclei to incident neutrons (14.5 MeV). We found empirical equations to asymmetry parameter (N-Z)/A as function of mass number and for that two groups: for A=38 to A=40 light nuclei. (N-Z)/A = -0.0263A + 1.0534

for A=50 to A=89 middle nuclei. $(N-Z)/A = 0.0001A^2 + 0.0151A - 0.408$ for A=90 to A=144 middle nuclei. $(N-Z)/A = -9e^{-5A^2} + 0.0221A - 1.0711$

Keywords: asymmetry, magic nuclei, neutron, nuclear reactions.

استنتاج معادلات تجريبية لبرامتر النوى السحرية ذات اللاتناظر في التفاعلات النووية (n, x) عند طاقة النيوترونات الساقطة (14.5 MeV)

الخلاصة

في هذه الدراسة ,النوى السحرية قسمت إلى مجموعتين واحدة منها مجوعة خفيفة والأخرى مجموعة متوسطة, كما ان تصحيحات القشرة لجميع النوى التي قيد الدراسة قد تم حسابها في هذا البحث,وكذلك تضمنت الدراسة العلاقة بين المقاطع العرضية للتفاعلات النووية (n, ox) لكل النوى عند طاقة النيوترونات الساقطة (دراسة العلاقة بين المقاطع العرضية للتفاعلات النووية (n, ox) لكل النوى عند طاقة النيوترونات الساقطة (دراسة العلاقة بين المقاطع العرضية للتفاعلات النووية (مر) لكل النوى عند طاقة النيوترونات الساقطة (دراسة العلاقة بين المقاطع العرضية للتفاعلات النووية (مر) لكل النوى عند طاقة النيوترونات الساقطة (دراسة العلاقة بين المقاطع العرضية التولية النووية (مر) لكل النوى عند طاقة النيوترونات الساقطة والمراسة العلاقة بين المقاطع العرضية للتفاعلات التجريبية لبارمتر اللاتتاظ مر) والمجموعتين :

for A=38 to A=40 light nuclei.
$$(N-Z)_{A}^{\prime} = -0.0263A + 1.0534$$

for A=50 to A=89 middle nuclei. $(N-Z)_{A}^{\prime} = 0.0001A^{2} + 0.0151A - 0.408$
 $(N-Z)_{A}^{\prime} = -9e^{-5A^{2}} + 0.0221A - 1.0711$ for A=90 to A=144 middle nuclei

Email: hadidawyich@yahoo.com

Introduction

More than 50 years after the publication of the first empirical formulas for the predication of neutron reaction cross sections (Levkovskij, 1957,1958) systematic are successfully used for the evaluation of reaction cross sections [1]. The nuclear reaction systematic is widely for the reaction cross section evaluation supplementing result of the measurement and calculation by theoretical models [2].

According to Previously obtained cross sections for many nuclei significantly vary with the mass number A, neutron number N and proton number Z of the target nucleus [3]. The evaluated nuclear cross-section data and required for understanding the binding energy systematic, nuclear structure.

Theory

The nuclear reaction systematic is widely used for the reaction cross section evaluation supplementing result of measurement and calculations by theoretical models. A large number of empirical and semi-empirical cross sections formulas with different parameters have been proposed by several authors in the literature [4,5,6]

The attributable effects to the asymmetry parameter, S=(N-Z)/A, as well as to the isotopic, isotonic and odd-even properties of nuclei have been observed in the cross section data. Then lately, semi-empirical formulas for the $(P,\alpha)(P,n\alpha)$ and (P,nP)reaction cross sections have been derived by using analytical expressions describing the equilibrium and nonequilibrium particle emission in nuclear reactions. These systematic are based on analytical formulas derived from the preequilibrium exaction model, evaporation model (that means the Weisskopf treatment is an application that relates the probabilities to go from a state I to another d and vice versa through the density of states in the two systems

as equation $P_{i \to d} \rho(i) = P_{d \to i} \rho(d)$), and semiempirical mass formula.

