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Abstract

Data Science and Machine Learning have been playing a major role in assessing,
predicting, and maintaining the health of power transformers using data analysis.
This paper focuses on leveraging data science techniques to analyze and interpret
Dissolved Gas Analysis (DGA) datasets associated with power transformers to
predict Health Index (HI). The Exploratory Data Analysis (EDA) involving the
correlation matrix and heat maps showed the correlation among all the features and
indicated that the dataset considered is not balanced hence, the data balancing
technique of oversampling is employed to balance the data. Principal Component
Analysis (PCA) is used to estimate the principal components of the data, helping in
selecting the features which are most useful in the prediction. Classifiers, namely
Support Vector Machine (SVM), Random Forest (RF), XGBoost, and k Nearest
Neighbors (KNN) are employed on both the balanced data as well as the
imbalanced data and the results are compared. RF classifier outperformed all the
other classifiers with an accuracy of 96.9%.

Keywords: Dissolved Gas Analysis, Exploratory Data Analysis, Support Vector
Machine, Random Forest, XGBoost, k-Nearest Neighbors.

1. Introduction

Power Transformers (PTs) are critical components of the Power System Network (PSN),
responsible for regulating voltage levels from generation to the load center [1]. Effective
maintenance of PTs is essential for ensuring reliable operations. Maintenance strategies fall
into three main categories. The first, run-to-failure, involves acting only after a failure occurs,
often resulting in costly repairs and significant downtime. The second category, preventive
maintenance, is based on scheduled interventions to address potential issues before they arise.
The third and most cost-effective approach is predictive maintenance, which focuses on
assessing equipment health and detecting failures in advance. Predictive maintenance offers
numerous advantages, including improved system reliability, reduced unexpected outages,
and eliminating unnecessary maintenance operations, thereby lowering overall costs. While
both predictive and preventive maintenance strategies enhance reliability, predictive
maintenance stands out for its superior cost efficiency. Current research and practical
applications primarily emphasize predictive maintenance for large PTs.
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Transformer failures often result in extensive outages and blackouts, which eventually
have an effect on transmission [2] and distribution systems [3]. Hence, it is quite important to
design and implement predictive maintenance mechanisms for the uninterrupted operation of
the PSN. As weather conditions have a significant role in transformer failures, it is required
to instigate weather monitoring systems in transmission and distributed systems to track the
conditions [4]. The other reasons could be cooling system failures, overloading, over
voltages, and over currents [5]. Therefore, power suppliers prioritize health assessment of
transformers for effective and healthy operation.

2. Related Work

The study outlined in reference [6] introduces an expert system designed for conducting
insulation diagnostics, while researchers in [7] delve into the current state and recent
advancements in various approaches to diagnosing PTs. The objective of [8] is to detail,
examine, and elucidate existing Physicochemical diagnostic methods employed for assessing
the insulation condition in aging transformers. Developing fault prediction models often
involves data mining, a multifaceted approach combining computer science and statistics to
extract concealed, previously unknown, and potentially significant information from
extensive databases [9]. However, the prediction of the transformer's health in the context of
predictive maintenance is significantly contributed to by DGA analysis.
Transformer oil DGA presented in [10] is a quite useful aspect in transformer health
assessment/ index. The techniques employed to evaluate transformer health rely on DGA.
DGA examines the concentration of particular gases about the insulation oil of transformers.
The concentration levels of dissolved gases serve as indicators of the insulation's
decomposition. Gases commonly analyzed in DGA encompass hydrogen, carbon monoxide,
methane, ethane, acetylene, ethylene, and carbon dioxide [11].
Technologies based on Artificial Intelligence (Al) are also employed to study extensive data
and extract knowledge from the available data [12]. The primary approaches emphasized in
[13] for constructing predictive models are classification and regression. In classification,
each item in a dataset is assigned to predefined classes or groups [14]. Machine Learning
(ML) facilitates computers learning from experience, analogous to natural human learning
processes. ML techniques do not use any mathematical model to analyze the data but utilize
computational methods to glean information.

