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Abstract 

       In this paper, a mathematical model consisting of the two harmful 

phytoplankton interacting with a herbivorous zooplankton is proposed and studied. 

The existence of all possible equilibrium points is carried out. The dynamical 

behaviors of the model system around biologically feasible equilibrium points are 

studied. Suitable Lyapunov functions are used to construct the basins of attractions 

of those points. Conditions for which the proposed model persists are established.  

The occurrence of local bifurcation and a Hopf bifurcation are investigated. Finally, 

to confirm our obtained analytical results and specify the vital parameters, numerical 

simulations are used for a hypothetical set of parameter values. 
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bifurcation. 
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1. Introduction 
   Plankton is the basis of the entire aquatic food 

chain. Phytoplankton, in particular, occupies the 

first trophic level. Plankton performs services 

for the Earth: it serves as food for marine life, 

gives off oxygen and also absorbs half of the 

carbon dioxide from the Earth's atmosphere. The 

dynamics of a rapid (or massive) increase or 

decrease of plankton populations is an important 

subject in marine plankton ecology and 

generally termed as a 'bloom'. Harmful algal 

blooms (HABs) have adverse effects on human 

health, fishery, tourism, and the environment. In 

recent years, considerable scientific attention 

has been given to HABs, see for example [1-9]. 

Toxic substances released by harmful plankton 

play an important role in this context. Recent 

studies reveal that some times bloom of certain 

harmful species may lead to the release of both 

toxins and allelopathic substances [10-12]. 

Allelopathic substances tend to be directly 

targeted and may physiologically impair, stun, 
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repel, induce avoidance reactions, and kill 

grazers. Toxin-producing plankton (TPP) release 

toxic chemicals in the water and reduce the 

grazing pressure of zooplankton. As a result, 

TPP may act as a biological control for the 

termination of planktonic blooms see [8,9,13-

15]. 

     Consequently in this paper, we will give 

special emphasis to the fact that the occurrence 

of toxin producing phytoplankton may not 

always be harmful but may help to maintain the 

stable equilibrium in trophodynamics through 

the coexistence of all the species. A 

mathematical model consisting of two harmful 

phytoplankton interacting with herbivorous 

zooplankton is proposed and studied. Two types 

of distributions for the released toxic substance 

by toxic / harmful phytoplankton species, which 

reduces the growth of zooplankton, are 

considered.  

 

2. Mathematical model formulation   
   Consider the simple phytoplankton-

zooplankton system with Holling type-II 

functional response which can be written as: 
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Here )(1 TP and )(TZ represent the densities of 

phytoplankton and zooplankton at time T  

respectively. While the parameters 1r , K , m , 

γ , 1m  and µ  are assumed to be positive 

parameters and can be described as the 

following:  1r  represents the intrinsic growth 

rate of phytoplankton; K  is the carrying 

capacity; m  represents the maximum attack rate 

of zooplankton to the phytoplankton 1P ; γ  is the 

half saturation constant; 1m  represents the 

zooplankton conversion rate from 

phytoplankton 1P ; µ  is the natural death rate of 

zooplankton.  

Assume that, the phytoplankton 1P  produces a 

toxin, as a defensive strategy against the 

predation from zooplankton, which effect 

negatively on the growth of the zooplankton. 

Therefore, the above system can be reformulated 

as: 
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here 01 >θ  represents the liberation rate of toxic 

substance by the harmful phytoplankton 1P ; 

While )( 1Pf  represents the distribution of toxic 

substance which is assumed to be follows either 

Holling type-I form (called case 1) or Holling 

type-II form (called case 2) that means: 
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here 0>a  and 01 >a  represent the maximum 

zooplankton ingestion rates for the toxic 

substance produced by phytoplankton 1P , while 

01 >γ  is the half saturation constant of the 

zooplankton by the toxic substance. 

Now, if we imposed the following additional 

assumptions on system (2): 

1- There exists another harmful phytoplankton, 

denoted by )(2 TP , within the environment. 

2- It is assumed that, the second phytoplankton 

2P  growth logistically with intrinsic growth rate 

02 >r  and carrying capacity 0>L , while there 

is a competition interaction between 1P  and 2P  

for light and space with competition rates 0>α  

and 0>β . 

3- The second phytoplankton produces a toxic 

substance that effects on the zooplankton too 

and the distribution of this toxic follows: 
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here 1, dd  and 2γ  have the same meaning as 

those in )( 1Pf . 

4- The zooplankton consumes the food from 

phytoplankton 1P  and phytoplankton 2P  as well 

as according to Holling type-II. 

Therefore, the above two species system (2) can 

be extended to three species system and 

reformulated as: 
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Clearly, the positive parameters n , 1n  and c  can 

be described as follows: n  represents the 

maximum attack rate of the zooplankton to the 

second phytoplankton 2P ; 1n  represents the 

zooplankton conversion rate from phytoplankton 

and c  the preference rate between 1P  and 2P  

respectively. While the parameter 02 >θ  
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represents the liberation rate of toxic substance 

by the harmful phytoplankton 2P . 

Note that system (5) has 17 parameters for case 

1 and 19 parameters for case 2, which makes the 

analysis difficult. Therefore, to reduce the 

number of parameters and then simplifying our 

system the following dimensionless variables 

are used  
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Therefore, substituting these new variables in 

system (5) and then simplifying the resulting 

terms. We obtain the following dimensionless 

system: 
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 where: 
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αγ=  represent the dimensionless 

parameters. Clearly, system (6) contains 13 

parameters in case 1 and 15 parameters for case 

2, which may make the analysis of system (6) 

easier. Further, the initial condition for system 

(6) may be taken as any point in the region 

{ :),,(3 zyxR =+  }0,0,0 ≥≥≥ zyx . 

Obviously, the interaction functions in the right 

hand side of system (6) are continuously 

differentiable functions on R3
+ , hence they are 

Lipschitizian. Therefore the solution of system 

(6) exists and is unique. Further, all the solutions 

of system (6) with non-negative initial condition 

are uniformly bounded as shown in the 

following theorem. 

Theorem 1. All the solutions of the system (6), 

which initiate in R3
+  are uniformly bounded. 

Proof. Let ))(),(),(( tztytx be any solution of the 

system (6). Since 

),1( xx
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solution of the system (6) is: 
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Therefore ,0
9w

MW ≤<  as ∞→t . Hence, all the 

solutions of system (6) are uniformly bounded, 

and then the proof is complete.                    ■ 

 

According to the above theorem system (6) is 

dissipative system. 

 

3. Existence of equilibrium points and 

stability Analysis 
The system (6) have at most seven non-

negative equilibrium points, three of them 

namely )0,0,0(0 =E , )0,0,1(=xE , ( )0,,0
4

1
wyE =  

always exist. While the existence of other 

equilibrium points are shown in the following:   

 The zooplankton free equilibrium point 

)0,ˆ,ˆ( yxExy = , where 
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exists uniquely in the 2. +RInt  of −xy plane 

provided that: 

 14 >w  and 53 ww >                              (9a) 

Or,    

 14 <w  and 53 ww <                   (9b) 

 The second phytoplankton free 

equilibrium point ),0,( zxExz =  exists in 2. +RInt  

of -xz plane, where 

 ))(1( 1 xwxz +−=                   (10) 

while x  in case 1, represents the positive root to 

the following equation: 

 032
2

1 =++ bxbxb                                  (11) 

where 012101 >= wwb , 0913 >= wwb  and 

12101792 wwwwwb +−= . So by using Descartes 

rule of signs, Eq. (11) has either no positive root 

and hence there is no equilibrium point or two 

positive roots given by: 
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Clearly 1x  and 2x  are positive provided that  

       71210192 0 wwwwwb <+⇒<               (12b) 

      31
2
2 4 bbb >                                         (12c) 

and then, by substituting 2,1, =ixi  in Eq. (10), 

there exist two second phytoplankton free 

equilibrium points in the 2. +RInt  of −xz plane 

namely 
11zxE  and 

22 zxE , provided that  

 2,1for1 =< ixi .                                 (13) 

Now for case 2, x  represents the positive root to 

the following equation: 

 065
2

4 =++ bxbxb                                  (14) 

here 101974 wawwb −−= , 012916 <−= wwwb  and 

1011129911275 wwawwwwwwb −−−= . So by using 

Descartes rule of signs, Eq. (14) has a positive 

root given by:   
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provided that the following condition holds  

 101974 0 wawwb +>⇒>                       (15b) 

