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Abstract

In this paper, a mathematical model consisting of the two harmful
phytoplankton interacting with a herbivorous zooplankton is proposed and studied.
The existence of all possible equilibrium points is carried out. The dynamical
behaviors of the model system around biologically feasible equilibrium points are
studied. Suitable Lyapunov functions are used to construct the basins of attractions
of those points. Conditions for which the proposed model persists are established.
The occurrence of local bifurcation and a Hopf bifurcation are investigated. Finally,
to confirm our obtained analytical results and specify the vital parameters, numerical
simulations are used for a hypothetical set of parameter values.
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1. Introduction

Plankton is the basis of the entire aquatic food
chain. Phytoplankton, in particular, occupies the
first trophic level. Plankton performs services
for the Earth: it serves as food for marine life,
gives off oxygen and also absorbs half of the
carbon dioxide from the Earth's atmosphere. The
dynamics of a rapid (or massive) increase or
decrease of plankton populations is an important
subject in marine plankton ecology and
generally termed as a 'bloom'. Harmful algal
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blooms (HABs) have adverse effects on human
health, fishery, tourism, and the environment. In
recent years, considerable scientific attention
has been given to HABs, see for example [1-9].
Toxic substances released by harmful plankton
play an important role in this context. Recent
studies reveal that some times bloom of certain
harmful species may lead to the release of both
toxins and allelopathic substances [10-12].
Allelopathic substances tend to be directly
targeted and may physiologically impair, stun,
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repel, induce avoidance reactions, and kill
grazers. Toxin-producing plankton (TPP) release
toxic chemicals in the water and reduce the
grazing pressure of zooplankton. As a result,
TPP may act as a biological control for the
termination of planktonic blooms see [8,9,13-
15].

Consequently in this paper, we will give
special emphasis to the fact that the occurrence
of toxin producing phytoplankton may not
always be harmful but may help to maintain the
stable equilibrium in trophodynamics through
the coexistence of all the species. A
mathematical model consisting of two harmful
phytoplankton interacting with herbivorous
zooplankton is proposed and studied. Two types
of distributions for the released toxic substance
by toxic / harmful phytoplankton species, which

reduces the growth of zooplankton, are
considered.
2. Mathematical model formulation
Consider  the  simple  phytoplankton-
zooplankton system with Holling type-II
functional response which can be written as:
dPl mPZ
1Pl(l_ )_ 7+P 1)
m Pz
Zg y+h _'uZ

Here P (T) and Z(T) represent the densities of

phytoplankton and zooplankton at time T
respectively. While the parameters r, K, m,

v, my and u are assumed to be positive
parameters and can be described as the
following: r represents the intrinsic growth

rate of phytoplankton; K is the carrying
capacity; m represents the maximum attack rate
of zooplankton to the phytoplankton 7; » is the

half saturation constant; m, represents the
zooplankton conversion rate from
phytoplankton P, ; x is the natural death rate of
zooplankton.

Assume that, the phytoplankton P produces a

toxin, as a defensive strategy against the
predation from zooplankton, which effect
negatively on the growth of the zooplankton.
Therefore, the above system can be reformulated

as:
dP, mPZ
_1 1131( )_ }/+lfi (2)
mPZ
LM 7 -0,/(R)Z

here 6, > 0 represents the liberation rate of toxic
substance by the harmful phytoplankton £;
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While f(B) represents the distribution of toxic

substance which is assumed to be follows either
Holling type-I form (called case 1) or Holling
type-II form (called case 2) that means:

aR
SB)Y=1 an

n+h

for case 1

for case 2

3)

here «>0 and a4, >0 represent the maximum
zooplankton ingestion rates for the toxic
substance produced by phytoplankton P, while

7, >0 1is the half saturation constant of the

zooplankton by the toxic substance.
Now, if we imposed the following additional
assumptions on system (2):
1- There exists another harmful phytoplankton,
denoted by P,(T), within the environment.
2- It is assumed that, the second phytoplankton
P, growth logistically with intrinsic growth rate
r, >0 and carrying capacity L >0, while there
is a competition interaction between P and P,
for light and space with competition rates « >0
and #>0.
3- The second phytoplankton produces a toxic
substance that effects on the zooplankton too
and the distribution of this toxic follows:
dpP,
gR)= { P

72+P

for case 1

“)

for case 2

here d,d, and y, have the same meaning as
those in f(R).

4- The zooplankton consumes the food from
phytoplankton P, and phytoplankton P, as well
as according to Holling type-II.

Therefore, the above two species system (2) can
be extended to three species system and
reformulated as:

dPl mP,Z
=n1h (1 ) oAb, — o,
sz ( ) _ nRZ
=rP(1-—+ )PP, —
272 BRD, 7+B +cP, (5)
daz _ ( mA mP
\7+PI +cP, y+P +cPy

— ML -0, f(P)Z-0,8(P)Z
Clearly, the positive parameters n,n, and ¢ can
be described as follows: »n represents the
maximum attack rate of the zooplankton to the
second phytoplankton P,; »n, represents the
zooplankton conversion rate from phytoplankton
and ¢ the preference rate between A and P,
6, >0

respectively. While the parameter



Naji and Aaid

represents the liberation rate of toxic substance
by the harmful phytoplankton P, .

