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Abstract  

     Data Science and Machine Learning have been playing a major role in assessing, 

predicting, and maintaining the health of power transformers using data analysis. 

This paper focuses on leveraging data science techniques to analyze and interpret 

Dissolved Gas Analysis (DGA) datasets associated with power transformers to 

predict Health Index (HI). The Exploratory Data Analysis (EDA) involving the 

correlation matrix and heat maps showed the correlation among all the features and 

indicated that the dataset considered is not balanced hence, the data balancing 

technique of oversampling is employed to balance the data. Principal Component 

Analysis (PCA) is used to estimate the principal components of the data, helping in 

selecting the features which are most useful in the prediction. Classifiers, namely 

Support Vector Machine (SVM), Random Forest (RF), XGBoost, and k Nearest 

Neighbors (KNN) are employed on both the balanced data as well as the 

imbalanced data and the results are compared. RF classifier outperformed all the 

other classifiers with an accuracy of 96.9%. 

 

Keywords: Dissolved Gas Analysis, Exploratory Data Analysis, Support Vector 

Machine, Random Forest, XGBoost, k-Nearest Neighbors. 

 

1. Introduction 

     Power Transformers (PTs) are critical components of the Power System Network (PSN), 

responsible for regulating voltage levels from generation to the load center [1]. Effective 

maintenance of PTs is essential for ensuring reliable operations. Maintenance strategies fall 

into three main categories. The first, run-to-failure, involves acting only after a failure occurs, 

often resulting in costly repairs and significant downtime. The second category, preventive 

maintenance, is based on scheduled interventions to address potential issues before they arise. 

The third and most cost-effective approach is predictive maintenance, which focuses on 

assessing equipment health and detecting failures in advance. Predictive maintenance offers 

numerous advantages, including improved system reliability, reduced unexpected outages, 

and eliminating unnecessary maintenance operations, thereby lowering overall costs. While 

both predictive and preventive maintenance strategies enhance reliability, predictive 

maintenance stands out for its superior cost efficiency. Current research and practical 

applications primarily emphasize predictive maintenance for large PTs. 
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      Transformer failures often result in extensive outages and blackouts, which eventually 

have an effect on transmission [2] and distribution systems [3]. Hence, it is quite important to 

design and implement predictive maintenance mechanisms for the uninterrupted operation of 

the PSN. As weather conditions have a significant role in transformer failures, it is required 

to instigate  weather monitoring systems in transmission and distributed systems to track the 

conditions [4]. The other reasons could be cooling system failures, overloading, over 

voltages, and over currents [5]. Therefore, power suppliers prioritize health assessment of 

transformers for effective and healthy operation. 

 

2. Related Work 

     The study outlined in reference [6] introduces an expert system designed for conducting 

insulation diagnostics, while researchers in [7] delve into the current state and recent 

advancements in various approaches to diagnosing PTs. The objective of [8] is to detail, 

examine, and elucidate existing Physicochemical diagnostic methods employed for assessing 

the insulation condition in aging transformers. Developing fault prediction models often 

involves data mining, a multifaceted approach combining computer science and statistics to 

extract concealed, previously unknown, and potentially significant information from 

extensive databases [9]. However, the prediction of the transformer's health in the context of 

predictive maintenance is significantly contributed to by DGA analysis.  

Transformer oil DGA presented in [10] is a quite useful aspect in transformer health 

assessment/ index. The techniques employed to evaluate transformer health rely on DGA. 

DGA examines the concentration of particular gases about the insulation oil of transformers. 

The concentration levels of dissolved gases serve as indicators of the insulation's 

decomposition. Gases commonly analyzed in DGA encompass hydrogen, carbon monoxide, 

methane, ethane, acetylene, ethylene, and carbon dioxide [11].  

Technologies based on Artificial Intelligence (AI) are also employed to study extensive data 

and extract knowledge from the available data [12]. The primary approaches emphasized in 

[13] for constructing predictive models are classification and regression. In classification, 

each item in a dataset is assigned to predefined classes or groups [14]. Machine Learning 

(ML) facilitates computers learning from experience, analogous to natural human learning 

processes. ML techniques do not use any mathematical model to analyze the data but utilize 

computational methods to glean information. 