Therefore, by substituting x  in Eq. (10), system 

(6) has a unique second phytoplankton free 

equilibrium point in the 2. +RInt  of −xz plane 

denoted by xzE , provided that 

 1<x                                                   (16) 

The first phytoplankton free equilibrium point 

)~,~,0( zyE yz =  exists in 2. +RInt  of -yz plane, 

where 
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while y~  in case 1, represents the positive root to 

the following equation: 

 098
2

7 =++ bybyb                                (18) 

here 0131127 >= wwwb , 0919 >= wwb  and 

131118928 wwwwwwb +−= . So by using Descartes 

rule of signs, Eq. (18) has either no positive root 

and hence there is no equilibrium point or two 

positive roots given by: 
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Clearly 1
~y  and 2

~y  are positive provided that  

 813111928 0 wwwwwwb <+⇒<            (19b) 

       97
2
8 4 bbb >                                          (19c) 

and then, by substituting 2,1,~ =iyi  in Eq. (17), 

there exist two first phytoplankton free 

equilibrium points in the 2. +RInt  of −yz plane  

namely 
11zyE  and 

22 zyE , provided that  

 2,1~
4

1 =< ifory
wi                                (20)  

Now for case 2, y~  represents the positive root 

to the following equation: 

 01211
2

10 =++ bybyb                           (21) 

here 112192810 wwdwwwb −−= , 

0139112 <−= wwwb  and 

111113929113811 wwdwwwwwwwb −−−= . So by 

using Descartes rule of signs, Eq. (21) has a 

positive root given by:  
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provided that the following condition holds  

 112192810 0 wwdwwwb +>⇒>                (22b) 

Therefore, by substituting y~  in Eq. (17), system 

(6) has a unique first phytoplankton free 

equilibrium point in the 2. +RInt  of −yz plane 

given by )~,~,0( zyE yz = , provided that 
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       Finally the coexistence equilibrium point 

),,(
∗∗∗= zyxExyz  exists in 3. +RInt , where 
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While, ∗x  represents the positive root of each of 

the following two equations for case 1 and case 

2 respectively. 
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Obviously, equation (27) has a unique positive 

root say ∗x  provided that one set of the 

following sets of conditions hold.   

 00 31 <> SandS                               (29a) 

 00 31 >< SandS                               (29b) 

while equation (28) has a unique positive root 

say ∗x  provided that one set of the following 

sets of conditions hold:   

 0Q and 0Q 0,Q 421 <>> ………..….(30a)

 0Q and 0Q 0,Q 431 <<> ……..…….(30b)

 0Q and 0Q 0,Q 421 ><< ……..…….(30c)

 0Q and 0Q 0,Q 431 >>< …… …….(30d) 

Consequently, xyzE  exists uniquely in the 3. +RInt  

if and only if in addition to condition (29) in 

case 1 and condition (30) in case 2 one set of the 

following sets of conditions hold: 
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clearly (31a) guarantees that 0>∗y  while (31b) 

guarantees that 0>∗z . The other set is: 
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clearly (32a)-(32b) guarantee that 0>∗y  while 

(32c) guarantees that 0>∗z . Finally we have 

that: 
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here (33a)-(33b) guarantee that 0>∗y , however 

(33c) guarantees that 0>∗z . 

 

 In the following, the local dynamical 

behavior of the system (6) around each of the 

above equilibrium points is investigated. First 

the Jacobian matrix of system (6) at each of 

these points is determined and then the 

eigenvalues for the resulting matrix are 

computed, finally the obtained results are 

summarized in the following: 

The Jacobian matrix of system (6) at the 

equilibrium point )0,0,0(0 =E  can be written as 

3,2,1,;][)( 3300 === × jicEJJ ij , where 111 =c , 

322 wc = , 933 wc −=  and zero otherwise. Then the 

eigenvalues of  0J  are: 

0101 >=λ , 0302 >= wλ , 0903 <−= wλ  

Therefore, the equilibrium point 0E  is a saddle 

point. 

The Jacobian matrix of system (6) at the 

equilibrium point )0,0,1(=xE  can be written as 
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where )1(f  is obtained from Eq. (7a) by 

substituting 1=x . Clearly, xE  is locally 

asymptotically stable in the 3
+R  if the following 

two conditions are satisfied  
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However, xE  is a saddle point in the 3
+R  if at 

least one of the following two conditions are 

satisfied: 
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Now, the Jacobian matrix of system (6) at the 

equilibrium point ( )0,,0
4

1
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as 3,2,1,;][)( 33 === × jieEJJ ijyy , where 
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otherwise. The eigenvalues of yJ  are: 
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where )1( 4wg  is obtained from Eq. (7b) by 

substituting )1( 4wy = . Hence, yE  is locally 

asymptotically stable in the 3
+R  if the following 

two conditions are satisfied 
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one of the following two conditions are satisfied 
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The Jacobian matrix of system (6) at the 

zooplankton free equilibrium point )0,ˆ,ˆ( yxExy =  

in the 2. +RInt  of −xy plane can be written as 
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and zero otherwise. Therefore, the eigenvalues 

of xyJ  are given by: 
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)(ˆˆ4)ˆˆ(

2

)ˆˆ(

2,1
543

2
4343ˆ wwwyxywwxywwx −−++− ±=λ  

        )ˆ()ˆ(ˆ
11109ˆ

ˆ

ˆ

ˆ

3
87 ygwxfww
b

yw

b

xw −−−+=λ  

where )ˆ(xf  and )ˆ(yg  are obtain from Eq. (7a) 

and (7b) by substituting xx ˆ=  and yy ˆ=  

respectively, while 

          ywxwb ˆˆˆ
21 ++=                       (36) 

Obviously, xyE  is locally asymptotically stable 

in the 3
+R  if in addition to condition (9a), which 

guarantees the local stability of xyE  in the 

2. +RInt  of the −xy plane, the following condition 

holds 

 )ˆ()ˆ( 11109ˆ

ˆ

ˆ

ˆ
87 ygwxfww
b

yw

b

xw ++<+       (37a) 

Here condition (37a) insure the convergent of 

solution to xyE  from −z direction. On the other 

hand, xyE  is a saddle point in the 3
+R  if at least 

one of the conditions (9b) and the following 

condition 

 )ˆ()ˆ( 11109ˆ

ˆ

ˆ

ˆ 87 ygwxfww
b

yw

b

xw ++>+         (37b)  

hold. 

 Before we go further to analyze the 

dynamical behavior of system (6) in the 

neighborhood of the second phytoplankton free 

equilibrium point, recall that the system have 

either two equilibrium points 
11zxE and 

22 zxE or 

there is no equilibrium point in case 1.While, it 

has a unique equilibrium point xzE  in case 2. 

Since all these equilibrium points, whenever 

they exist have the same local stability 

conditions which depend on the form of 

equilibrium points, therefore we assume here 

xzE  represent any one of them that belongs 

to −xz plane. 

So, the Jacobian matrix of system (6) at the 

second phytoplankton free equilibrium point 

),0,( zxExz =  in −xz plane, can be written as 

3,2,1,;][)( 33 === × jigEJJ ijxzxz , with  

( )
2

111
b

zxg +−= , ( )
2

2112
b

zw
xg +−= , 

b

xg −=13 , 

b

zw
xwwg 6

5322 −−= , ( ))(1031 2

71 xfwzg
b

ww ′−= , 

( ))0(1132
8

2

72 gwzg
b

w

b

xww ′−+= −
 

and zero otherwise. Where 

 xwb += 1                                          (38a) 

 






=′

=′

=

=

0)()0(

)()(

ydy
d

xxdx
d

ygg

xfxf
                          (38b) 

While, )(xf  and )(yg  are given in Eq. (7). 

Clearly, the eigenvalues of xzJ  are given by: 

 

( )

2

)(41

23,1

102
71

2

2

2

2
1






 ′−−





 +−

±

+−=

xfwx

b

zx

b

ww

b

zx

b

z

λ

 

 
b

zw
xww 6

532 −−=λ  

Consequently, xzE  is locally asymptotically 

stable in the 3
+R  if the following conditions are 

satisfied. 