Note that system (5) has 17 parameters for case
1 and 19 parameters for case 2, which makes the
analysis difficult. Therefore, to reduce the
number of parameters and then simplifying our
system the following dimensionless variables
are used

nk

Therefore, substituting these new variables in
system (5) and then simplifying the resulting
terms. We obtain the following dimensionless

system:
dx _

dr

XZ
w +X+W2y

x(1-x)—xy—

W VzZ

dy _
o = WY(I=wyy) —wsxy — ="

(6)
dz _ WqXZ Wy yz
dt T oW Hx+w,y | ow tx+w,y
—woz—wyo f(X)z = w1 8(¥)z
where:
WX for case 1
f(x)= (7a)
4T for case 2
Wy +x
o W3y for case 1 (7b)
8WV)=3 4
Ay for case 2
w3ty
: _7 9 =n I
Wlth Wl_?’ z_aK’ W3_r1’ W4_aL’
_BK n _m m H
WS_r_l’ We =" » 755 MT ke Wq—;,
6, 0, _ dny
Wio =77 W=7 wyp =ak’, Wiz ="">
Wiy =2, W =<7+ represent the dimensionless

parameters. Clearly, system (6) contains 13
parameters in case 1 and 15 parameters for case
2, which may make the analysis of system (6)
easier. Further, the initial condition for system
(6) may be taken as any point in the region

Ri :{(x,y,z): xZO,yZO,ZZO}.

Obviously, the interaction functions in the right
hand side of system (6) are continuously
differentiable functions on g3 , hence they are

Lipschitizian. Therefore the solution of system
(6) exists and is unique. Further, all the solutions
of system (6) with non-negative initial condition
are uniformly bounded as shown in the
following theorem.

Theorem 1. All the solutions of the system (6),

which initiate in R§r are uniformly bounded.
Proof. Let(x(¢),y(¢),z(¢)) be any solution of the
system (6). Since

) dy
L < x(1-x), - <wiy(l-wyy)
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Thus by solving these differential inequalities
we get x(1)<1,vt >0 and y(¢) SW%,W > 0. Now,

consider the function W(x,y,z)=w,x +3—§ y+z,

then the time derivative of W() along the
solution of the system (6) is:

aw <
T Wl <M

W
where M=w7(1+w9)+rié(w3+w9).

By

comparing the above differential inequality with
the associated linear differential equation, we
obtain:
—wyt
0<W < Mie )

— — Wol
Wy

+Wye

Therefore 0<W Swﬂb, as t—>o. Hence, all the

solutions of system (6) are uniformly bounded,
and then the proof is complete. ]

According to the above theorem system (6) is
dissipative system.

3. Existence of equilibrium points and
stability Analysis

The system (6) have at most seven non-
negative equilibrium points, three of them
namely E, =(0,00), E, =(1,0,0), Eyz(O,W%‘,O)

always exist. While the existence of other
equilibrium points are shown in the following:

The zooplankton free equilibrium point
E,, =(%,5,0), where

5o waln=h) Pt (8)
IT—. Wy — w3
exists uniquely in the Int.R? of xy—plane
provided that:
wy >1 and wy > w; (9a)
Or,
w, <1 and wy <ws (9b)
The second phytoplankton  free

equilibrium point E_ =(x,0,Z) exists in Int.R}
of xz- plane, where
Z=(1-%)(w +X) (10)
while x in case 1, represents the positive root to
the following equation:
bx* +byx+by =0

where

(11)
by=ww, >0,  by=wwy>0 and
by =wy —w; +wwow;,. So by using Descartes
rule of signs, Eq. (11) has either no positive root
and hence there is no equilibrium point or two
positive roots given by:

by . \Jb3 —4b,by

2, — 2p,

X, Xy =

(12a)
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Clearly x; and Xx, are positive provided that

by <0=> Wy + Wywy oWy, < W, (12b)

b3 > 4b,by (12¢)
and then, by substituting x;,i=12 in Eq. (10),
there exist two second phytoplankton free
equilibrium points in the Int.R?> of xz-—plane
namely E, . and E, . , provided that

x; <lfori=12.

(13)
Now for case 2, x represents the positive root to
the following equation:

byx? +bsx+bs =0 (14)
here b, =w;, —wy—aywyy, b =—-wwyw;, <0 and
bs = Wy w, —wywy —WoWy, —a;wywy. SO by using
Descartes rule of signs, Eq. (14) has a positive
root given by:

\[bZ —4b,bg
T (1 53)

provided that the following condition holds

by > 0= wy >wy+a;wy (15b)
Therefore, by substituting x in Eq. (10), system
(6) has a unique second phytoplankton free
equilibrium point in the nt.R? of xz-plane
denoted by E ., provided that

x<1 (16)
The first phytoplankton free equilibrium point
E,.=(0,5,7) exists in IntR} of yz-plane,
where

5 - (wl +w, ¥
W

| S (17)

while ¥ in case 1, represents the positive root to

the following equation:
byy* +bgy+by =0 (18)

here b, =w,w ;w3 >0, by=ww,>0 and
bg = wywg —wg +wyw; w5 . So by using Descartes
rule of signs, Eq. (18) has either no positive root
and hence there is no equilibrium point or two

positive roots given by:

%Jzﬂ—;ﬁfibg%ﬁb"’ (19a)
Clearly y, and y, are positive provided that

by <0 = wywy +wywywy3 < Wy (19b)

b > 4b,b, (19¢)

and then, by substituting y;,i=12 in Eq. (17),
first phytoplankton free
equilibrium points in the Int.R*> of yz—plane

there exist two

namely £, and E, _ ,

provided that

Y < WLA fori=1,2 (20)
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Now for case 2, y represents the positive root
to the following equation:
bipy? +byy+by =0

ey

here by =Wy —wywg —dwowy;
by, =—wwewy3 <0 and
by = wgwis —wiwg —wywowis —dywpwy; . So by

using Descartes rule of signs, Eq. (21) has a
positive root given by:

v blzl _4bl ObIZ

2byg

= _ by
Y = e

(22a)
provided that the following condition holds
(22b)
Therefore, by substituting y in Eq. (17), system
(6) has a unique first phytoplankton free
equilibrium point in the Int.R? of yz-plane

by > 0= wg > wywy +dwyw

given by E, =(0,¥,%), provided that

oyt 1

y< (23)
Wy
Finally the coexistence equilibrium point
E,.=(x",y",z") exists in Int.R}, where

VA By 24)
o= b*[wz‘(W3W4A+(W3W43+W5 )’ )] (25)
We
with 4=t p=_te%_ and
WyW, —Wg W3Wy —We
b =w; +x" +w,y" (26)

While, x* represents the positive root of each of
the following two equations for case 1 and case
2 respectively.