 

     In the study presented in [15], data is obtained from liquid insulation parameters, including 

DGA data, water content, furan, and Interfacial Tension (IFT). The goal is to analyze the 

transformer's health conditions and evaluate the transformer's remaining life-span based on 

operating temperature. The predominant focus in current research i s  on evaluating the HI 

of transformers by scrutinizing the deterioration of oil using DGA. A deep generative 

model-based framework integrates an MLP and logistic regression to classify transformer 

health into eight categories. Tested on 18,848 samples from 608 transformers, it achieved 

99% accuracy, surpassing existing methods. The framework compresses data and 

incorporates expert insights, enabling precise and reliable diagnostics for grid operations[16].  

In 2023, a Multimodal Mutual Neural Network (MMNN) was introduced for power 

transformer health assessment by combining dissolved gas data (DGD) and infrared imaging. 

It uses a 1D CNN for DGD analysis, a DRSE network for infrared features, and a ProbSparse 

self-attention mechanism to integrate multimodal data. This reliable, accurate approach is 

ideal for real-time transformer health monitoring in substations[17].  

 

     The paper presents a transformer asset management model using online DGA data and 

CNNs for fault diagnostics and life assessment. It classifies faults like partial discharge and 

thermal issues with 87% accuracy based on 1,083 samples. Detecting multi-label faults and 
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estimating insulation degradation through CO₂ and CO levels enables real-time condition 

monitoring, eliminating the need for offline tests[18].  Additionally, support vector machines, 

and deep belief networks have also been utilized, including the extreme learning machine 

(ELM) [19-21]. 

  

     A Deep Learning Neural Network (DLNN) was developed for transformer health 

evaluation, combining an Echo State Network (ESN) for data augmentation and an Improved 

Deep Residual Shrinkage Network (IDRSN) with 1D CNN for feature extraction. Using a 

Concat and Softmax layer, the ESN-DRSN-CW model achieved 0.82% better accuracy than 

DRSN-CW, offering reliable diagnostics despite higher computational time. Validation on 

real DGA datasets confirmed its effectiveness[22]. As presented in [23], online condition 

monitoring for High Impedance (HI) using DGA interpretation, utilizing the C4.5 algorithm 

employing the decision tree model for transformers is done. The algorithm leverages ML 

techniques such as WEKA, and Orange to achieve optimal learning outcomes. The results 

obtained through this approach are compared with those derived from other models.  

Another study by Sarajcev et al. 2018 [24], presented a Bayesian multinomial logistic 

regression model for estimating transformer HI. However, it neglects effects related to the 

inherent ordering of categories, a consideration applicable to applications of Artificial Neural 

Networks (ANNs) and certain other Machine Learning (ML) models utilized for 

classification tasks. Furthermore, the proposed model allows for implementing online 

learning/monitoring, offering potential benefits for health assessment. The study, which 

Leauprasert discussed in 2020 [25], presented the utilization of regression models to assess 

the %HI in terms of percentage for estimating the condition of the transformer. It highlights 

limitations such as the lack of a proper elucidation of model parameters and the study notes 

that HI values obtained from regression models may fall outside the intended range. 

 

      The study established by Patil et al. in 2020 [26] presented an online health monitoring 

strategy specifically in the case of 33 kV steel-mill transformers. It utilizes fuzzy models for 

computing the HI and estimating the life left for the transformer in a fuzzy mode. The 

research suggests the potential for further exploration, particularly extending the approach to 

higher voltage transformers. The proposal includes developing a generalized fuzzy model 

applicable to various transformers, including generation and transmission. Although there is 

considerable ML based HI predictions based health assessments performed with higher 

accuracy, application of data science techniques such as ‘EDA’ and ‘IMB learn’ is not 

emphasized. The outcomes of using the above techniques are clearly mentioned. Towards the 

end, HI based Health Assessment is presented in terms of encoded categorical indicators such 

as 0, 1, 2, 3, 4, which stand for very poor, poor, fair, good, and very good, respectively. 