The empirical reaction cross sections of reaction induced by fast neutrons can be approximately expressed as follows [7].

$$\sigma(n, x) = C\sigma_{ne} \exp[as]....(1)$$

Where x represents particle of the reaction produced, σ_{ne} is the neutron non-elastic cross section,

$$\sigma_{ne} = \pi r_0^2 \left(A^{\frac{1}{3}} + 1 \right)^2$$

and the coefficients C and a are the fitting parameters determined from least-square method for different reaction the neutron non-elastic cross section is given by πR^2 where R is the nuclear radius.

The exponential term represents the escape of the reaction products from a compound nucleus [8].

Method

The (n, α) reaction cross section, obtained from the analysis of experimental data for 120 nuclei with $Z \ge 18$ used to obtain the cross sections and any parameters others as in table-1.

For target nuclei with atomic number $(18 \le Z \le 50)$ [9].

$$\sigma(n,\alpha) = \pi r_0^2 \left(A^{\frac{1}{3}} + 1\right)^2$$

$$\exp \begin{pmatrix} -160.6S^2 - 9.54131 \times 10^{-5}A^2 + 0.10398f_{ch,p} \\ -1.4934 \end{pmatrix} \dots (2)$$

$$f_{sh,p} = \frac{1}{0.10398}$$

$$\begin{bmatrix} \ln \sigma(n,\alpha) \\ \pi r_0^2 \left(A^{\frac{1}{3}} + 1\right)^2 \\ + 160.6S^2 + 9.54131 \times 10^{-5}A^2 + 1.4934 \end{bmatrix}$$
(3)

	fro	m 18 to 83 and ${}^{99}T$ ob	tained	from t	he analysis of expe	rimenta	l data, an	d cross section calcula
Z	usii A	$\frac{1}{1} \frac{1}{1} \frac{1}$	Z	7]. A	Cross-	Z	Α	Cross-
10	26	142.0	40	100	section(mb)	()	1.40	section(mb)
18	30	142.0	42	100	2.86 ± 0.29	62	149	4.15
18	38		43	99	<u>6.06 + 0.61</u>	62	150	<u>3.21 + 0.34</u>
18	40	10.8 <u>+</u> 1.7	44	96	32.4	62	152	1.81 ± 0.23
19	39	13.0 <u>+</u> 26.0	44	98	16.9	62	154	0.833 + 0.083
19	40		44	99	15.4	63	151	2.27 ± 1.27
19	41	<u>33.3 +</u> 3.3	44	100	8.24	63	153	<u>1.56 + 0.16</u>
20	40	128.0 <u>+</u> 13.0	44	101	7.35	64	152	3.78
20	42	72.7	44	102	6.46 ± 0.82	64	154	2.33
20	43	58.7	44	104	3.12 ± 0.31	64	155	2.87