 2bz <                            (39a) 

 )(2
1071 xfbwww ′>                            (39b) 

 
b

zw
xww 6

53 +<                                   (39c) 

Obviously, conditions (39a) and (39b) guarantee 

the local stability of xzE  in the 2. +RInt  of the 

−xz plane while condition (39c) guarantees the 

convergent of the solution to xzE  from 

−y direction. However, xzE  will be unstable 

point in the 3
+R  if we reversed any one of the 

above conditions. 
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Similarly, it is assumed that, yzE  represent any 

one of the first phytoplankton free of the 

equilibrium points those may belong to 

−yz plane. Hence the Jacobian matrix of system 

(6) at the equilibrium point )~,~,0( zyE yz =  in 

−yz plane, can be written as 

3,2,1,;][)( 33 === × jihEJJ ijyzyz , where 

b

zyh ~
~

11
~1 −−= , ( )

2

6
~

~

521
~

b

zw
wyh +−= , 

( )
2

62
~

~

4322
~

b

zww
wwyh +−= , 

b

yw
h ~

~

23
6−= , 

( ))0(~
10~

~

~31 2

87 fwzh
b

yw

b

w ′−−= , 

( ))~(~
11~32 2

81 ygwzh
b

ww ′−=  and zero otherwise, here 

)0(f ′  and )~(yg ′  result from Eq. (38b) for 0=x  

and yy ~= , however: 

 ywwb ~~
21 +=                                     (40) 

Clearly the eigenvalues of yzJ  are given by: 

 
b

z
y ~

~
~1

~
1 −−=λ

 

( )

2

)~(4~

~

~

432

~

3,2

112~
81

~

~~
6

2

2~

~
62

43
2

2

62
~






 ′−−





 +−

±

+−=

ygwwwy

b

zwwy

b

ww

b

zyw

b

zww

wwλ

 

Consequently, yzE  is locally asymptotically 

stable in the 3
+R  if the following conditions are 

satisfied: 

     1~
~
~
>+

b

zy                                          (41a) 

     
62

2
43

~
~

ww

bww
z <                                       (41b) 

     )~(
~2

1181 ygbwww ′>                          (41c) 

Obviously, conditions (41b) and (41c) guarantee 

the local stability of yzE  in the 2. +RInt  of the 

−yz plane while condition (41a) insure the 

convergent of the solution to yzE  from 

−x direction. Moreover, yzE  is unstable point in 

the 3
+R  if we reversed any one of the above 

conditions. 

Finally, the Jacobian matrix of the system (6) at 

the positive equilibrium point ),,( zyxExyz
∗∗∗=  

in the RInt 3. +  can be written as: 

 [ ] 3,2,1,;)(
33

===
×

jiaEJJ ijxyzxyz         (42a) 

where 111 2 Da
b

x
∗

∗
= ,  212 2 Da

b

x
∗

∗
= ,  ∗

∗−=
b

xa13 , 

321 2*
Da

b

y∗

= , 422 2*

*

Da
b

y= , ∗

∗−=
b

yw
a 6

23 , 

2

2

105 )(

31 ∗

∗∗∗






 ′−

=
b

xfbwDz

a ,
2*

2*
116

* )(

32
b

ygbwDz

a






 ′− ∗

=  and 

033 =a . In addition , we have 

∗+−= zbD
2*

1 , ∗+−= zwbD 2

2*
2 , 

∗+−= zwbwD 6

2*
53 , ∗+−= zwwbwwD 62

2*
434 , 

*
872715 )( ywwwwwD −+= , 

*
872816 )( xwwwwwD −−=  

and ∗b  is given in Eq. (26), while              

       








=′

=′

∗

∗

=
∗

=
∗

yydy
d

xxdx

d

ygyg

xfxf

)()(

)()(

                     (42b) 

where )(xf  and )(yg  are given in Eq. (7). 

Accordingly the characteristic equation of xyzJ  

can be written as: 

 032
2

1
3 =+++ AAA λλλ                  (43) 

here 

 

)(

)(

)(

3122322113

31123211233

31133223211222112

22111

aaaaa

aaaaaA

aaaaaaaaA

aaA

−−

−=

−−−=

+−=

 

and                        

 

)(

)(

))((

2113232232

2312131131

211222112211

321

aaaaa

aaaaa

aaaaaa

AAA

++

++

−+−=

−=∆

 

So, by substituting the values of ,ija and then 

simplifying the resulting terms we obtain: 

( )41
1

1 2
DyDxA

b

∗∗− +=
∗

………………(44a) 


−





 ′−+

+−







 ′−=

∗

∗∗
∗

∗∗∗

)()(

)()(

426
*2

105

316

2

1163 5

DDwxfbwD

DDwygbwDA
b

zyx

 

               ……. 

(44b) 

( )( )

( )( )
( )3

*
4

*
6

2*
116

261

2

105

324141

)(

)(

5

5

6

DxDywygbwD

DywDxxfbwD

DDDDDyDx

b

zy

b

zx

b

yx

−−




 ′−+

−−′−+

−+−=∆

∗

∗∗∗∗

∗∗

∗

∗∗

∗

∗∗

∗

∗∗

  

                                                ….    (44c) 

Therefore, in the following theorem, the local 

stability conditions for the positive equilibrium 

point xyzE  in the 3. +RInt  are established. 
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Theorem 2. Assume that xyzE  exists in the 

3. +RInt  and the following conditions are 

satisfied;   

 





< ∗∗∗∗ ∗ 222

62

43

6

5

2

2

,,,min bbbz
ww

ww

w

w

w
b     (45a) 

 
2

105 )( ∗∗′> bxfwD                           (45b) 

 
2

4

1

3

6 D

D

D

D
w <<                                      (45c) 

 
2

116 )( ∗∗′> bygwD                               (45d) 

Then it is locally asymptotically stable. 

Proof. According to the Routh-Hawirtiz 

criterion the characteristic equation (43) has 

roots with negative real parts if and only if 

01 >A , 03 >A  and 0>∆ . 

 Note that, it is easy to verify that, condition 

(45a) guarantees that 4,3,2,1,0 =∀< iDi  and 

hence 01 >A ; while conditions (45a)- (45d) 

ensure the positivity of 3A  (i.e. 03 >A ) and 

0>∆ . Hence, all the roots (eigenvalues) of the 

xyzJ  have negative real parts. Therefore xyzE  is 

locally asymptotically stable in the 3. +RInt  and 

hence the proof is complete.                                                 

■ 

       Now, before go further to study the global 

dynamical behavior of system (6) in the 3. +RInt , 

we will discuss the dynamical behavior of 

system (6) in the interior of the boundary planes 

as shown in the following theorems. 

Theorem 3. Suppose that the zooplankton free 

equilibrium point xyE  is locally asymptotically 

stable in the 2. +RInt  of the −xy plane, then it is a 

globally asymptotically stable in 2. +RInt  of the 

−xy plane. 

Proof. The proof follows directly by using 

Bendixson-Dulic criterion with Dulic function 

xy1  and then using Poincare-Bendixson 

theorem. 

■ 

Theorem 4. System (6) has no periodic 

dynamics in the 2. +RInt  of −xz  and −yz  planes 

provided that  
2

1 )( xwz +<                                     (46a) 

       2
21 )(

62

43 ywwz
ww

ww +<                         (46b) 

respectively. 

Proof. The proof follows directly by using 

Bendixson-Dulic criterion with Dulic functions 

xz1  and yz1  respectively.                       ■ 

       Keeping the above in view, Since all the 

solutions of the system (6) are bounded and xzE  

and yzE  (for case 2) are the unique positive 

equilibrium points in 2. +RInt  of the −xz  and 

−yz  planes respectively, hence by using the 

Poincare-Bendixson theorem xzE  and yzE  are 

globally asymptotically stable in the 2. +RInt  of 

−xz plane and −yz  plane respectively.  

 

4. Global stability of the system 

 In this section the global stability of the 

equilibrium points xE , yE , xyE , xzE , yzE  and 

xyzE  in 3
+R  are  investigated as shown in the 

following theorems. 

Theorem 5. Assume that the equilibrium point 

xE  is locally asymptotically stable in 3
+R , and 

let the following condition holds: 

 
1

7

9 w

w
w ≥                                            (47) 

Then the basin of attraction of xE  can be written 

as { ,:),,()( 1
3 Ω≥∈= + xRzyxEB x  }0,0 ≥≥ zy  

with 
8576

7683

1 wwww

wwww

+
+=Ω . 