In the study presented in [15], data is obtained from liquid insulation parameters, including
DGA data, water content, furan, and Interfacial Tension (IFT). The goal is to analyze the
transformer's health conditions and evaluate the transformer's remaining life-span based on
operating temperature. The predominant focus in current research is on evaluating the HI
of transformers by scrutinizing the deterioration of oil using DGA. A deep generative
model-based framework integrates an MLP and logistic regression to classify transformer
health into eight categories. Tested on 18,848 samples from 608 transformers, it achieved
99% accuracy, surpassing existing methods. The framework compresses data and
incorporates expert insights, enabling precise and reliable diagnostics for grid operations|[16].
In 2023, a Multimodal Mutual Neural Network (MMNN) was introduced for power
transformer health assessment by combining dissolved gas data (DGD) and infrared imaging.
It uses a 1D CNN for DGD analysis, a DRSE network for infrared features, and a ProbSparse
self-attention mechanism to integrate multimodal data. This reliable, accurate approach is
ideal for real-time transformer health monitoring in substations[17].

The paper presents a transformer asset management model using online DGA data and

CNNs for fault diagnostics and life assessment. It classifies faults like partial discharge and
thermal issues with 87% accuracy based on 1,083 samples. Detecting multi-label faults and
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estimating insulation degradation through CO. and CO levels enables real-time condition
monitoring, eliminating the need for offline tests[18]. Additionally, support vector machines,
and deep belief networks have also been utilized, including the extreme learning machine
(ELM) [19-21].

A Deep Learning Neural Network (DLNN) was developed for transformer health

evaluation, combining an Echo State Network (ESN) for data augmentation and an Improved
Deep Residual Shrinkage Network (IDRSN) with 1D CNN for feature extraction. Using a
Concat and Softmax layer, the ESN-DRSN-CW model achieved 0.82% better accuracy than
DRSN-CW, offering reliable diagnostics despite higher computational time. Validation on
real DGA datasets confirmed its effectiveness[22]. As presented in [23], online condition
monitoring for High Impedance (HI) using DGA interpretation, utilizing the C4.5 algorithm
employing the decision tree model for transformers is done. The algorithm leverages ML
techniques such as WEKA, and Orange to achieve optimal learning outcomes. The results
obtained through this approach are compared with those derived from other models.
Another study by Sarajcev et al. 2018 [24], presented a Bayesian multinomial logistic
regression model for estimating transformer HI. However, it neglects effects related to the
inherent ordering of categories, a consideration applicable to applications of Artificial Neural
Networks (ANNs) and certain other Machine Learning (ML) models utilized for
classification tasks. Furthermore, the proposed model allows for implementing online
learning/monitoring, offering potential benefits for health assessment. The study, which
Leauprasert discussed in 2020 [25], presented the utilization of regression models to assess
the %HI in terms of percentage for estimating the condition of the transformer. It highlights
limitations such as the lack of a proper elucidation of model parameters and the study notes
that HI values obtained from regression models may fall outside the intended range.

The study established by Patil et al. in 2020 [26] presented an online health monitoring
strategy specifically in the case of 33 kV steel-mill transformers. It utilizes fuzzy models for
computing the HI and estimating the life left for the transformer in a fuzzy mode. The
research suggests the potential for further exploration, particularly extending the approach to
higher voltage transformers. The proposal includes developing a generalized fuzzy model
applicable to various transformers, including generation and transmission. Although there is
considerable ML based HI predictions based health assessments performed with higher
accuracy, application of data science techniques such as ‘EDA’ and ‘IMB learn’ is not
emphasized. The outcomes of using the above techniques are clearly mentioned. Towards the
end, HI based Health Assessment is presented in terms of encoded categorical indicators such
as 0, 1, 2, 3, 4, which stand for very poor, poor, fair, good, and very good, respectively.