20	44	<u>21.1+</u> 2.8	45	103	0.00	04	150	<u>3.84 + 1.91</u>
20	40	3.54	40	102	1/.0	04	15/	1.88
20	48	1.25 <u>+</u> 0.33	46	104	8.93	64	158	1.84 ± 0.47
21	45	<u>56.4+</u> 5.6 7(5:1(0	46	105	8.40 5.28 · 0.52	64	160	
22	40	<u>76.5+16.9</u>	46	100	5.28 ± 0.53	65	159	<u>2.22 + 0.29</u>
22	4/		40	108	2.73 ± 0.27	00	150	3.79
22	48	<u>34.0+3.9</u>	40	110	0.84	00	158	2./1
22	49	19.6	47	107	6.79	66	160	1.94
22	50	8.63 +0.86	47	109	3.29	66	161	2.30
23	50	<u>38.0+</u> 1.5	48	100	18.6	66	162	<u>1.93 + 0.34</u>
23	51	<u>16.5+</u> 1.7	48	108	9.83	66	163	1.47
24	50	<u>99.7+</u> 10.0	48	110	4.88	66	164	<u>1.11 + 0.30</u>
24	52	<u>36.2+3.6</u>	48	111	4.61	67	165	0.763 <u>+</u> 0.079
24	53	<u>44.2+3.7</u>	48	112	2.54 ± 0.36	68	162	3.30
24	54	<u>11.8+</u> 1.2	48	113	2.14	68	164	2.35
25	55	<u>24.0+</u> 2.4	48	114	<u>0.889 + 0.089</u>	68	166	1.63
26	54	<u>91.1+</u> 9.1	48	116	0.46	68	167	1.87
26	56	<u>43.9+</u> 4.4	49	113	<u>4.45 + 0.47</u>	68	168	1.66 ± 0.26
26	57	<u>31.0+4.0</u>	49	115	2.39 ± 0.24	68	170	0.613 <u>+</u> 0.097
26	58	<u>19.8+</u> 2.0	50	112	<u>44.9 + 10.0</u>	<u>69</u>	169	<u>1.50 + 0.13</u>
27	59	<u>31.4+</u> 3.1	50	114	5.50	70	168	2.73
28	58	109.0 <u>+</u> 11.0	50	115	5.08	70	170	2.02
28	60	<u>62.8+</u> 6.3	50	116	<u>1.88 + 0.24</u>	70	171	2.28
28	61	44.4+4.2	50	117	2.45 ± 0.19	70	172	<u>1.68 + 0.33</u>
28	62	23.4 <u>+</u> 2.3	50	118	1.18 ± 0.12	70	173	1.46
28	64	<u>3.77+0.38</u>	50	119	0.999 + 0.087	70	174	<u>1.16 + 0.14</u>
29	63	44.4+4.4	50	120	0.450 ± 0.045	70	176	<u>0.547 + 0.120</u>
29	65	8.69 <u>+</u> 1.48	50	122	0.221 ± 0.024	71	175	1.33
30	64	<u>36.4+10.1</u>	50	124	<u>0.079 + 0.013</u>	71	176	<u>2.23 + 0.55</u>
30	66	30.2	51	121	3.08	72	174	2.42
30	67	27.1	51	123	1.81	72	176	1.77
30	68	<u>9.02+0.90</u>	52	120	7.09	72	177	1.98
30	70	3.69	52	122	4.72	72	178	1.86 <u>+</u> 0.37
31	69	<u>20.2+2.0</u>	52	123	5.66	72	179	1.28
31	71	5.06 <u>+</u> 0.78	52	124	3.08	72	180	0.848 <u>+</u> 0.151