Proof. Consider the following positive definite 

function: 

( ) zcycxxczyxV 3211 ln1),,( ++−−=  

Clearly ,: 3
1 RRV →+  and is a 1C  positive definite 

function, where )3,2,1(, =ici  are nonnegative 

constants to be determined. Now, since the 

derivative of 1V  along the trajectory of system 

(6) can be written as: 

 

( ) ( )[
( )] ( )

( ) ( )836293

731132

521
2

1

1

1 1

wcwcwcz

wccycwc

xwccxc

b

yz

b

c

b
xz

dt

dV

−−−−

−−+−

+−−−<

 

 

Here 

 

 ywxwb 21 ++=                              (48) 

So, by choosing the nonnegative constants as 

71 wc = ,
6

8

2 w

w
c =  and 13 =c  gives: 

( ) ( )[
( )] ( )

1

7

6

7683

6

85761

9

2
7 1

w

w

w

wwww

w

wwww

dt

dV

wzy

xxw

−−−

−−−≤

+

+

 

 

Therefore, for any initial point in the interior 
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of )( xEB ,  01 <
dt

dV
 under condition (47) and 

hence 1V  is strictly Lyapunov function. Thus, 

xE  is globally asymptotically stable in the 

)( xEB  and then )( xEB  is the basin of attraction 

of xE .         ■ 

 

Theorem 6. Assume that the equilibrium point 

yE  is locally asymptotically stable in 3
+R , and 

let the following condition holds: 

41

8

9 ww

w
w ≥                                          (49) 

Then the basin of attraction of yE  can be 

written as { ,0:),,()(
3 ≥∈= + xRzyxEB y  

}0,2 ≥Ω≥ zy with ( )76854

85764

2 wwwww

wwwww

+
+=Ω . 

Proof. Follows similarly as the proof of theorem 

(5) with using the candidate Lyapunov function 

 ( ) zcyyycxczyxV
y

y
3212 ln),,( +−−+= )

))
     ■ 

 

Theorem 7. Assume that the zooplankton free 

equilibrium point xyE  is locally asymptotically 

stable in  3
+R , and let the following conditions 

hold: 

 ( )
6

8743

6

85 4
2

7 w

wwww

w

ww
w ≤+                     (50a) 

 
1

87 ˆˆ

9 w

ywxw
w

+≥                                      (50b) 

Then xyE  is globally asymptotically stable in the 

3
+R . 

Proof. Follows directly by using the candidate 

Lyapunov function 

 
( )

( ) zcyyyc

xxxczyxV

y

y

x

x

3ˆ2

ˆ13

lnˆˆ

lnˆˆ),,(

+−−+

−−=
     ■ 

       Now, since system (6) in case 1, may have 

either two equilibrium points or no equilibrium 

points in the 3. +RInt  of the −xz  and −yz  planes 

respectively. Therefore, in the following two 

theorems we will study the global dynamics of 

system (6) in these planes for case 2 only.  

Theorem 8. Assume that the second 

phytoplankton free equilibrium point xzE  is 

locally asymptotically stable in 3
+R . Then the 

basin of attraction of xzE  is given by: 

}{ zzyxxRzyxEB xz >≥>∈= + ,0,:),,()( 3  

provided that: 

 

 bwz 1<                                          (51a) 

 
2

1

w

bw
z ≤                                           (51b) 

 
))(1( 1212

121017

xww

wwa

b

w

++
>                            (51c) 

 
1

8

134

1141

2441

742

1)( w

w

ww

wwd

bwwww

xwww ≥+
+++

            (51d) 

 

Proof. Follows directly by using the candidate 

Lyapunov function 

 
( )

( )
z
z

x
x

zzzcyc

xxxczyxV

ln

ln),,(

32

14

−−++

−−=
       ■ 

 

Theorem 9. Assume that the first phytoplankton 

free equilibrium point yzE  is locally 

asymptotically stable in 3
+R . Then the basin of 

attraction of yzE  is given by: 

 { }zzyyxRzyxEB yz
~,~,0:),,()(

3 >>≥∈= +  

Provided that: 

 

62

431

~
~

ww

bwww
z <                                       (52a) 

6

51

~
~

w

bww
z ≤                                         (52b) 

)~)(1(~
13134

1311418

ywww

wwwd

b

w

++
> ………………..(52c) 

1

7

12

101

2441

84

1~
)(

~

w

w

w

wa

bwwww

yww ≥+
+++

                (52d) 

 

Proof. Follows directly by using the candidate 

Lyapunov function 

( )
( )

z
z

y

y

zzzc

yyycxczyxV

~3

~215

ln~~

ln~~),,(

−−+

−−+=
    ■ 

Theorem 10. Assume that the coexistence 

equilibrium point xyzE  is locally asymptotically 

stable in 3. +RInt . Then the basin of attraction of 

xyzE  is given by: 

}{ ∗∗∗ >>>= zzyyxxzyxEB xyz ,,:),,()(  

Provided that: 

 

     {


<

∗∗∗
∗∗

62

431

6

51

2

1 ,,,min 1 ww

bwww

w

bww

w

bw
bwz        (53a) 

   ∗∗′>−+ bxfwwywwwww )()( 101
*

87271    (53b) 

   ∗∗′>−− bygwwxwwwww )()( 111
*

87281       (53c) 

       2211
2

12 4 KKK ≤                                     (53d) 

 

where: 

 
       











−









 −−+
=

∗

∗

∗

∗

bw

z

b

bwwwywwwww
k

1

12101
*

87271
11 1

)(  

       











−









 −−−
+











−









 −−+
=

∗

∗

∗

∗

∗

∗

∗

∗

bw

zw
w

bw

bwwwxwwwww

bw

zw

b

bwwwywwwww
K

1

6
5

6

13111
*

87281

1

212101
*

87271
12

)(

1
)(  
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









−









 −−−
=

∗

∗

∗

∗

bw

zww
ww

bw

bwwwxwwwww
K

1

62
43

6

13111
*

87281
22

)(
 

Proof. Follows directly by using the candidate 

Lyapunov function 

 

( )

( )∗

∗

∗

∗∗

∗∗

∗∗

−−+






 −−+

−−=

z

z

y

y

x

x

zzzc

yyyc

xxxczyxV

ln

ln

ln),,(

3

2

16

    ■ 

5. Persistence Analysis 
 In this section, the persistence of system (6) 

is studied. It is well known that the system is 

said to be persistence if and only if each species 

persists. Mathematically this is meaning that the 

solution of system (6) do not have omega limit 

set in the boundaries of 3
+R  [16]. Therefore, in 

the following theorem, the necessary and 

sufficient conditions for the uniform persistence 

of the system (6) are derived. 

 

Theorem 11. Assume that there are no periodic 

dynamics in the boundary planes xzxy, and yz  

respectively. Further, if in addition to conditions 

(34c), (34d), (35c), (35d), (37b) the following 

conditions are hold. 

b

zw
xww 6

53 +>                                   (54a) 

1~
~
~
<+

b

zy                                           (54b) 

Then, system (6) is uniformly persistence. 

Proof. Consider the following function 

321),,(
ppp

zyxzyx =σ , where 3,2,1; =ipi  are an 

undetermined positive constants. Obviously 

),,( zyxσ  is a 1C  positive function defined in 

3
+R , and 0),,( →zyxσ  if  0→x  or 0→y  or 

0→z . Consequently we obtain 

332211),,(

),,(
),,( fpfpfpzyx

zyx

zyx ++==Ψ ′
σ
σ

 

Here 3,2,1; =if i  are given in system (6). 

Therefore 

 

( )
( )
(

))()(

)1(

1),,(

1110

93

5432

1

21

8

21

7

21

6

21

ygwxfw

wp

xwywwp

yxpzyx

ywxw

yw

ywxw

xw

ywxw

zw

ywxw
z

−−

−++

−−−+

−−−=Ψ

++++

++

++

 

 

Now, since it is assumed that there are no 

periodic attractors in the boundary planes, then 

the only possible omega limit sets of the system 

(6) are the equilibrium points 

.,,,,0 yzxzxyyx EandEEEEE  Thus according to the 

Gard technique [16] the proof is follows and the 

system is uniformly persists if we can proof that 

0(.) >Ψ  at each of these points. Since  

 

392310 )( pwpwpE −+=Ψ                   (55a) 

 ( ) 31091

253

)1(

)()(

1

7 pfww

pwwE

w

w

x

−−+

−=Ψ

+

         (55b) 

 
( ) (

( )) 3
1

11

91
1

4

241

8

4

1)(

pgw

wpE

w

www

w

wy

−

−+−=Ψ
+

     (55c) 

(
) 31110

9ˆ

ˆ

ˆ

ˆ

)ˆ()ˆ(

)( 87

pygwxfw

wE
b

yw

b

xw

xy

−−

−+=Ψ
       (55d) 

( ) 253
6)( pxwwE
b

zw
xz −−=Ψ                        

(55e) 

( ) 1~
~~1)( pyE
b

z
yz −−=Ψ                                  

(55f) 

where )1(f ,  ( )41 wg , )ˆ(xf , )ˆ(yg , b̂ , b  and b
~

 

are given in previous sections. Obviously, 

0)( 0 >Ψ E  for all values of 2,1; =ipi  sufficiently 

large than 03 >p . 0)( >Ψ xE  for any positive 

constants 3,2; =ipi  provided that conditions 

(34c) and (34d) hold. 0)( >Ψ yE  for any positive 

constants 3,1; =ipi  if and only if conditions 

(35c) and (35d)  are satisfied. However, )( xyEΨ , 

)( xzEΨ  and )( yzEΨ  are positive provided that 

the conditions (37b), (54a) and (54b) are 

satisfied respectively. Then strictly positive 

solution of system (6) do not have omega limit 

set and hence, system (6) is uniformly 

persistence.                     ■ 

 

6. The local Bifurcation 

 In this section an investigation for the 

dynamical behavior of system (6) under the 

effect of varying one parameter of each time is 

carried out. The occurrence of local bifurcation 

in the neighborhood of the above equilibrium 

points are studied in the following theorems. 