3. Methodology

The work presented in this article follows a specific methodology, and the different stages
involved are detailed in this section. The entire implementation is based on the DGA carried
out in specific methods. Renowned methods of DGA are presented in this section.
a. Dissolved Gas Analysis (DGA)
DGA is a diagnostic technique employed to evaluate the condition of PTs. This technique
involves analyzing gases of the insulating oil pertaining to transformers. Identifying and
measuring distinct gas concentrations in oil offers valuable insights into internal problems
like overheating, electrical discharges, and insulation deterioration. DGA serves as an
effective tool for assessing the health of PTs to prevent potential issues and ensure optimal
performance. There are several methods to run DGA for the Transformers. Three of them are
described in this section.
i. Key Gas Method
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The Key Gas method [27-28] is a diagnostic technique that measures gases emitted from the
insulating oil following faults, particularly when elevated temperatures occur in PTs. Unlike
traditional methods, this approach focuses on individual gas measurements rather than gas
ratios and identifies important gases known as key gases. The primary cause of faults lies in
the stress- induced breakdown of oil or cellulose molecules, leading to the formation of gases.
These gases, including Ho, CH4, C2H2, CoH4, C2Hs, CO, and CO», dissolve either fully or
partially in the oil under various thermal as well as electrical stress conditions due to faulty
currents in transformers. The key gas approach categorizes Hydrocarbon and hydrogen,
Carbon oxides, and non-fault gases into three groups.

ii. Dornenburg Ratio Method

Thermal faults, corona discharge, and arcing are identified by the Dornenburg Ratio method
[29] by using gas concentration proportions like CoH>/CoHa, CoHo/CHa, C2Ha/CoHs, CH4/H2,
and principles of thermal degradation. While specified in IEEE Standard of C57.104-2008
[27], this method might yield too many no-interpretation results.

iii. Rogers Ratio Method

The Dornenberg ratio technique is outperformed by the Rogers ratio approach [30] for
diagnosing thermal faults in oil-insulated transformers. It examines gas ratios such as
CH4/H2, C2H6/CH4, C2H4/C2H6, and C2H2/C2H4 by a straightforward coding scheme
rooted in predefined ratio ranges. Integrated into IEEE Standard C57.104-2008 [27], the
method effectively identifies conditions like normal aging, partial discharge, and various
electrical and thermal faults of transformers. Limitations, such as inconsistencies between
ratio values and diagnostic codes and excluding dissolved gases below normal
concentrations, often lead to data misinterpretation.

b. Flow chart of the implementation

Different stages of methodology, as described in the flow chart presented in Figure 1, are
discussed in the section below. There are five stages in this implementation.

Data collection from
repository

7

Exploratory Data Analysis:
Data splitting

¥

Define and Develop ML Classifier

v

Train, validate and test ML Classifier
|

Is Accuracy
Score high?

Data Balancing using IMB Learn

v

» Implementation of the Classifier

Figure 1: Flow chart of ML classifier Implementation using DGA data
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Stage 1: Data acquisition
Data collection is the first stage of the ML implementations. In this context, DGA data of
transformer oil of several transformers considered from [31] is used for the implementation.

Table 1: Transformer oil DGA data

Die w
Pow Int le? ate
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86 1 5 0
5060
468 | 15 169 0 5 77 532 0 72 0 0.0 121 33 54 11 134
3970
469 | 15 308 0 3 64 581 5 27 0 0.0 1.00 32 60 18 134

The data has 470 samples of 15 features, and they are Hydrogen, Oxygen, Nitrogen,
Methane, CO, CO., Ethylene, Ethane, Acetylene, DBDS, Power Factor, Interfacial V, Die
Electric Rigidity, Water Content and HI, these are listed in Figure 2.

Stage 2: Application of Data Science Techniques

Data science is a multidisciplinary field that employs scientific methods and algorithms to
gain insights and knowledge from structured and unstructured data. In electrical engineering,
data science is used to decipher and enhance various facets of the field. EDA is an effective
tool in Data Science to preprocess the data and make it compatible with training.
Preprocessing includes replacing null values, dropping the duplicate values, checking and
replacing missing values, finding correlations between predictors and response variables
(Heat maps), plotting the scatter plots for checking data distribution, and encoding categorical
variables. As part of EDA, the correlation between the predictors and response variable is
checked to quantify the variables for better training of the ML. The results are presented in
the results section.