 

3. Methodology 

     The work presented in this article follows a specific methodology, and the different stages 

involved are detailed in this section. The entire implementation is based on the DGA carried 

out in specific methods. Renowned methods of DGA are presented in this section. 

a. Dissolved Gas Analysis (DGA) 

DGA is a diagnostic technique employed to evaluate the condition of PTs. This technique 

involves analyzing gases of the insulating oil pertaining to transformers. Identifying and 

measuring distinct gas concentrations in oil offers valuable insights into internal problems 

like overheating, electrical discharges, and insulation deterioration. DGA serves as an 

effective tool for assessing the health of PTs to prevent potential issues and ensure optimal 

performance. There are several methods to run DGA for the Transformers. Three of them are 

described in this section. 

i. Key Gas Method 
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The Key Gas method [27-28] is a diagnostic technique that measures gases emitted from the 

insulating oil following faults, particularly when elevated temperatures occur in PTs. Unlike 

traditional methods, this approach focuses on individual gas measurements rather than gas 

ratios and identifies important gases known as key gases. The primary cause of faults lies in 

the stress- induced breakdown of oil or cellulose molecules, leading to the formation of gases. 

These gases, including H2, CH4, C2H2, C2H4, C2H6, CO, and CO2, dissolve either fully or 

partially in the oil under various thermal as well as electrical stress conditions due to faulty 

currents in transformers. The key gas approach categorizes Hydrocarbon and hydrogen, 

Carbon oxides, and non-fault gases into three groups.  

ii. Dornenburg Ratio Method 

Thermal faults, corona discharge, and arcing are identified by the Dornenburg Ratio method 

[29] by using gas concentration proportions like C2H2/C2H4, C2H2/CH4, C2H4/C2H6, CH4/H2, 

and principles of thermal degradation. While specified in IEEE Standard of C57.104-2008 

[27], this method might yield too many no-interpretation results. 

iii. Rogers Ratio Method 

The Dornenberg ratio technique is outperformed by the Rogers ratio approach [30] for 

diagnosing thermal faults in oil-insulated transformers. It examines gas ratios such as 

CH4/H2, C2H6/CH4, C2H4/C2H6, and C2H2/C2H4 by a straightforward coding scheme 

rooted in predefined ratio ranges. Integrated into IEEE Standard C57.104-2008 [27], the 

method effectively identifies conditions like normal aging, partial discharge, and various 

electrical and thermal faults of transformers. Limitations, such as inconsistencies between 

ratio values and diagnostic codes and excluding dissolved gases below normal 

concentrations, often lead to data misinterpretation. 

b. Flow chart of the implementation 

Different stages of methodology, as described in the flow chart presented in Figure 1, are 

discussed in the section below. There are five stages in this implementation. 

Figure 1: Flow chart of ML classifier Implementation using DGA data 
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Stage 1: Data acquisition 

Data collection is the first stage of the ML implementations. In this context, DGA data of 

transformer oil of several transformers considered from [31] is used for the implementation. 

 

Table 1: Transformer oil DGA data 
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468 15 169 
5060

0 
5 77 532 0 72 0 0.0 1.21 33 54 11 13.4 

469 15 308 
3970

0 
3 64 581 5 27 0 0.0 1.00 32 60 18 13.4 

      

     The data has 470 samples of 15 features, and they are Hydrogen, Oxygen, Nitrogen, 

Methane, CO, CO2, Ethylene, Ethane, Acetylene, DBDS, Power Factor, Interfacial V, Die 

Electric Rigidity, Water Content and HI, these are listed in Figure 2. 

Stage 2: Application of Data Science Techniques 

Data science is a multidisciplinary field that employs scientific methods and algorithms to 

gain insights and knowledge from structured and unstructured data. In electrical engineering, 

data science is used to decipher and enhance various facets of the field. EDA is an effective 

tool in Data Science to preprocess the data and make it compatible with training. 

Preprocessing includes replacing null values, dropping the duplicate values, checking and 

replacing missing values, finding correlations between predictors and response variables 

(Heat maps), plotting the scatter plots for checking data distribution, and encoding categorical 

variables. As part of EDA, the correlation between the predictors and response variable is 

checked to quantify the variables for better training of the ML. The results are presented in 

the results section. 