Table 1-The (n, α) reaction cross sections at the incident energy 14.5 MeV for stable nuclei with mass numbers ed

73

74

74

74

74

74

181

180

182

183

184

186

0.644 + 0.064

0.789 + 0.079

0.542 + 0.054

1.88

1.20

1.41

343

Thus:

42967.98+1.77621445.6342978.41+0.99621475.6142986.02+0.60621483.54Where $f_{sh,p}$ represent shell correction (that's mean the shell and pairing correction energies are calculated for heavy and super heavy nuclei, also the shell and pairing correction energies, the signatures of the magic numbers appear at the spherical shell closuresZ=82, 114,146 and N=126, 184, 228 and 308.There are also signatures for some other shell

freedom is taken into account) [10].

For target nuclei with Z > 50 [9],

$$\sigma(n,\alpha) = \pi r_0^2 \left(A^{\frac{1}{3}} + 1 \right)^2 A^{\frac{-1}{3}} \times$$

$$\left(-2.194P + 1.0307 \times 10^{-2} f_{sh,p} + 0.57038 \right)^3$$
(4)

34	74	38.7	54	126	5.01	75	185	1.41 <u>+</u> 0.50
34	76	16.5	54	128	3.43	75	187	0.529 <u>+</u> 0.053
34	77	15.3	54	129	4.24	76	184	2.17
34	78	7.41 <u>+</u> 0.78	54	130	2.28	76	186	1.54
34	80	3.29 <u>+</u> 0.33	54	131	2.91	76	187	1.76
34	82	0.70	54	132	1.47	76	188	0.94
35	79	12.5 <u>+</u> 1.2	54	134	0.90	76	189	1.15
35	81	4.48 <u>+</u> 0.59	54	136	0.53	76	190	0.678 <u>+</u> 0.085
36	78	41.1	55	133	1.43 <u>+</u> 0.27	76	192	0.22
36	80	19.4	56	130	5.81	77	191	0.828 <u>+</u> 0.437
36	82	8.06	56	132	4.11	77	193	0.44
36	83	7.09	56	134	2.81	78	190	1.72
36	84	3.03	56	135	5.58 <u>+</u> 1.53	78	192	1.06
36	86	1.00	56	136	1.87	78	194	1.19 <u>+</u> 0.20
37	85	5.97 <u>+</u> 0.60	56	137	2.96 <u>+</u> 0.83	78	195	0.81
37	87	2.02	56	138	2.32 <u>+</u> 0.23	78	196	0.560 <u>+</u> 0.096
38	84	21.3	57	138	2.94	78	198	0.16
38	86	9.26	57	139	1.98 <u>+</u> 0.20	79	197	0.373 <u>+</u> 0.037
38	87	8.12	58	136	4.71	80	196	1.05
38	88	3.54	58	138	3.30	80	198	0.66
39	89	6.27+0.63	58	140	2.28	80	199	0.83
40	90	13.7+1.4	58	142	5.97 <u>+</u> 0.60	80	200	0.461 <u>+</u> 0.461
40	91	11.8	59	141	3.03	80	201	0.50
40	92	9.32+0.93	60	142	5.58 <u>+</u> 0.56	80	202	0.19
40	94	4.63+0.46	60	143	5.23	80	204	0.07
40	96	2.32+0.33	60	144	4.05 <u>+</u> 0.57	81	203	0.39
41	93	8.85+0.89	60	145	3.67	81	205	0.519 <u>+</u> 0.082
42	92	25.7+2.6	60	146	3.42 <u>+</u> 0.34	82	204	0.722 <u>+</u> 0.082
42	94	13.0+2.6	60	148	1.56 <u>+</u> 0.33	82	206	0.556 <u>+</u> 0.056
42	95	12.9+1.7	60	150	0.73	82	207	0.366 <u>+</u> 0.033
42	96	7.98+1.77	62	144	5.63	82	208	0.395 <u>+</u> 0.075
42	97	8.41+0.99	62	147	5.61	83	209	0.590 ± 0.059
42	98	6.02+0.60	62	148	3.54			

32

32

32

32

32

33

70

72

73

74

76

75

35.4

12.1

17.4<u>+</u>3.7

7.89+3.14

2.52+0.29

10.7<u>+</u>1.1

52

52

52

52

53

54

125

126

128

130

127

124

3.84

1.17

0.66

2.69

7.10

 1.88 ± 0.38

$$f_{sh,p} = \frac{1}{1.0307} \times 10^{-2} \left[\left\{ \frac{\sigma(n,\alpha)}{\pi r_0^2 \left(A^{\frac{1}{3}} + 1\right)^2 A^{\frac{-1}{3}}} \right\}^{\frac{1}{3}} + \dots.(5) \right]$$

2.1946*P* - 0.57038

where: $\sigma(n,\alpha) = Cross$ section of the (n,α) reaction

S = (N - Z + 1) / A. P = (N - Z + 0.5) / A. $f_{sh,p} = (dw_n - \delta_n) - (dw_\delta - \delta_\alpha), \text{ where }$

 dw_n and dw_α are shell corrections (Myers and Swiatecki, 1966, 1967) for nuclei (Z,A) and (Z-2, A-3) respectively, taken from Lgnatyuk (2003).Also δ_n and δ_α are pairing correction for nuclei (Z,A) and (Z-2,A-3) calculated as follows

 $\delta = 12A^{\frac{-1}{2}}$ for even -even nuclei.

 $\delta = 0$ for nuclei with odd and $\delta = -12A^{\frac{-1}{2}}$ for odd-odd nuclei, $r_0 = 1.3$ fm, which corresponds to the πr_0^2 value equal to 53.093mb; N,Z and A are number of neutrons, protons and nucleon in the target nuclei, respectively

Results and discussion

In this work, I used table-1- to calculate asymmetry parameter for magic nucleus in N for (n, α) reaction of incident neutron energy 14.5 MeV, perhaps table-1, contains stable nuclei with atomic numbers from 18 to 83 and by using this table, we can make another table as below:

Table 2-The (n, α) reaction cross sections of the incident energy

14.5N	AeV for stable 1	magic nuclei	by N with	mass number fror	n 38	to	144
1		magre meeter	0 1 1 1 1 1 1 1			•••	