 

Theorem 12. Assume that condition (34b) holds 

and the parameter 3w  passes through the value 

53 ww =
(

, then system (6) near the equilibrium 

xE  has: 

1. No saddle-node bifurcation. 

2. A transcritical bifurcation but no pitch-

fork bifurcation can occur provided that 

the following condition holds: 

      14 ≠w                                            (56) 

Otherwise there is no bifurcation. 
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Proof. According to the Jacobian matrix of 

system (6) at xE  that is given by xJ , it is easy 

to verify that as 33 ww
(

= , the ),( 3wEJ xx

(
 has the 

following eigenvalues: 

   11 −=λ
(

, 02 =λ
(

 and )1(10913
1

7 fww
w

w −−=
+

λ
(

  

where )1(f  is obtain from Eq. (7a). Let 

Tv ),,( 321 θθθ
((((

=  be the eigenvector of ),( 3wEJ xx

(
 

corresponding to the eigenvalue 02 =λ
(

. Then it 

is easy to check that 
T

a

a
v 



= −

0,, 2
11

212 θθ ((
(

((

, where 2θ
(

 

represents any nonzero real value. Also, let 
Thhhw ),,( 321

((((
=  represents the eigenvector of 

),( 3wEJ x
T

x

(
 that corresponding to the eigenvalue 

02 =λ
(

. Straightforward calculation shows that 
Thw )0,,0( 2

((
= , where 2h

(

 is any nonzero real 

number. Now since  

       T
ww

F ywywXF `
43 ]0),1(,0[),(

33

−=≡
∂
∂  

where TzyxX ),,(=  and TFFFF ),,( 321=  with 

3,2,1; =iFi  represent the right hand side of 

system (6). Then we get that 
T

xw wEF )0,0,0(),( 33
=

(
 and then the following is 

obtained: 

       0)0,0,0)(0,,0()],([ 233
== T

xw
T

hwEFw
(((

  

Thus the system (6) at xE  does not experience 

any saddle-node bifurcation in view of  

Sotomayor theorem [17]. 

Also, since  

 

     
0)0,,0)(0,,0(

]),([

2222

33

≠=

=

θθ
((((

(((

hh

vwEDFw

T

xw
T

 

here 
3333 ,33 ),(),(

wwEXwXxw
x

wXFwEDF (

(

==∂
∂= . 

Moreover, we have 

0)1(2)],)(,([
2

22453
2 ≠−= θ

((((((
hwwvvwEFDw x

T  

 where 
33,33

2 ),(),(
wwEXxx

x

wXDJwEFD (

(

==
= . 

Clearly, 0)],)(,([ 3
2 ≠vvwEFDw x

T ((((
 provided that 

condition (56) holds, and then by using  

Sotomayor theorem again system (6) possesses a 

transcritical bifurcation but not pitch-fork 

bifurcation near xE  where 33 ww
(

= . However, 

violate condition (56) gives that 

0)],)(,([ 3
2 =vvwEFDw x

T ((((
, and  hence further 

computation shows  

0)],,)(,([ 3
3 =vvvwEFDw x

T (((((
 

Therefore according to Sotomayor theorem, 

there is no bifurcation.                                ■ 

 

Theorem 13. Assume that condition (35a) holds 

and the parameter 8w  passes through the value 

( )( )( )241
1

1198
4

wwwgwww
w

++=
)

 where ( )
4

1
w

g  is 

obtain fron Eq. (7b), then system (6) near the 

equilibrium yE  has : 

1. No saddle-node bifurcation. 

2. A transcritical bifurcation but nopitch-fork 

bifurcation can occur provided that the 

following condition holds: 
( )][ ( )

4241

4

1
119

2
41 1

11)( wwww

gwwww
gw

w ′≠+

+
            (57) 

 where: 

( )








+

=′
2casefor

)1(

1casefor

2
134

13
2
41

13

1

4

ww

wwd

w

g
w

 

3. A pitch-fork bifurcation otherwise. 

Proof. According to the Jacobian matrix of 

system (6) at yE  that is given by yJ , it is easy 

to verify that as 88 ww
)

= , the ),( 8wEJ yy

)
 has the 

following eigenvalues: 

0,
1

1 32
4

1 <−=−= w
w

λλ
))

 and 03 =λ
)

 

Let  Tv ),,( 321 θθθ
))))

=  be the eigenvector of 

),( 8wEJ yy

)
 corresponding to the eigenvalue 

03 =λ
)

.  Then it is easy to check that 

T

a

a
v 



= −

3,,0
22

323 θθ ))
)

))

, where 3θ
)

 represents any 

nonzero real value. Also, let Thhhw ),,( 321

))))
=  

represents the eigenvector of ),( 8wEJ y
T

y

)
 that 

corresponding to the eigenvalue 03 =λ
)

. 

Straightforward calculation shows that 
Thw ),0,0( 3

))
= , where 3h

)

 is any nonzero real 

number.  

Now, since T

b

yz
ww

F wXF ],0,0[),( 888

=≡∂
∂ , where b  

is given in (48), TzyxX ),,(=  and 

TFFFF ),,( 321=  with 3,2,1; =iFi  represent the 

right hand side of system (6). Then we get 
T

yw wEF )0,0,0(),( 88
=

)
from which we get  

0)0,0,0)(,0,0()],([ 388
== T

yw
T

hwEFw
)))

. 

Thus the system (6) at yE  does not experience 

any saddle-node bifurcation in view of 

Sotomayor theorem [17]. Also, since:  
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0
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here 
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wwEXwXyw
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Moreover, we  have 
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where 
88,88

2
),(),(

wwEXyy
y

wXDJwEFD )

)

==
= . 

Clearly, 0)],)(,([ 8
2 ≠vvwEFDw y

T ))))
 provided that 

condition (57) holds, and then by Sotomayor 

theorem, the system (6) possesses a transcritical 

bifurcation but not pitch-fork bifurcation near 

yE  where 88 ww
)

= . However, violate condition 

(57) gives that 0)],)(,([ 8
2 =vvwEFDw y

T ))))
, and 

hence further computation shows   

( )
( )][ ( )
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
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
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where: 

       ( )






=′′
+

−
2casefor

1casefor0

3
134

13
3
414

)1(

2
1

ww

wwdw
g  

Therefore system (6) possesses a pitch-fork 

bifurcation near yE  where 88 ww
)

= .            ■ 

 

Theorem 14. Assume that condition (9a) holds 

and the parameter 7w  passes through the value 

( )
b

yw

x
b ygwxfwww

ˆ

ˆ

11109ˆ

ˆ

7
8)ˆ()ˆ(ˆ −++=  where )ˆ(xf  

and )ˆ(yg  are obtain from Eqs. (7a-7b), then 

system (6) near the equilibrium xyE  has:  

1. No saddle-node bifurcation. 

2. A transcritical bifurcation but no pitch-fork 

bifurcation can occur provided that at least 

one of the following conditions hold:  

3.  