Stage 3: Defining the ML classifiers to assess Transformers' health using DGA data 

Applying data science techniques empowers electrical engineers to make well-informed 

decisions, address challenges, and contribute to the evolution of smart grids and sustainable 

energy solutions. This paper explains the training and testing of four different classifiers to 

ascertain the condition of the transformer concerning HI predictions. The theoretical 

background of these classifiers is presented in this section. 

 

a. Random Forest ML algorithm 

Ho (1995) initially proposed the concept of the random-subspace method, but Breiman 

(2001) expanded this concept to include random forest (RF). This model represents an 

algorithm is based on ensemble tree-based learning, where predictions are averaged across 

multiple individual trees. These trees are constructed on bootstrap samples of the original 

dataset, a technique known as bootstrap aggregating or bagging, which effectively mitigates 

overfitting. While individual decision trees offer ease of interpretability. RF consistently 

delivers an accurate estimation of the error rate compared to decision trees. Notably, 

mathematical proof by Breiman (2001) demonstrates that the error rate always converges as 
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the number of trees in the random forest increases [32]. 

b. KNN ML algorithm 

The k Nearest-Neighbors (kNN) method is a classification approach that is distribution free.      

It is simple and effective. To classify a data sample x, the algorithm selects its k nearest 

neighbors and forms a neighborhood around x. The classification for x is established by 

majority voting among the data samples in this neighborhood. The successful application of 

kNN is based on an appropriate value for k. Numerous methods are used for selecting the k, 

one being running the algorithm multiple times using a different k value every time and 

picking up the k value that gives optimal performance [33]. 

c. SVM ML algorithm 

      To understand SVM, two components called the hypothesis spaces and the corresponding 

loss functions must be understood. The conventional perspective on SVM is to identify an 

optimal hyperplane for solving the issue. The basic SVM structuring is linear, and the 

hyperplane resides in the space of the input data t. In their more general crafting, SVM 

identifies a hyperplane distinct from the input data t. This hyperplane exists in a feature space 

generated by a kernel K. Through the kernel K, the hypothesis space is characterized as a 

collection of hyperplanes in the feature space induced by K. This perspective is interpreted as 

a collection of functions in Reproducing Kernel Hilbert Space (RKHS) proposed by Wahba, 

(1990), Vapnik (1998) [34]. 

d. XGBoost ML algorithm 

      XGBOOST (Extreme Gradient Boosting) represents a highly efficient and scalable 

implementation of the Gradient Boosting Machine (GBM), which has emerged as a 

formidable tool in the realm of artificial intelligence [35]. XGBoost stands out as a 

competitive choice because of its superior prediction accuracy. There are several advantages: 

Firstly, in XGBoost, multithreading parallel computing is invoked automatically, which helps 

predict transient stability in the actual power grid. Subsequently, adding a regularization term 

to XGBoost enhances its generalization ability and addresses the problem of decision trees 

prone to overfitting. Lastly, XGBoost, a tree structure model, eliminates the need to 

normalize data collected by Phasor Measurement Units (PMU) in power systems.  

Stage 4: Define and develop ML based Classifiers 

      As described in the paragraph above, four different classifiers are considered in this 

article, where RF, KNN and SVM classifiers are called from ‘SCIKIT Learn’ python library 

as functions, and the data is fit. Secondly, the XGBoost classifier is imported from the 

XGBoost python package, and the data is fit. 

Stage 5: Training and Testing of Classifiers 

      The training is executed under two categories: one is with balancing the data, and the 

other is without balancing. Balancing is a process carried out to distribute the data more 

evenly so that each class has enough sample points. In this article, the ‘IMB learn’ library is 

used to balance the data. 