Z Proton number	A Mass number	N magic number	Cross section (mb)	$(N-Z)_A$ Asymmetry parameter	Type of nuclei	
18	38	20	61.3	0.0526315	Light nuclei	
19	39	20	130.0	0.025641	Light nuclei	
20	40	20	128	0	Light nuclei	
22	50	28	8.63	0.12	Middle nuclei	
23	51	28	16.5	0.1	Middle nuclei	
24	52	28	36.2	0.076923	Middle nuclei	
36	86	50	1.0	0.1627907	Middle nuclei	
37	87	50	2.02	0.1494252	Middle nuclei	
38	88	50	3.54	0.1363636	Middle nuclei	
39	89	50	6.27	0.1235955	Middle nuclei	
40	90	50	13.7	0.222222	Middle nuclei	
42	92	50	25.7	0.0869565	Middle nuclei	
54	136	82	0.53	0.2058823	Middle nuclei	
56	138	82	2.32	0.1884058	Middle nuclei	
57	139	82	1.98	0.1798561	Middle nuclei	
58	140	82	2.28	0.1714285	Middle nuclei	
62	144	82	5.63	0.1388888	Middle nuclei	

In this work, we classify it into two groups (light and middle group) for N magic number. We calculate $(f_{sh,p})$ shell corrections for nuclei in table-2-, by using eq.3 for target nuclei with atomic number $18 \le Z \le 50$,

and by using eq.5 for target nuclei with Z > 50, in this calculation we neglected $(\Delta \sigma)$ as in table-3

Z	A	N magic) (number	Cross section $f_{sh,p}$ (mb) (shell corrections)		Type of nuclei
18	38	20	61.3	1.6345663-	Light nuclei
19	39	20	130.0	0.027350355-	Light nuclei
20	40	20	128	2.8451304-	Light nuclei
22	50	28	8.63	0.019259822 +	Middle nuclei
23	51	28	16.5	2.913895807-	Middle nuclei
24	52	28	36.2	2.45829597-	Middle nuclei
36	86	50	1.0	2.550481554-	Middle nuclei
37	87	50	2.02	2.682027149-	Middle nuclei
38	88	50	3.54	3.474632727-	Middle nuclei
39	89	50	6.27	3.501685853-	Middle nuclei
40	90	50	13.7	0.885166081 +	Middle nuclei
42	92	50	25.7	2.907819129-	Middle nuclei
54	136	82	0.53	14.32759523-	Middle nuclei
56	138	82	2.32	20.32889876-	Middle nuclei
57	139	82	1.98	21.84052023-	Middle nuclei
58	140	82	2.28	23.89585427-	Middle nuclei
62	144	82	5.63	32.82566652-	Middle nuclei

Table 3- Shell corrections for stable magic nuclei by N with mass number from 38 to 144

By using table-2 when A=38 to A=40 empirical equation by least-square fitting method:

 $\sigma(n,\alpha) = -35.35A^2 + 2790.6A - 54938.$

The relationship between cross section (mb) and mass number A, is shown in figure.1 for light nuclei

And by using table-2, when A=50 to A=144 the relationship between $\sigma(n, \alpha)$ and mass number (A) is shown in figure .2 for middle nuclei.

Figure 1-the relationship between cross-section and mass number for light nuclei.

Figure 2- The relationship between $\sigma(n, \alpha)$ and mass number (A) for middle nuclei.

I want to study figure.2 correctly, so I divide it into tow regions, to get suitable empirical equations.

 $\sigma(n, \alpha) = -0.4082A^2 + 55.364A - 1741$ for A= 50 to A=86, and

 $\sigma(n, \alpha) = -0.0179A^2 + 3.949A - 200.3$ for A =86 to A = 144, as in figure 2.1 and figure 2.2.

Figure 2.1-The relationship between $\sigma(n, \alpha)$ and A=50 to A=86 middle nuclei.

Figure 2.2-The relationship between $\sigma(n, \alpha)$ and A=86 to A=144 middle nuclei.