( )

(
) 








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
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                                                 ... (58) 

where:  
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


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+
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2
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4. A pitch-fork bifurcation provided that: 
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(
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                                          …   (59a) 
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where:  
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−
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2
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wdxg  

Proof. Follows directly by applying Sotomayor 

theorem as shown in proof of theorem (13).   ■ 

 

Theorem 15. Assume that conditions (39a) and 

(39b) hold and the parameter 3w  passes through 

the value 
b

zw
xww 6

53 += , where b  is given in 

(38a), then system (6) near the equilibrium xzE  

has: 

1. No saddle-node bifurcation. 

2. A transcritical bifurcation but no pitch- 

        fork bifurcation can occur provided that 

        one of the following condition holds: 

   
( )

( ) 0654

651

6

2

1

≠−++

+−=
Γ
Γ

wxww

wwM

b

zw
            (60) 

A pitch-fork bifurcation provided that 

 01 =M                               (61a) 
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Where )(xf ′  and )0(g′ are given in (38b) 

Proof. Follows directly by applying Sotomayor 

theorem as shown in proof of theorem (13).   ■ 

 

Theorem 16. Assume that conditions (41b) and 

(41c) hold and the parameter 1w  passes through 

the value 
y

zyyw
w ~1

~)1~(~

1
2~

−
+−= , then system (6) near the 

equilibrium yzE  has: 

    1. No saddle-node bifurcation. 

    2. A transcritical bifurcation but no pitch- 

        fork bifurcation can occur provided that 

        one of the following condition holds: 
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3. A pitch-fork bifurcation provided that 
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here: 
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   with )0(f ′  and )~( yg′ are obtain from Eq. (38b). 

Proof. Follows directly by applying Sotomayor 

theorem as shown in proof of theorem (13).    ■ 

 

7. Hopf bifurcation 

Finally, in order to investigate the Hopf 

bifurcation of the model system (6), we will 

follow the Liu approach [18] as shown in the 

following theorem. 

 

Theorem 17. Assume that the coexistence 

equilibrium point of system (6) exists and let in 

addition to conditions (45a)-(45c), the following 

conditions hold: 

∗

∗

+
>
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                                         ...……… (64b) 

Then a simple Hopf bifurcation of the model 

system (6) occurs at  
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where 6,5,4,3,2,1, =iDi  and )( *xf ′ are given in 

Eqs. (42a) and (42b) respectively. 

Proof. According to the Liu approach a simple 

Hopf bifurcation occurs if and only if 

00)(,0)(,0)( 31 ≠=∆>>
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∆
∗∗∗
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d
dandAA w

here ∗µ  is a critical value of the key parameter 

and ∆= andiforAi 3,1  are given in equations 

(44a), (44b) and (44c). Note that it is clear that 

06 >D  under the condition (64a) and hence *
11w  

is positive under the conditions (45a)-(45c).  

Now, by substituting the value of *
11w  in these 

equations we obtain:  
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which is positive due to condition (45a); 
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Clearly, 0)(
*

113 >wA  under the conditions (45a), 

(45b), (45c) and (64b). Now rewrite equation 

(44c) gives that 
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where )(
∗

′ yg  is given in Eq.(42b). Hence it easy 

to verify that 0)( 11 =∆ ∗
w . Finally, since 

( 0)346
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3

1111
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≠−−= ∗∗′−

=

∆
∗

∗∗∗

∗
DxDyw
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ygzy
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dw
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Thus, a simple Hopf bifurcation occurs in 

system (6) at ∗= 1111 ww .                          ■ 

 

8. Numerical Analysis 

        In this section the global dynamics of 

system (6), for case 1 and case 2, is studied 

numerically. In both the cases, system (6) is 

solved numerically for different sets of 

parameters and different sets of initial 

conditions, and then the attracting sets and their 

time series are drown. 

For the following set of parameters 
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The attracting sets along with their time series of 

system (6) are drown in figure 1 and figure 2, 

starting from different sets of initial conditions, 

for case 1 and case 2 respectively. Note that 

from now onward, in time series figures, we will 

use solid line type for x , dash line type for y  

and dot line type for z . 
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Figure 1- The phase plot of system (6) in case 1. (a) 

The solution of system (6) approaches asymptotically 

to stable limit cycle initiated at different initial 

points. (b) Time series of the attractor in (a) initiated 

at (0.85, 0.75, 0.65). (c) Time series of the attractor 

in (a) initiated at (0.65, 0.55, 0.45). (d) Time series of 

the attractor in (a) initiated at (0.45, 0.35, 0.25). 
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Figure 2- The phase plot of system (6) in case 2. (a) 

The solution of system (6) approaches asymptotically 

to stable limit cycle initiated at different initial 

points. (b) Time series of the attractor in (a) initiated 

at (0.85, 0.75, 0.65). (c) Time series of the attractor 

in (a) initiated at (0.65, 0.55, 0.45). (d) Time series of 

the attractor in (a) initiated at (0.45, 0.35, 0.25). 

 

Obviously, these figures show that, system (6) 

approaches to the globally asymp-totically stable 

limit cycle in the 3. +RInt  starting from different 

sets of initial conditions. However, for the set of 

parameters values (65) with 6.01 =w , system (6) 

approaches asymptotically to coexistence 

equilibrium point xyzE  in the 3. +RInt  starting 

from different sets of initial conditions, see 

figure 3 and figure 4 for case 1 and case 2 

respectively.  
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Figure 3- The phase plot of system (6) in case 1. (a) 

The solution of system (6) approaches asymptotically 

to stable positive point initiated at different initial 

points. (b) Time series of the attractor in (a) initiated 

at (0.85, 0.75, 0.65). (c) Time series of the attractor 

in (a) initiated at (0.65, 0.55, 0.45). (d) Time series of 

the attractor in (a) initiated at (0.45, 0.35, 0.25). 
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Figure 4- The phase plot of system (6) in case 2. (a) 

The solution of system (6) approaches asymptotically 

to stable positive point initiated at different initial 

points. (b) Time series of the attractor in (a) initiated 

at (0.85, 0.75, 0.65). (c) Time series of the attractor 

in (a) initiated at (0.65, 0.55, 0.45). (d) Time series of 

the attractor in (a) initiated at (0.45, 0.35, 0.25). 

 

Further analysis for the role of changing the half 

saturation constant 1w  on the dynamics of 

system (6) is performed, and the following 

results are obtained: In case 1, system (6) has a 

periodic dynamic in the 3. +RInt  for 54.01 ≤w  

with the rest of parameters as given in Eq. (65), 

while for 18.155.0 1 ≤≤ w  the system (6) has a 

globally asymptotically stable positive point in 

the 3. +RInt . Finally, it approaches asymptotically 

to zooplankton free equilibrium point 

)0,71.0,28.0(=xyE  in the 2. +RInt  of −xy  plane 

when 19.11 ≥w  as shown in figure 5a. However, 

in case 2, the system  (6) has a periodic dynamic 

in the 3. +RInt  when 5.01 ≤w , while the system 

(6) has a globally asymptotically stable positive 

point in the 3. +RInt  for 10.151.0 1 ≤≤ w and finally 

the system approaches asymptotically to 

zooplankton free equilibrium point 

)0,71.0,28.0(=xyE  in the 2. +RInt  of −xy  plane for 

11.11 ≥w as shown in figure 5b. 
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Figure 5- The trajectory of system (6) approaches 

asymptotically to zooplankton free equilibrium point 

)0,71.0,28.0(=xyE  in the 2. +RInt  of −xy  plane for 

25.11 =w  with other parameters as in (65). (a) The 

time series of the system (6) in case 1. (b) The time 

series of the system (6) in case 2. 

 

Obviously the parameter 1w  plays a vital role in 

the extinction of zooplankton species causes 

losing the persistence of system (6). 

Now, the effect of varying the intrinsic growth 

rate of the second phytoplankton y , the 

parameter 3w , on the dynamics of system (6) is 

studied. It is observed that,  for case 1, system 

(6) has periodic dynamics in the 2. +RInt  of the 

−xz plane for parameters values given by (65) 

with 94.03 ≤w , while it approaches to periodic 

attractor in the 3. +RInt  for the range of values 

01.195.0 3 ≤≤ w ; finally the system (6)  

approaches  asymptotically to the first 

phytoplankton free equilibrium point in the 
2. +RInt  of −yz plane when 02.13 ≥w , see figure 

6. However, for case 2, the system (6) 

approaches to periodic dynamics in the 2. +RInt  of 

−xz plane for 94.03 ≤w ,  while it has a periodic 

attractor in the 3. +RInt  where  195.0 3 ≤≤ w , 

further the solution of system (6) return to 

approach at the positive equilibrium point in the 
3. +RInt  at the values of 01.13 =w . Finally, it is 

observed that for 02.13 ≥w  system (6) 

approaches asymp-totically to the first 

phytoplankton free equilibrium point in the 
2. +RInt  of −yz plane as shown in figure 7. 
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Figure 6- Time series of the solution of system (6), 

in case 1, for different values of 3w  with other 

parameters as given in (65). (a) Periodic attractor in 

the 2. +RInt  of −xz plane at .9.03 =w  (b) Stable point 

)53.0,15.0,0(=yzE  in the 2. +RInt  of −yz plane at 

05.13 =w . 
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Figure 7- Time series of the solution of system (6), 

in case 2, for different values of 3w  with other 

parameters as given in (65). (a) Periodic attractor in 

the 2. +RInt  of −xz plane at .9.03 =w  (b) stable point 

)52.0,15.0,03.0(=xyzE  in the 3. +RInt . (c) Stable 

point )53.0,17.0,0(=yzE  in the 2. +RInt  of −yz plane 

at 05.13 =w . 