Spx? +8,x+8; =0

01X’ +0,x” +03x+0, =0
where:

Sy =1+ w,B)(wigw, +wy wi3B)

Sy =1+ wyB)(wy + Wy w3 A4)

27
(28)

+ (W +wy A)(Wygwip + Wy i3 B)
- Wy —WgB
Sy = (W + wy A)(wy +wy w3 A) —wy A
O, = Blw; + wgB —(wy + ayw),
+dywy )1+ w,B)]
Oy = wywia B+ (i3 + A)(wy +wgB—wy
—WyWyB) + (W, B + A)(Wg B — w,wy B
—dywywy B) = (W + Wy )(wy +dywy,)B
= (L wy B)(@ywyo w3 + aywy o4
+dyw 4) —aywy B(w; + wy4)



Naji and Aaid

O = wgd” + (W3 + A)(wyWy, + Wi, B
—wywyA) + (W B + Wi3)(wg 4 — wywy)
—weA(w, + wyw,B)—(1+w,B)
(WoWoWi3 + wowip A +dywy Wi A)
— (W + wy A)(aywy w3
+aywg A+ dyw Wi, B +dyw; 4)
04 = (W3 + A)(Wewi, A — wiwowyy
—WywgWip A) — dywy Wi A(wy + wy 4)
Obviously, equation (27) has a unique positive

root say x° provided that one set of the
following sets of conditions hold.
S, >0 and S; <0 (29a)

S, <0 and S;>0 (29b)
while equation (28) has a unique positive root

say x" provided that one set of the following
sets of conditions hold:

Q,>0,Q,>0andQ, <0 ..cuvevveen.n. (30a)
Q,>0,Q;<0andQ, <0 ..evveeeennn.n. (30b)
Q,<0,Q,<0andQ, >0 .....ceeeennnn. (30c)
Q,<0,Q;>0andQ, >0 ...... ....... (30d)

Consequently, E__ exists uniquely in the Int.R?

vz
if and only if in addition to condition (29) in
case 1 and condition (30) in case 2 one set of the
following sets of conditions hold:

Wy < We <min.{w3,w3w4}, or (31a)
a

max. {ws, wywy } < wy < ws

x'<x (31b)

clearly (31a) guarantees that y* >0 while (31b)

guarantees that z* > 0. The other set is:

We < min.{w3,w3w4,w5 }, or (322)
max.{w3, W3Wy, Ws } <Wg
* W3 —W(,
Er— (32b)
< xw >0, or
W3Wy —Wg
Meles ) g s op (32¢)

W3Wy —Wg

* A We(Wywy —ws)
X >X, 617374 ST <0
WyWy —Wg

clearly (32a)-(32b) guarantee that y* >0 while

(32c) guarantees that z*>0. Finally we have
that:

max. {w;, ws | < wg < wywy,or (33a)
Wyw, < Wy < min.{w3,w5}
* We—W:
on (33b)
x"<x (33¢)
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here (33a)-(33b) guarantee that y* >0, however
(33c) guarantees that z* > 0.

In the following, the local dynamical
behavior of the system (6) around each of the
above equilibrium points is investigated. First
the Jacobian matrix of system (6) at each of
these points is determined and then the
eigenvalues for the resulting matrix are
computed, finally the obtained results are
summarized in the following:

The Jacobian matrix of system (6) at the
equilibrium point E, =(0,0,0) can be written as
Jo=J(Ey) =[c;laz3iJ =1,2,3,

¢y =Wy, 33 =—w, and zero otherwise. Then the

where ¢, =1,
eigenvalues of J, are:

Ao =1>0, Ay =w3 >0, 403 =—wy <0
Therefore, the equilibrium point E, is a saddle
point.

The Jacobian matrix of system (6) at the
equilibrium point £, =(1,0,0) can be written as

Jy = J(E) =[dy i, j =123, where

4. - _ -l _
dy=d,=-1, d13_w1+1’ dyy = w3 —ws,
— W i
dyy = T T Wo T Wio f(1) and zero otherwise.

Hence, the eigenvalues of J, are:

Z1:_1<O, 22 =W3_W5,

A= Wvlvll —wy —wyo f (1)

where f(1) is obtained from Eq. (7a) by
Clearly, E
asymptotically stable in the R} if the following

two conditions are satisfied
Wy < Ws

substituting x=1. is locally

X

(34a)
(34b)

% <wy +wyf (1)
However, E_ is a saddle point in the R} if at

least one of the following two conditions are
satisfied:
W3 > WS

(34¢)
w17+1 > wy + wyo f (1) (34d)

Now, the Jacobian matrix of system (6) at the

w:

equilibrium point £, = (O,WLA,O) can be written

as Jy = J(Ey) = [elj ]3x3 :laj = 17253 5 Where
- 1 _ s _ o —w

e —I—E, € = Wi ? €y =—W3, €)3= e
=y L

€33 = S, 9T Mng (w4 ), and  zero

otherwise. The eigenvalues of J, are:



Naji and Aaid

,il:l—wﬁ, Ay =—wy <0

2/3 = Wy Wy +Ww, ) _Wllg(i)
where g(1/w,) is obtained from Eq. (7b) by
substituting y=(l/w,). Hence, E, is locally