Stage 3: Defining the ML classifiers to assess Transformers' health using DGA data
Applying data science techniques empowers electrical engineers to make well-informed
decisions, address challenges, and contribute to the evolution of smart grids and sustainable
energy solutions. This paper explains the training and testing of four different classifiers to
ascertain the condition of the transformer concerning HI predictions. The theoretical
background of these classifiers is presented in this section.

a.  Random Forest ML algorithm

Ho (1995) initially proposed the concept of the random-subspace method, but Breiman
(2001) expanded this concept to include random forest (RF). This model represents an
algorithm is based on ensemble tree-based learning, where predictions are averaged across
multiple individual trees. These trees are constructed on bootstrap samples of the original
dataset, a technique known as bootstrap aggregating or bagging, which effectively mitigates
overfitting. While individual decision trees offer ease of interpretability. RF consistently
delivers an accurate estimation of the error rate compared to decision trees. Notably,
mathematical proof by Breiman (2001) demonstrates that the error rate always converges as
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the number of trees in the random forest increases [32].
b.  KNN ML algorithm
The k Nearest-Neighbors (kNN) method is a classification approach that is distribution free.
It is simple and effective. To classify a data sample x, the algorithm selects its k nearest
neighbors and forms a neighborhood around x. The classification for x is established by
majority voting among the data samples in this neighborhood. The successful application of
kNN is based on an appropriate value for k. Numerous methods are used for selecting the k,
one being running the algorithm multiple times using a different k value every time and
picking up the k value that gives optimal performance [33].
c. SVM ML algorithm

To understand SVM, two components called the hypothesis spaces and the corresponding
loss functions must be understood. The conventional perspective on SVM is to identify an
optimal hyperplane for solving the issue. The basic SVM structuring is linear, and the
hyperplane resides in the space of the input data t. In their more general crafting, SVM
identifies a hyperplane distinct from the input data t. This hyperplane exists in a feature space
generated by a kernel K. Through the kernel K, the hypothesis space is characterized as a
collection of hyperplanes in the feature space induced by K. This perspective is interpreted as
a collection of functions in Reproducing Kernel Hilbert Space (RKHS) proposed by Wahba,
(1990), Vapnik (1998) [34].
d. XGBoost ML algorithm

XGBOOST (Extreme Gradient Boosting) represents a highly efficient and scalable
implementation of the Gradient Boosting Machine (GBM), which has emerged as a
formidable tool in the realm of artificial intelligence [35]. XGBoost stands out as a
competitive choice because of its superior prediction accuracy. There are several advantages:
Firstly, in XGBoost, multithreading parallel computing is invoked automatically, which helps
predict transient stability in the actual power grid. Subsequently, adding a regularization term
to XGBoost enhances its generalization ability and addresses the problem of decision trees
prone to overfitting. Lastly, XGBoost, a tree structure model, eliminates the need to
normalize data collected by Phasor Measurement Units (PMU) in power systems.
Stage 4. Define and develop ML based Classifiers

As described in the paragraph above, four different classifiers are considered in this
article, where RF, KNN and SVM classifiers are called from ‘SCIKIT Learn’ python library
as functions, and the data is fit. Secondly, the XGBoost classifier is imported from the
XGBoost python package, and the data is fit.
Stage 5: Training and Testing of Classifiers

The training is executed under two categories: one is with balancing the data, and the
other is without balancing. Balancing is a process carried out to distribute the data more
evenly so that each class has enough sample points. In this article, the ‘IMB learn’ library is
used to balance the data.

4. Results: EDA, Training, Testing performed

First, the outcomes of the EDA process, such as Correlation Matrix, Heat map, and Statistics
of the data are presented to examine the nature of the data and how well it suits the
application considered. Correlation Matrix Statistics are presented in Tables 2 and 3. The data
undergoes initial scrutiny through a heat map, enabling the analysis of relationships between
different predictors and the target variable.
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Table 2: Correlation Matrix of DGA data
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Fioure 2: Heat man of DGA data

The heat map presented in Figure 2 provides insight into the correlation among all the
predictors. The heat map is generated by coding in Python. Dibenzyl Disulfide (DBDS),
Hydrogen, Methane, Interfacial V have a positive correlation with HI whereas Dielectric
rigidity and water content have negative correlation with the HI. HI is encoded into five
categories such as very poor, poor, fair, good, and very good represented with 0, 1,2,3,4
respectively for assessing the health of the transformer. Table 3 describes the detailed
correlation between the variables used. Statistics such as mean, standard deviation, min and
max are calculated to comprehend the distribution of the data samples. PCA is a
dimensionality reduction technique used to get information from a high-dimensional space.