 

4. Results: EDA, Training, Testing performed 

First, the outcomes of the EDA process, such as Correlation Matrix, Heat map, and Statistics 

of the data are presented to examine the nature of the data and how well it suits the 

application considered. Correlation Matrix Statistics are presented in Tables 2 and 3. The data 

undergoes initial scrutiny through a heat map, enabling the analysis of relationships between 

different predictors and the target variable.  
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Table 2: Correlation Matrix of DGA data  
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     The heat map presented in Figure 2 provides insight into the correlation among all the 

predictors. The heat map is generated by coding in Python. Dibenzyl Disulfide (DBDS), 

Hydrogen, Methane, Interfacial V have a positive correlation with HI whereas Dielectric 

rigidity and water content have negative correlation with the HI. HI is encoded into five 

categories such as very poor, poor, fair, good, and very good represented with 0, 1,2,3,4 

respectively for assessing the health of the transformer. Table 3 describes the detailed 

correlation between the variables used. Statistics such as mean, standard deviation, min and 

max are calculated to comprehend the distribution of the data samples. PCA is a 

dimensionality reduction technique used to get information from a high-dimensional space.  

 

Table 3: Statistics of the DGA data 
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     This is done by projecting it into a lower-dimensional sub-space. However, it should be 

ensured that the essential components with higher data variation are retained while 

eliminating non-essential components with a lower variation. In this context, dimensions refer 

to features that characterize the data. The results of PCA on the considered transformer data 

Figure 2: Heat map of DGA data 
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do not yield good results as there is no clear elbow in the Variance plot of the PCA 

components. So, instead of eliminating any feature, the total data and all the features are 

classified. PCA curve and Scree plot are presented in Figure 3 (a) and Figure 3 (b), 

respectively. RF, kNN, SVM, and XGBoost Classifiers are trained with 470 samples (352 

Training data + 118 Testing data) of 15 features of DGA data of transformer oil, which 

estimates the HI of the PT. Predictor variables considered are Hydrogen, Oxygen, Nitrogen, 

Methane, CO, CO2, Ethylene, Ethane, Acetylene, DBDS, Power Factor, Interfacial V, Die 

Electric Rigidity, Water Content, and the Target or Response variable considered is HI. As 

already mentioned, the training is carried out in two categories to evenly distribute the data: 

Training with Unbalanced data, which is carried out with 470 samples in which 352 samples 

are considered for training data and the rest 118 samples are used for testing data. Training 

with balanced data, which is carried out with 1425 samples  

in which 1068 samples were considered for training data and the rest 357 samples were used 

for testing data.  Table 4 below indicates the encoding of the HI in terms of the aforesaid 

categories.  

Table 4: HI values encoded into categories 

HI value Encoded Condition 

0 Very Poor 

1 Poor 

2 Fair 

3 Good 

4 Very Good 

 

     Consequently, the accuracy scores of HI prediction are enhanced considerably, and the 

details of the same are presented in this section. It is observed that RF and XGBoost 

Classifiers with data balancing using the ‘IMB learn’ library outperformed all others. The 

encoded categorical indicators are observed for the best fit RF classifier model to showcase 

the classification of the transformer’s health condition as very poor, poor, fair, good, very 

good so that service engineers can take necessary action. 
 

Table 5: Accuracy of the ML based Classifiers 

Name of the ML Classifier RF KNN SVM XGBOOST 

Accuracy Score without balancing using ‘IMB learn’ library 0.77 0.517 0.703 0.79 

Accuracy Score with balancing using ‘IMB learn’ library 0.969 0.713 0.57 0.963 

Thus, the proposed system can effectively contribute to the predictive maintenance.  

(a) (b) 

Figure 3: PCA: Principal Component Analysis (a) PCA plot (b) PCA-scree plot 
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5. Conclusion 

     Prediction of transformer HI was done using SVM. RF, XGBoost, kNN classifiers . The 

accuracy of RF, Knn, and XGBoost have increased with the oversampling technique of 

balancing, whereas the accuracy of SVM has decreased. XGBoost has shown superior 

performance with an accuracy of 79% without data balancing, and Random Forest showed 

superior performance with an accuracy of 96.9% with data balance. The use of these  

Figure 4: Test results: Accuracy of ML based Classifiers 

 

classifiers and the data balancing technique, has served the purpose of predicting the 

transformer HI with higher accuracy for RF classifier. 
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