W

asymptotically stable in the R} if the following

two conditions are satisfied
wy <1 (35a)
Wlw‘rin <wy + w“g(w%) (35b)

While E, is a saddle point in the R? if at least

one of the following two conditions are satisfied
(35¢)
Wlw‘rin > wy + wllg(w%) (35d)

The Jacobian matrix of system (6) at the
zooplankton free equilibrium point E,, = (%,7,0)

wy >1

in the Int.R} of xy-plane can be written as
Ty =J(Ey) = fy s si j =123, where
fu=ra==%, fis =%, Jar ==wsJ,
“We)
WP

S =-wiwyy, fo3 =—,
= —W9

b
VED =%+ 7 —wiof (X) —w;18(D)
and zero otherwise. Therefore, the eigenvalues
of J,, are given by:

=43P (W3wy —ws )
2

G ) | G
1,2 — 2 -

4 :%JF%_% —wyo f (%) —wy;g()

where f(x) and g(p) are obtain from Eq. (7a)

and (7b) by substituting x=x and y=yp
respectively, while
b=w, +%+w,) (36)

Obviously, E,,

is locally asymptotically stable
in the R} if in addition to condition (9a), which

guarantees the local stability of E,, in the

Int.R? of the xy—plane, the following condition
holds

Wi X

b < Wy + Wlof(fc) + an(j/) (37a)

Here condition (37a) insure the convergent of
solution to E,, from z-direction. On the other

Wy
+i
b

hand, E,, is a saddle point in the R} if at least
one of the conditions (9b) and the following
condition

Wfﬁ JH% > Wy + Wy f(X) + wy ()
hold.

(37b)
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Before we go further to analyze the
dynamical behavior of system (6) in the
neighborhood of the second phytoplankton free
equilibrium point, recall that the system have
either two equilibrium points £, , and E, . or

there is no equilibrium point in case 1.While, it
has a unique equilibrium point £, in case 2.

Since all these equilibrium points, whenever
they exist have the same local stability
conditions which depend on the form of
equilibrium points, therefore we assume here
E. represent any one of them that belongs

to xz — plane.

So, the Jacobian matrix of system (6) at the
second phytoplankton free equilibrium point
E.=(x,0,z) in xz-plane, can be written as
sz = J(Exz) = [gj/ ]3><3;i7j =123, with

g&u = ?_C(_lJF,;iz)a 8= )_C(_IJF%Z)a 813 :% >
€ =Wy~ WX~ gy = Z(Wgzv7 _Wlof'(yf)),
83 = E(7W£?7X +% - anl(o))
and zero otherwise. Where
b=w+X (38a)
S’ =5 f() e
(38Db)

g(0) =4 g(»)],-
While, f(x) and g(y) are given in Eq. (7).
Clearly, the eigenvalues of J . are given by:

As=3hie )

2 —( w

2

+

WeZ

Ay = w3 —wsx —

Consequently, E,, is locally asymptotically
stable in the R’ if the following conditions are
satisfied.

z<b? (39a)

wiws > wioh” f'(%) (39b)

w; < w5x+%6§ (39¢)

Obviously, conditions (39a) and (39b) guarantee
the local stability of E_ in the Int.R? of the

xz—plane while condition (39¢) guarantees the
convergent of the solution to E_, from

Xz

y —direction. However, E_ will be unstable

point in the R? if we reversed any one of the
above conditions.
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Similarly, it is assumed that, £, represent any

one of the first phytoplankton free of the
equilibrium points those may belong to
yz —plane. Hence the Jacobian matrix of system

(6) at the equilibrium point E,, =(0,y,Z) in

vz —plane, can be written as
Jye = J(E,2) =[hy Tsasij = 1,23, where
h11=1_J7—b%» h21=JN’(_W5+VZz )a
hyy = J7(— wiWy + wzng'(,z )9 hyy = ===,
hs = E(%_ M;;zy _Wlof’(o)),

N(”%#—wng'(i)) and zero otherwise, here
f'(0) and g'(y) result from Eq. (38b) for x=0
and y =7, however:

b =w +w,y

(40)
Clearly the eigenvalues of J,, are given by:

~\2 —
wawgE )"y w6l ( wing
i J s (52
2
is locally asymptotically

*an'(;)J

E

Consequently, E,,

stable in the R if the following conditions are

satisfied:
y +% >1 (41a)
5 < —“;jf : (41b)
wywg >wy b >g'() (41c)

Obviously, conditions (41b) and (41c) guarantee
the local stability of E,. in the Int.R} of the
yz—plane while condition (41a) insure the

convergent of the solution to E, from
x — direction. Moreover, E,, is unstable point in
the R} if we reversed any one of the above

conditions.
Finally, the Jacobian matrix of the system (6) at

the positive equilibrium point £, = (x",»",z")

in the Inz. g3 can be written as:

Jge =J(Ey) =lay], 5ij=123  (42a)
Where all :#Dl’ alz :#Dz, 013 = _b): 5

_J _ _—we
as —bTDsa 4 =72 Dy, dyy ==, >
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* *2 ’ *

z (DS_WIOb S(x ))
a3 :—b*z
ay; =0. In addition , we have

« W2,
z (De—wnb g'ly ))
sy =— 5
b

and

D, = " 42", D, = A wyz',
Dy = —wsb*2 +wez",Dy = —w3w4b*2 +wywez",
Ds = wywy +(wywy —wg)y"
Dy = wywg = (wywy — Ws)x*
and b" is given in Eq. (26), while
F1) =4 f ()

g'") =d%,g(y)‘ oy

*
X=X

(42b)

where f(x) and g(y) are given in Eq. (7).
Accordingly the characteristic equation of J,,
can be written as:

P+ A2+ 4,0+ A, =0
here

A =—(ay; +ay)

(43)

Ay = ayay; — a0,y — ax3a3, — ay3a3
Ay = ax(ay a3, — aaz)
—ay3(azas —axpas)
and
A=A A, — A,
=—(ay, +ay)ayay —apay)
+ay (a3 +ayay;)
+az (apay; +a3a;))

So, by substituting the values of «;,and then

ij»
simplifying the resulting terms we obtain:
4 = b‘le(x*Dl +3°D,)

X* *Z* *2 , «
45 :%[(Ds -wyb g'(y ))(_WGDI +D;)

b
+ (Ds - Wlob*zf’(x*)j(W()Dz - D4)}

(44b)
A=—

o
"’

(X*Dl +y'D, XD1D4 - D2D3)

*
X z

* «2 1ok * *
+ R (DS_WIOb S(x )X—x Dy—wgy Dz)

y*z* %2 o ( % %

+ e Dg—wyb g'(y') \=wey Dy—x D3)
(44c¢)

Therefore, in the following theorem, the local

stability conditions for the positive equilibrium

point E, . in the Int.R} are established.

'z
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Theorem 2. Assume that FE exists in the

xyz

Int.R? and the following conditions are
satisfied;
*2 ). #4 W3W, *
2" <min(b*2,b—,&b 2 vy, 2) (452)
wy 7 W Wy We
Dy > wiof'(x")b" (45b)
% <wg < %‘2‘ (45¢)
IV «2
Dy > w18 (y )b (45d)

Then it is locally asymptotically stable.

Proof. According to the Routh-Hawirtiz
criterion the characteristic equation (43) has
roots with negative real parts if and only if
4,>0, 435>0 and A>0.

Note that, it is easy to verify that, condition
(45a) guarantees that D, <0,Vi=1234 and

hence 4, >0; while conditions (45a)- (45d)
ensure the positivity of A4, (i.e. 4;>0) and

A>0. Hence, all the roots (eigenvalues) of the
J,. have negative real parts. Therefore E,, is

locally asymptotically stable in the Inz.R’ and

hence the 1S

proof complete.

Now, before go further to study the global
dynamical behavior of system (6) in the Int.R},

we will discuss the dynamical behavior of
system (6) in the interior of the boundary planes
as shown in the following theorems.

Theorem 3. Suppose that the zooplankton free
equilibrium point E,, is locally asymptotically

stable in the Int.R? of the xy —plane, then it is a

globally asymptotically stable in nt.R? of the
xy — plane.
Proof. The proof follows directly by using
Bendixson-Dulic criterion with Dulic function
1/xy and then wusing Poincare-Bendixson
theorem.

[
Theorem 4. System (6) has no periodic
dynamics in the Int.R? of xz— and yz— planes

provided that

z<(w +x)? (46a)

7 <Y (w4 wyp)? (46b)
W2 We
respectively.

Proof. The proof follows directly by using
Bendixson-Dulic criterion with Dulic functions
1/xz and 1/yz respectively. ]
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Keeping the above in view, Since all the
solutions of the system (6) are bounded and E,,

and E, (for case 2) are the unique positive

equilibrium points in Int.R? of the xz— and
yz— planes respectively, hence by using the
Poincare-Bendixson theorem E,, and E, are

globally asymptotically stable in the nt.R? of
xz—plane and yz— plane respectively.

4. Global stability of the system
In this section the global stability of the

equilibrium points £,, E,, E,,, E,., E, and
E

xyz
following theorems.
Theorem 5. Assume that the equilibrium point

E. is locally asymptotically stable in R}, and
let the following condition holds:

in R} are investigated as shown in the

> W7

m

(47
Then the basin of attraction of E, can be written
as  B(E)={x»2eR x>0Q, 0,230}

. _ W3W8+W6W7
with Q, .

Wo

Proof. Consider the following positive definite
function:

Vl(x,y,z):cl(x—l—lnx)+czy+c3z
Clearly ¥, :R? > R, and is a C' positive definite
function, where c¢,,(i=12,3) are nonnegative
constants to be determined. Now, since the
derivative of ¥, along the trajectory of system

(6) can be written as:

av,

<~ (x —1)2 - [(cl +cows )x

- (c2w3 T )])’

C

bl )_%(02“’6 - C3W8)

_ Xz

b (Cl - C3W7)

- z(c3 Wy —
Here

(43)
So, by choosing the nonnegative constants as

b=w +x+w,y

c=wy,0 =Z—: and ¢, =1 gives:
Wy (x _ 1)2 _ l(W6W7+W5W8 )X

o -2)

Therefore, for any initial point in the interior

av
dr

_ (W3 Wg +We Wy
We
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of BE,), G-

hence ¥, is strictly Lyapunov function. Thus,
E. is globally asymptotically stable in the
B(E,) and then B(E,) is the basin of attraction

of E,.

<0 under condition (47) and

Theorem 6. Assume that the equilibrium point
E, is locally asymptotically stable in R?, and

let the following condition holds:

Wg

(49)

Then the basin of attraction of E, can be

>
Wy = WWy

written as B(E,)= {(x, V,z) € Rf x>0,

y>Q,,z> 0} with Q, = s T

wy(wswg +wgw; ) °
Proof. Follows similarly as the proof of theorem
(5) with using the candidate Lyapunov function

Vz(x,y,z)=c1x+c2(y—§—)71n%)+ cz m

Theorem 7. Assume that the zooplankton free
equilibrium point E,, is locally asymptotically

stable in  R?, and let the following conditions
hold:
by 22 f

W X+Wg P
M

Wi Wy Wo W,
< 4 H3WalWr Wy
We

(50a)