Table 3: Statistics of the DGA data
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This is done by projecting it into a lower-dimensional sub-space. However, it should be
ensured that the essential components with higher data variation are retained while
eliminating non-essential components with a lower variation. In this context, dimensions refer
to features that characterize the data. The results of PCA on the considered transformer data
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do not yield good results as there is no clear elbow in the Variance plot of the PCA
components. So, instead of eliminating any feature, the total data and all the features are
classified. PCA curve and Scree plot are presented in Figure 3 (a) and Figure 3 (b),
respectively. RF, kNN, SVM, and XGBoost Classifiers are trained with 470 samples (352
Training data + 118 Testing data) of 15 features of DGA data of transformer oil, which
estimates the HI of the PT. Predictor variables considered are Hydrogen, Oxygen, Nitrogen,
Methane, CO, CO2, Ethylene, Ethane, Acetylene, DBDS, Power Factor, Interfacial V, Die
Electric Rigidity, Water Content, and the Target or Response variable considered is HI. As
already mentioned, the training is carried out in two categories to evenly distribute the data:
Training with Unbalanced data, which is carried out with 470 samples in which 352 samples
are considered for training data and the rest 118 samples are used for testing data. Training
with balanced data, which is carried out with 1425 samples

in which 1068 samples were considered for training data and the rest 357 samples were used
for testing data. Table 4 below indicates the encoding of the HI in terms of the aforesaid
categories.

Scree Plot

90 6.20
80 A

6.15
76 4

60
0.10

Variance Explained|
Variance Explaimed|

50

8.05
30 o

201 v v - - — 080
o 2 a 6 8 10 12 P 4 & 8 16 12

Principal Component Principal Component

(a) (b)
Figure 3: PCA: Principal Component Analysis (a) PCA plot (b) PCA-scree plot

Table 4: HI values encoded into categories

HI value Encoded Condition
0 Very Poor
1 Poor
2 Fair
3 Good
4 Very Good

Consequently, the accuracy scores of HI prediction are enhanced considerably, and the
details of the same are presented in this section. It is observed that RF and XGBoost
Classifiers with data balancing using the ‘IMB learn’ library outperformed all others. The
encoded categorical indicators are observed for the best fit RF classifier model to showcase
the classification of the transformer’s health condition as very poor, poor, fair, good, very
good so that service engineers can take necessary action.

Table 5: Accuracy of the ML based Classifiers

Name of the ML Classifier RF KNN SVM  XGBOOST
Accuracy Score without balancing using ‘IMB learn’ library 0.77 0.517 0.703 0.79
Accuracy Score with balancing using ‘IMB learn’ library 0.969 0.713 0.57 0.963

Thus, the proposed system can effectively contribute to the predictive maintenance.
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5. Conclusion

Prediction of transformer HI was done using SVM. RF, XGBoost, kNN classifiers . The

accuracy of RF, Knn, and XGBoost have increased with the oversampling technique of
balancing, whereas the accuracy of SVM has decreased. XGBoost has shown superior
performance with an accuracy of 79% without data balancing, and Random Forest showed
superior performance with an accuracy of 96.9% with data balance. The use of these

Accuracies of the ML based Classifiers using 'IMB
learn' data balancing library

1.5
1
- Il st BB
0 ]
RF KNMN SV }(GBOOSIT

B Accuracy Score with out balancing using *IMB learn” library

B Accuracy Score with balancing using *IMB leamn” library

Figure 4: Test results: Accuracy of ML based Classifiers

classifiers and the data balancing technique, has served the purpose of predicting the
transformer HI with higher accuracy for RF classifier.
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