 

According to the figures 6 and 7, it is clear that 

the persistence of system (6) is very sensitive to 

the changing in the intrinsic growth rate of the 

second phytoplankton that represented by the 

parameter 3w  in both the cases and hence it 

represent a bifurcation parameters. Moreover, on 

contrast of case 1, in case 2 the system (6) still 

has two types of attractors in the  3. +RInt  (stable 

point and periodic) as the parameter 3w  passes 

through some critical values. 

  Now before we summarize our obtained 

numerical results for other parameters on the 

dynamical behavior of system (6) in the form of 

tables, we will show the occurrence of Hopf 

bifurcation in both the cases as a function of the 

conversion rate of zooplankton from the first 

phytoplankton that represented by the parameter 

7w .   

It is observed that, for case 1, the system (6) 

approaches asymptotically to the positive 

equilibrium point xyzE  in the 3. +RInt  when 

27.07 <w  keeping other parameters fixed as in 

(65), while it is approaches to a periodic 

dynamic in the 3. +RInt  as the parameter 

27.07 ≥w , see Figure 8. However, for case 2, 

system (6) approaches to the positive 

equilibrium point xyzE  in the 3. +RInt   for the 

values of 49.07 <w  keeping other parameters 

fixed as in (65), while it has a periodic attractor 

in 3. +RInt  as the parameter 49.07 ≥w , see figure 

9. 
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Figure 8- Hopf bifurcation in system (6) as a 

function of 7w  with other parameters fixed as in (65) 

in case 1. (a) Stable point for 24.07 =w . (b) Small 

periodic for 26.07 =w . (c) Periodic attractor for 

28.07 =w . 
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Figure 9- Hopf bifurcation in system (6) as a 

function of 7w  with other parameters fixed as in (65) 

in case 2. (a) Stable point for 46.07 =w . (b) Small 

periodic for 5.07 =w . (c) Periodic attractor for 

52.07 =w . 

According to the figures 8 and 9, it is clear that. 

Although increasing the parameter 7w  has 

destabilizing effects of the dynamics of system 

(6) due to transfer of the dynamical behavior 

from stability at positive equilibrium point in the 
3. +RInt  to periodic dynamic in the 3. +RInt  too this 

means the occurrence of the Hopf bifurcation, 

the system (6) still persists and all the species 

coexist in the 3. +RInt . In the following, we 

summarize our obtained numerical simulation 

results for other parameters in case 1 and case 2 

as shown in table (1) and table (2) respectively.  
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Table 1- Numerical behavior and persistence of system (6) in case 1 as changing in a specific parameter keeping 

other parameters fixed as in Eq. (65) 

 

Parameters varied in 

system (6) 
Numerical behavior of system (6) 

Persistence of 

system (6) 

57.02 ≤w  

96.158.0 2 ≤≤ w  

97.12 ≥w  

Approaches to stable point in 3. +RInt  

Approaches to periodic dynamic in 3. +RInt  

Approaches to stable point in −xy plane 

Persists 

Persists 

 

Not persists 

02.14 ≤w  

14.203.1 4 ≤≤ w  

15.24 ≥w  

Approaches to periodic dynamic in −yz plane 

Approaches to periodic dynamic in 3. +RInt  

Approaches to periodic dynamic in −xz plane 

Not persists 

Persists 

Not Persists 

97.05 ≤w  

98.05 ≥w  
Approaches to periodic dynamic in 3. +RInt  

Approaches to periodic dynamic in −xz plane 

Persists 

 

Not persists 

98.06 ≤w  

05.199.0 6 ≤≤ w  

06.16 ≥w  

Approaches to stable point in −yz plane 

Approaches to periodic dynamic in 3. +RInt  

Approaches to periodic dynamic in −xz plane 

Not persists 

persists 

 

Not persists 

23.08 ≤w  

4.024.0 8 ≤≤ w  

41.08 ≥w  

Approaches to stable point in −xy plane 

Approaches to stable in 3. +RInt  

Approaches to periodic dynamic in 3. +RInt  

Not persists 

persists 

 

persists 

12.09 ≤w  

22.013.0 9 ≤≤ w  

23.09 ≥w  

Approaches to periodic dynamic in 3. +RInt  

Approaches to stable point in 3. +RInt  

Approaches to stable point in −xy plane 

Persists 

Persists 

 

Not persists 

68.010 ≤w  

83.069.0 10 ≤≤ w  

84.010 ≥w  

Approaches to periodic dynamic in 3. +RInt  

Approaches to stable point in 3. +RInt  

Approaches to stable point in −xy plane 

Persists 

Persists 

 

Not persists 

39.011 ≤w  

58.040.0 11 ≤≤ w  

59.011 ≥w  

Approaches to periodic dynamic in 3. +RInt  

Approaches to stable point in 3. +RInt  

Approaches to stable point in −xy plane 

Persists 

Persists 

 

Not persists 

53.212 ≤w  

14.354.2 12 ≤≤ w  

15.312 ≥w  

Approaches to periodic dynamic in 3. +RInt  

Approaches to stable point in 3. +RInt  

Approaches to stable point in −xy plane 

Persists 

Persists 

 

Not persists 

47.113 ≤w  

17.248.1 13 ≤≤ w  

18.213 ≥w  

Approaches to periodic dynamic in 3. +RInt  

Approaches to stable point in 3. +RInt  

Approaches to stable point in −xy plane 

Persists 

Persists 

 

Not persists 
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Table 2- Numerical behavior and persistence of system (6) in case 2 as changing in a specific parameter keeping 

other parameters fixed as in Eq. (65) 

 

Parameters varied in 

system (6) 
Numerical behavior of system (6) 

Persistence of system 

(6) 

65.02 ≤w  

53.166.0 2 ≤≤ w  

70.154.1 2 ≤≤ w  

71.12 ≥w  

Approaches to stable point in 
3. +RInt  

Approaches to periodic dynamic in 
3. +RInt  

Approaches to stable point in 
3. +RInt  

Approaches to stable point in −xy plane 

Persists 

Persists 

 

Persists 

 

Not persists 

01.14 ≤w  

56.202.1 4 ≤≤ w  

57.24 ≥w  

Approaches to periodic dynamic in −yz plane 

Approaches to periodic dynamic in 
3. +RInt  

Approaches to periodic dynamic in −xz plane 

Not persists 

Persists 

 

Not Persists 

98.05 ≤w  

99.05 ≥w  

Approaches to periodic dynamic in 
3. +RInt  

Approaches to periodic dynamic in −xz plane 

Persists 

Not persists 

98.06 ≤w  

06.199.0 6 ≤≤ w  

07.16 ≥w  

Approaches to stable point in −xy plane 

Approaches to periodic dynamic in 
3. +RInt  

Approaches to periodic dynamic in −xz plane 

Not persists 

persists 

 

Not persists 

27.08 ≤w  

47.028.0 8 ≤≤ w  

48.08 ≥w  

Approaches to stable point in −xy plane 

Approaches to stable in 
3. +RInt  

Approaches to periodic dynamic in 
3. +RInt  

Not persists 

persists 

 

persists 

1.09 ≤w  

22.011.0 9 ≤≤ w  

23.09 ≥w  

Approaches to periodic dynamic in 
3. +RInt  

Approaches to stable point in 
3. +RInt  

Approaches to stable point in −xy plane 

Persists 

Persists 

Not persists 

 

27.010 ≤w  

63.028.0 10 ≤≤ w  

64.010 ≥w  

Approaches to periodic dynamic in 
3. +RInt  

Approaches to stable point in 
3. +RInt  

Approaches to stable point in −xy plane 

Persists 

Persists 

 

Not persists 

23.011 ≤w  

44.024.0 11 ≤≤ w  

45.011 ≥w  

Approaches to periodic dynamic in 
3. +RInt  

Approaches to stable point in 
3. +RInt  

Approaches to stable point in −xy plane 

Persists 

Persists 

 

Not persists 

03.012 ≤w  

 