(50Db)
Then E,, is globally asymptotically stable in the

Wy =

R?.
Proof. Follows directly by using the candidate
Lyapunov function

V3(x,y,z)=cl(x—fc—fcln;i‘)

[
+ cz(y -y- j/ln%)+ Gz

Now, since system (6) in case 1, may have
either two equilibrium points or no equilibrium
points in the nt.R} of the xz— and yz— planes

respectively. Therefore, in the following two
theorems we will study the global dynamics of
system (6) in these planes for case 2 only.
Theorem 8. Assume that the second
phytoplankton free equilibrium point £ is
locally asymptotically stable in R}. Then the
basin of attraction of £, is given by:

B(E,,)= {(x,y,z) S Ri x>x,y20,z> E}
provided that:

Ny
A

(51a)
(51b)

=
o>

N
IA
= |3
[ IS
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Wy

b

a4 WipWiy
(Wip +1)(Wp, +X)

(51c)
(51d)

Wy WyWs X dywywy; > W

(Wwy+wy+wy))b — wawz+l oW

Proof. Follows directly by using the candidate
Lyapunov function

Vi) =i T -FInz)

+czy+c3(z—E—Eln§)

Theorem 9. Assume that the first phytoplankton
free  equilibrium point E, is locally
asymptotically stable in R?. Then the basin of

attraction of £, is given by:
B(E,,)= {(x,y,z) €R :x20,y>7,z> E}
Provided that:

Wiw3wb

7 < M (52a)

~ sb

Pt (52b)

Mg i wawi Wi

S ATy e (52¢)
Wy WgV QWi 5 W7 (52d)

(Wwy+wy+wy)b Wi+l T oWy

Proof. Follows directly by using the candidate
Lyapunov function

Vs(x,y,2) = clx-i-cz(y—f/ —;ln%)

[
royz-7-Zm2)

Theorem 10. Assume that the coexistence

equilibrium point E,, is locally asymptotically

stable in /nt.R}. Then the basin of attraction of

E,, 1is given by:

B(E,,)= {(x,y,z) x>xN,y>yhz> z*}
Provided that:

z" < min{wlb*,wv‘v—lj,%,%} (53a)
wiwy +(wyw; —wy > wiwyo f'(x")b" (53b)
wiwg = (wywy —wg)x > ww;g'(y*)b” (53¢)

K),’ <4K, K, (53d)

where:

* o
ko= +(wpwy —wg)y — wiwioWigh
1= I

=)

. o “
wiwg + (Wywy = wg)y = wywyowpb WyzZ

K = * 1- *
b wb

wez"
Wy ———
][ ’ Wlb*]

“ N
o] s (Woywy —wg)x —wywy wi3b

web
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[ wpwg = (wywy —w)x = wwwsb” | o wez"
Kn= 0 WiWs = 0
Wb’ wb’

Proof. Follows directly by using the candidate
Lyapunov function

Ve(x,y,2) = cl(x—x* -x" ln%)
+C{y—y*—fhr%) n
y
+c5 (Z—Z* -z ln%)

5. Persistence Analysis

In this section, the persistence of system (6)
is studied. It is well known that the system is
said to be persistence if and only if each species

persists. Mathematically this is meaning that the
solution of system (6) do not have omega limit

set in the boundaries of R} [16]. Therefore, in

the following theorem, the necessary and
sufficient conditions for the uniform persistence
of the system (6) are derived.

Theorem 11. Assume that there are no periodic
dynamics in the boundary planes xy,xz and yz

respectively. Further, if in addition to conditions
(34c), (34d), (35¢), (35d), (37b) the following
conditions are hold.

(54a)

(54b)
Then, system (6) is uniformly persistence.
Proof. Consider the following function
PazPs - where p;;i=1,2,3 are an
Obviously
o(x,y,z) is a C' positive function defined in

— |, weZ
Wy > WsX +T

T 4+Z

y+5<l
O-(xﬂyﬂz) = xply
undetermined positive constants.

R?, and o(x,y,z)>0 if x—0 or y—>0 or
z — 0. Consequently we obtain

W(x,y,2)= C;((jyyzz)) =pih+pafatpifs
Here f;i=123 are given in system (6).
Therefore

\Il(xaysz):pl(l_x_y_

. )
wy+x+w,y

WeZ
+ D (W3(l —W4Y) — WsX— I +x6+w2y)
{ Wy X

Wgy
tPs \wy +x+w,y

Wy +x+w,y 9

— W/ (X) = w1 2(»))

Now, since it is assumed that there are no
periodic attractors in the boundary planes, then
the only possible omega limit sets of the system
(6) are the equilibrium points
Ey.EE,E, E and E .. Thus according to the

Gard technique [16] the proof is follows and the
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system is uniformly persists if we can proof that
¥(.)>0 at each of these points. Since

W(Ey) =p+wspy —Wop3 (55a)
W(E,) = (w3 —ws)p, (55b)
+ (W?:l Wy — Wlof(l))l?3
\IJ(EJ’) = (1 _w_t)pl + (wlwzxi—wz B 55
650
~Wng\,, Ps
WU%):@§+K%—M@ (55d)

—wf (%) - Wllg(j’))pS
Y(E,)= (W3 - wsX —%E)Pz
(55¢)
W(E) = -5 -2
(559

where f(1), g(i/w,), f(3), (), b, b and b
are given in previous sections. Obviously,
Y(E,) >0 for all values of p,;i=12 sufficiently
large than p; >0.¥(E,)>0 for any positive
constants p;;i=2,3 provided that conditions
(34¢) and (34d) hold. ¥(E,)>0 for any positive

constants p;;i=1,3 if and only if conditions
(35¢) and (35d) are satisfied. However, ¥(E,,),
W(E,,) and ¥(E,,) are positive provided that

the conditions (37b), (54a) and (54b) are
satisfied respectively. Then strictly positive
solution of system (6) do not have omega limit
set and hence, system (6) is uniformly
persistence. ]

6. The local Bifurcation

In this section an investigation for the
dynamical behavior of system (6) under the
effect of varying one parameter of each time is
carried out. The occurrence of local bifurcation
in the neighborhood of the above equilibrium
points are studied in the following theorems.