Conclusions

1. We conclude empirical equations by leastsquare fitting method to calculate asymmetry parameter for magic nucleus in N for (n, α) reaction of incident neutron energy 14.5 MeV by using table 2 as shown below: (N - 7)

$$\frac{(N-Z)}{A} = -0.0263A + 1.0524$$
 for A=38 to
A=40 as in figure 3 for light nuclei.

$$\frac{(N-Z)}{A} = -0.0001A^2 + 0.0151A - 0.408$$
 for
A=50 to A=89 as in

Figure 4 for middle nuclei.

$$\frac{(N-Z)}{A} = -9e^{-5A^2} + 0.0221A - 1.0711 \quad \text{for}$$

A=90 to A=144 as in Figure 5 for middle nuclei.

Figure 3- Asymmetry parameter for A=38 to A=40 light nuclei.

Figure 4- Asymmetry parameter for A=50 to A=89 middle nuclei.

Figure 5- Asymmetry parameter for A=90 to A=144 middle nuclei.

2. The magic nuclei which have Z or N equal to (2,8,28,50,82,126), in this study we choose the have (N) magician number nuclei which because the required information was found table 2, and the reason for choosing this nuclei to add knowlage about probability of making nuclear reaction for that nuclei from type $\sigma(n,\alpha)$ and cause of known behavior to that nuclei from asymmetry parameter and also shell corrections, $(f_{sh,P})$, and as a result for that we divide this nuclei into two groups: one of them expresses the group light nuclei $(A \le 40)$ and expresses another group middle nuclei (40 < A < 140).

3. From table -2- we release that light group one, get high values for cross section reaction $\sigma(n, \alpha)$ of incident neutron energy 14.5 MeV compared with low values for the same cross sections for middle nuclei, in another words the areas interactions in energy between light nuclei and incident neutron are a very high which simplify and occur the nuclear reaction (n, α) .

4. Also the factor of shell corrections light nuclei bigger than the middle nuclei as shown in table 3.

5. The asymmetry parameter for light nuclei proportional linear with mass number as in

figure.3, also the values asymmetry parameter small while cross sections is high, we found the asymmetry parameter values for middle nuclei are big to compared with light nuclei (figure 4,figure 5), that means the asymmetry parameter effecting with cross sections values for that nuclei.

References

- 1. Levkovskij V.N.,Zh.Eksp.**1958**.Empirical formulas for the prediction of neutron reaction cross sections .Teor. Fiz.6,pp:1174-1184.
- 2. Blann, M., Vonach, H.K.,**1963**. Global test of modified precompound decay models . phys. Rev. C28,pp:1475-1492.
- Kumabe , I., Fukuda ,k., 1987. Empirical formulas for 14 Mev (n,p) and (n,α) cross section. J.Nucl.Sci.technol.24,pp:843-893..
- 4. Ait –Tahar,S. 1987. The systematic of (n, p) cross sections for 14 MeV neutrons.
 J. phys. G:Nucl. Phys 13,pp:121-125.
- Konobeyev, A. Yu. A, Korovin. Yu. A., 1995. Semi-empirical systematic of (n, p) reaction cross sections at the energy of 45 MeV. Nucl. Instr, Meth. Phys. Res. B103,15,pp:387-397.
- 6. Belgaid, M, Aghar, M., **1998**. Semiempirical systematic of (n, p) reaction cross sections for 14.5, MeV neutron. Appl. Radiat. Isot. 49, pp:1497-1503.
- 7. Tel.E., Adyin E.G., Adyin A. and Kaplan A. ,2009. Application of asymmetry depending empirical formulas for $(p, n\alpha)$ reaction cross section at 24.8 MeV incident energies, applied Radiation and isotopes volume (67), issue (2), pp: 272-276.
- 8. Konobeyev.A.Yu,Lunev.V.p.andShubin. Yu.N.,**1996**.Semi-empirical systematic for (n, α) reaction cross sections at the energy of 14.5 MeV.Nucl.Instrum.Methods B 108,pp:233-242.
- Broeders, C.H.M. and Konobeyev ,A.Yu.,
 2006. Semi-empirical systematics of (n, p)reaction cross section at 14.5 ,20 and 30 MeV. Nucl. Phys. A780,pp:130-145.
- 10. Ismail M. and Adel. A.,**2012**. Shell corrections for heavy and super heavy nuclei.Int.J.Mod.Phys.V 21(6).