48.004.0 12 ≤≤ w  

49.012 ≥w  

Approaches to stable point in 

−xy plane 

Approaches to stable point in 
3. +RInt  

Approaches to periodic dynamic in 
3. +RInt  

Not persists 

 

Persists 

 

Persists 

57.013 ≤w  

58.013 ≥w  

Approaches to stable point in 
3. +RInt  

Approaches to periodic dynamic in 
3. +RInt  

Persists 

 

Persists 

39.11 ≤a  

16.340.1 1 ≤≤ a  

17.31 ≥a  

Approaches to periodic dynamic in 
3. +RInt  

Approaches to stable point in 
3. +RInt  

Approaches to stable point in 

−xy plane 

Persists 

 

Persists 

 

Not persists 

17.11 ≤d  

22.218.1 1 ≤≤ d  

23.21 ≥d  

 

Approaches to periodic dynamic in 
3. +RInt  

Approaches to stable point in 
3. +RInt  

Approaches to stable point in 

−xy plane 

Persists 

Persists 

 

Not persists 
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9. Conclusions and Discussions 
    In this paper, a mathematical model 

consisting of two harmful phytoplankton 

interacting with a single zooplankton has been 

proposed and analyzed. It is assumed that the 

two phytoplankton producing a toxin substance 

as a defensive strategy against the predation by 

zooplankton. The effect of toxin producing 

plankton on the dynamical behavior of 

phytoplankton-zooplankton is considered. Two 

different scenarios of the distribution of the 

toxin substance, through Holling type-I and 

Holling type-II, are studied. In both the cases, 

the dynamical behavior of system (6) has been 

investigated locally as well as globally. The 

conditions for the system (6) to be persists have 

been derived.  The occurrence of local 

bifurcation as well as Hopf bifurcation in system 

(6) is investigated. Finally the effects of 

changing the parameters on the dynamics of 

system (6) are studied numerically and the 

trajectories of the system are shown in the form 

of figures. According to these figures the 

following conclusions are obtained. 

1. Gradually increasing the parameters 1w , 

9w , 10w , 11w , 12w  and 13w  in both the cases, 

which stand for half saturation constant, natural 

death rate of zooplankton, the liberation rates of 

toxin substance from first and second 

phytoplankton, and the maximum ingestion rates 

of zooplankton to the toxin from the first and 

second phytoplankton respectively, have 

stabilizing effect on the dynamics of system (6) 

and keep the system persist. However, further 

increasing for these parameters causes extinction 

of zooplankton and hence the system (6) losing 

the persistence. Consequently, hopf bifurcation 

may occurs as the above parameters decrease 

passing through a critical value. 

2. Similar results are obtained as those 

stated in the above point, if we increase the 

parameters 1a  and 1d , which stand for the 

maximum zooplankton ingestion rates to the 

toxin produced from the first and second 

phytoplankton, in case 2. 

3. The intrinsic growth rate of the second 

phytoplankton represented by 3w  plays a vital 

role on the coexistence of all the species in 

system (6). However increasing this parameter 

above a critical value causes extinction of the 

first phytoplankton. 

4. The parameters 7w  and 13w  (in case 2), 

which represent the conversion rate of 

zooplankton from the first phytoplankton and 

the half saturation constant of zooplankton to the 

toxin produced from the second phytoplankton, 

have destabilizing effect on the dynamics of 

system (6). In fact as changing these parameters 

the system (6) still persists. They are Hopf 

bifurcation parameters of system (6) too. 

5. Increasing the parameter 2w  that 

represents the preference rate of zooplankton 

causes destabilizing of system (6) in the 3. +RInt  

first. However further increasing to this 

parameter leads to extinction of zooplankton in 

case 1, while the system return to stability at the 

positive equilibrium point first and then goes to 

extinction of zooplankton in case 2. 

6. The parameters 4w  and 6w , which 

represent the intra-specific competition and the 

maximum attack rate of the second 

phytoplankton, represent critical parameters for 

the coexistence of all the species. Indeed 

increasing those parameters slightly leads to 

persistence of system (6). However, further 

increasing for them cause extinction in the 

second phytoplankton. 

7. Keeping the inter-specific competition 

parameter represented by 5w  sufficiently small 

make the system persists. However, increasing 

this parameter more than a critical value causes 

losing the persistence due to extinction of the 

second phytoplankton.  

8. Finally, the parameters 8w  and 
12w  (in 

case 2), which represent the conversion rate of 

zooplankton from the second phytoplankton and 

the half saturation constant of zooplankton to the 

toxin produced from the first phytoplankton, 

play a vital role on the coexistence of all the 

species by keeping the system (6) persists as 

they increase. In fact they have destabilizing 

effect on the dynamics of the system. 

 

References 

1. Falkowski, P.G. 1984. The role of 

phytoplankton photosynthesis in global 

biogeochemical cycles. Photosynth. Res., 

39, pp:235–258. 

2. Truscott, J.E., Brindley, J. 1994. Ocean 

plankton populations as excitable media. 

Bull. Math. Biol., 56, pp:981–998. 

3. Hallegraeff, G.M. 1993. A review of 

harmful algal blooms and the apparent 

global increase. Phycologia, 32, pp:79–99 

4. Graneli, E., et al. 1989. From anoxia to fish 

poisoning: the last ten years of 

phytoplankton blooms in Swedish marine 

waters. In: Cosper, E.M., et al. (Eds.), 



Naji and Aaid                                                  Iraqi Journal of Science, 2013, Vol.54, No.3, pp.676-695 

695 

Novel Phytoplankton Blooms. Springer-

Verlag, pp:407–427. 

5. Shimizu, Y. 1989. Toxicology and 

pharmacology of red tides: an overview. In: 

Red Tides: Biology, Environmental Science 

and Toxicology. Proceedings of the First 

International Symposium on Red Tides. 

Elsevier, pp:17–22. 

6. Yasumoto, T., Murata, M., 1993. Marine 

toxins. Chem. Rev., 93, pp:897–909. 

7. Okaichi, T., Nishio, S. 1976. Identification 

of ammonmia as the toxic principle of red 

tide of Noctiluca miliaris. Bull. Plankton 

Soc. Jpn., 23, pp:25–30. 

8. Chattopadhyay, J., Sarkar, R.R., Mandal, 

S., 2002a. Toxin-producing plankton may 

act as a biological control for planktonic 

bloomsfield study and mathematical 

modeling. Journal of Theor. Biol., 215, 

pp:333–344. 

9. Sarkar, R.R., Pal, S., Chattopadhyay, J. 

2005. Role of two toxin-producing 

plankton and their effect on phytoplankton–

zooplankton system – a mathematical study 

supported by experimental findings. 

BioSystems, 80: pp:11–23. 

10. Smayda, T.J. 1992. Global epidemic of 

noxious phytoplanktonb blooms and food 

chain consequences in large ecosystems. 

11. In: Sherman, K.L., et al. (Eds.), Food 

Chains, Models and Management of Large 

Marine Ecosystem. Westview, pp:257–307.  

12. Burkholder, J.M., Glasgow Jr., H.B. 1995. 

Interactions of a toxic estuarine 

dinoflagellate with microbial predators and 

prey. Arch. Protistenkd., 145, pp:177–188. 

13. Lewitus, A.J., et al. 1995. Discovery of the 

“phantom” dinoflagellate in Chesapeake 

Bay. Estuaries, 18, pp:373–378. 

14. Chattopadhyay, J., Sarkar, R.R., El 

abdllaoui, A. 2002b. A delay differential 

equation model on harmful algal blooms in 

the presence of toxic substances. IMA 

Journal of Math. Appl. Med. Biol., 19, 

pp:137–161.  

15. Chattopadhyay, J., Sarkar, R.R., Pal, S., 

2004. Mathematical modeling of harmful 

algal blooms supported by experimental 

findings. Ecol. Complexity 1, pp:225–235.  

16. Sarkar, R.R., Chattopadhyay, J. 2003. 

Occurrence of planktonic blooms under 

environmental fluctuations and its possible 

control mechanism – mathematical models 

and experimental observations. Journal of 

Theor. Biol., 224, pp:501–516. 

17. Gard, T.C. and T, Hallam G. 1979. 

Persistence in food web. Lotka-Volttera 

food chains, Bull. Math. Biol., 41, pp:877-

891. 

18.  Perko, L. 2000. Differential Equations and 

Dynamical Systems. Third Edition, 

Springer Verlag, Berlin., pp:337- 338. 

19. Liu W.M. 1994. Criterion of Hopf 

Bifurcations without using Eigenvalues. 

Journal of of Mathematical Analysis and 

Application, 182, pp:250-256. 