Theorem 12. Assume that condition (34b) holds
and the parameter w; passes through the value
w; =ws, then system (6) near the equilibrium
E. has:

1. No saddle-node bifurcation.

2. A transcritical bifurcation but no pitch-
fork bifurcation can occur provided that
the following condition holds:
wy #1

(56)
Otherwise there is no bifurcation.
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Proof. According to the Jacobian matrix of
system (6) at E_ that is given by J_, it is easy
to verify that as w; =w;, the J (E,,w;) has the
following eigenvalues:

Ai=-1, 4, =0 and A3 == —wy —wyo /(1)
where f(1) is obtain from Eq. (7a). Let
v =(6,,0,,0,)" be the eigenvector of J (E,,w;)

corresponding to the eigenvalue 4, =0. Then it

Wy
wy +1

AT _
is easy to check that v = ["2121‘92 ,0, ,0} , where 6,
represents any nonzero real value. Also, let

w=(h,hy, ;)" represents the eigenvector of
J " (E,,w;) that corresponding to the eigenvalue
A, =0. Straightforward calculation shows that
W:(O,EZ,O)T , where }72 is any nonzero real
number. Now since

U= F, (X, w3) =[0, y(1-w,3),0]"

=
where X =(x,y,z)" and F=(F,F,,F)" with
F;;i=123 represent the right hand side of
system (6). Then we get that
E, (B¢ ,w3) = (0,0,0)" and then the following is
obtained:
W [F,, (E..5)] = (0,4,,0)(0,0,0)" =0

Thus the system (6) at £, does not experience

any saddle-node bifurcation
Sotomayor theorem [17].
Also, since

in view of

W' [DF, (E,,Ww;)v]=
(0, 4,,0)(0,8,,0)" = h,0, %0

here DF, (E,,w;)==%F, (X,w,)|

X=E  wy=wy
Moreover, we have
W [D*F(E,,wy)(V,7)] = 2ws(1—w, ), 0, %0

where D*F(E,,w;) = DJ (X, w;)

X=E  wy=w;
Clearly, w'[D*F(E,,w;)(¥,v)]#0 provided that
condition (56) holds, and then by using
Sotomayor theorem again system (6) possesses a
transcritical bifurcation but not pitch-fork
bifurcation near £, where w; =w,;. However,

violate condition (56) gives that
W/ [D*F(E,,w;)(7,v)]=0, and hence further
computation shows

W D F(E,,wy)(¥,7,7)]=0
Therefore according to Sotomayor theorem,
there is no bifurcation. ]
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Theorem 13. Assume that condition (35a) holds
and the parameter w, passes through the value

wg = (Wg +w11g(w%) wowy +w,)  where g(w%) is

obtain fron Eq. (7b), then system (6) near the
equilibrium £, has :

1. No saddle-node bifurcation.

2. A transcritical bifurcation but nopitch-fork
bifurcation can occur provided that the
following condition holds:

2 1
Wiy lW9 Wi g (‘74 )J
(wwy+wy)

swelt) 67

where:
9%)

3. A pitch-fork bifurcation otherwise.
Proof. According to the Jacobian matrix of

system (6) at £, that is given by J, it is easy

W3 forcasel

2_
d,wiw
13 forcase?

(w3 +1)

to verify that as wg = wy, the J,(E,,wg) has the

following eigenvalues:
1

>

Wy

Ay =1- Ay =-wy; <0 and ;=0

Let
J,(E,,wg) corresponding to

A;=0.  Then

— —G,30.
V:|:O, &23 3

22

v=(6,,0,,6;,)7 be the eigenvector of
the eigenvalue

it is easy to check that

— T —~
,(93} , where 6@, represents any

nonzero real value. Also, let w=(fy,hy,hy)"
represents the eigenvector of JyT (E,,ws) that
calculation that
fvz(O,O,h})T , where ﬁ3 is any nonzero real

corresponding  to eigenvalue

Straightforward shows

number.
Now, since g—fs = F, (X, wg) =[0,0,
48),  X=(xy2"
F:(FI,FZ,F3)T with F;;i=123 represent the
right hand side of system (6). Then we get
F, (E,,w)=(0,0,0)" from which we get

W [F, (E,,wg)]=(0,0,75)(0,0,0)" =0.

Thus the system (6) at E, does not experience

21", where b

is given in and

any saddle-node bifurcation in view of
Sotomayor theorem [17]. Also, since:
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- T
~ ~ N~ - 17
W [DF,, (E )91 = (0.0, A 00,2 |

9-31;3
T owwy+w,
) = 0
here Dng (Eyaw8) X ng (X’W8)|X=Ey,w8=17v8 .
Moreover, we have
-
web3 hy

w! [D*F(E,, wg)(v,v)] = —

2
(w1w4 [w9 ‘*'Wllg(H4 )]

(wywy+wy)ws

ng'(wﬁ)j

D*F(E,,wg)=DJ (X, wy)

(Wwy+wy)

where .
X=E, ,wg=wg

w! [D*F(E,,wg)(¥,9)]#0 provided that

condition (57) holds, and then by Sotomayor
theorem, the system (6) possesses a transcritical
bifurcation but not pitch-fork bifurcation near
E, where wy =wg. However, violate condition

Clearly,

(57) gives that WT[DZF(Ey,szg)(ﬁ,G)]:O, and

hence further computation shows

((W Wy +W, )Wy )293 h3

W w2w43 [W() +W118(ﬁ)] n_1
N + wng W,
(Wywy+wy) ¢

0 forcasel
g”(t)—

W [D’F(E,,wg)(v,v,)] =—

where:

M forcase2
(W4‘V13+1)

Therefore system (6) possesses a pitch-fork
bifurcation near E, where wy = w. ]

Theorem 14. Assume that condition (9a) holds
and the parameter w, passes through the value

Wsy

iy = 2oy + w0/ (D) wiyg()— ) where /(3)
and g(p) are obtain from Egs. (7a-7b), then
system (6) near the equilibrium E,, has:

1.No saddle-node bifurcation.

2.A transcritical bifurcation but no pitch-fork
bifurcation can occur provided that at least
one of the following conditions hold:

3.

é(Wt) +Wof (%) +w;,2(0) —%ﬁ}“’l +W,3)
# Wb+ wiof ’()AC)/;Z
Wy (W +X) # wy (W9 S (%) +wy8(7)
—%)ﬁ + g ()b
.. (58)
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W forcasel
where: f'(x
S =) _amy A2 forcase2
(W +5)
W3 forcasel
g,()AC) = d1w13
—— forcase2

(W3

4. A pitch-fork bifurcation provided that:
%(w9 +wiof (X)+w8(0) - W*y}wl +w,))
=wgy+wyf' (x)b2
Wy +3) = ws (wy +wio /(2) +win ()

*%jﬁ + Wllg'(JA/)Z;2

(59a)

. 2 e e

v () () o)
2
+9, (%j =0
where:

=2 oy 0/ )+ 18— i |

+wyf" (x)b
Y, = (w,+w10f(x)+w”g(y)——}w, X+wyp)

+wg(w; + £ - w,9)
4 = 2+ Dy = by w10 )+ )~

+wipg" ()5’

0 forcasel 0 forcasel
S0 =1 2, forcase2 © 8) = 2y forcase2

(i)’ s+
Proof. Follows directly by applying Sotomayor
theorem as shown in proof of theorem (13). m

Theorem 15. Assume that conditions (39a) and
(39b) hold and the parameter w; passes through

the value w; =w5)_c+%6z, where b is given in
(38a), then system (6) near the equilibrium £,

has:
1. No saddle-node bifurcation.
2. A transcritical bifurcation but no pitch-
fork bifurcation can occur provided that
one of the following condition holds:

M, :%(—Ws + W)

, (60)
+ Wy (ws)_c + %)— we %0
A pitch-fork bifurcation provided that
M, = (61a)
M, =(%IW(,E(%)— ZWZW(,E—W()(%—H)] (61b)

+w22w62+w2w6 Lt -I,|#0
here

T, = wywg + (wg — wywy )X —wy, g'(0)b 2
- Wlof'(?_c)[;2

I =ww;
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Where 7'(x) and g'(0) are given in (38b)
Proof. Follows directly by applying Sotomayor
theorem as shown in proof of theorem (13). =

Theorem 16. Assume that conditions (41b) and
(41c) hold and the parameter w; passes through

, then system (6) near the

the value 7 =220

Y
equilibrium £, has:

1. No saddle-node bifurcation.

2. A transcritical bifurcation but no pitch-
fork bifurcation can occur provided that
one of the following condition holds:

K, =%2(17;)[w6 —wywy |+ ws —wg 0. (62)
oWy —0,

3. A pitch-fork bifurcation provided that
4.

K, =0 (63a)
o~ |-o'3(o' wy—0,) (17})) (—w b2+, Z)
Ko=2tws ooy~ W
owy—o, (1-3) [W 22(0'1%70'2(17}7)) (63b)
oW—0y 2 o Wg—0,

—w (M
W(01Ws=0y)

—2WZE]¢O
here:
o =wy(y-1)+z

~ ™2
0y = (Wg = wyw;)y +wy f1(0)b
o3 = —w3w4l72 + WyWweZ

04 = (1 _;)an'(;)gz

with f'(0) and g'(¥) are obtain from Eq. (38b).
Proof. Follows directly by applying Sotomayor

theorem as shown in proof of theorem (13). =
7. Hopf bifurcation
Finally, in order to investigate the Hopf

bifurcation of the model system (6), we will
follow the Liu approach [18] as shown in the
following theorem.

Theorem 17. Assume that the coexistence
equilibrium point of system (6) exists and let in
addition to conditions (45a)-(45c¢), the following
conditions hold:

*
WHWyX

(64a)

wg >
8 wx"

$2 .
(Ds —wpb f(x ))[(WéDZ —-Dy)
: (_Wa)’*D4 - X*D3) _;_:(_X*Dl - W())’*Dz)
-(~WeDy + D3) > 2= (=x"Dy - y'Dy)

“(DyDy — D, D3)(—we Dy + D5)
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Then a simple Hopf bifurcation of the model
system (6) occurs at

3
b

¥ (~wsy Dy =x"D3)g'(v")

—_ *_
Wi Ewn =

[_

+

xb*y@ (x*D1 + J’*D4)(D1D4 —-D,D;)

* *2 , %
);*zs (Ds —web f(x ))
'(—X*Dl - W())’*Dz)

+

yb*zs Dy (_X*D3 - Wéy*D4):|

where D,,i=1273,456 and f'(x')are given in
Egs. (42a) and (42b) respectively.

Proof. According to the Liu approach a simple
Hopf bifurcation occurs if and only if

Al(,u*) > O, AS(IU*) > O, A(,U*) =0and Z_ﬁ/j:# #0w

here u, is a critical value of the key parameter
and 4; fori=13and A are given in equations
(44a), (44b) and (44c). Note that it is clear that
Dg >0 under the condition (64a) and hence w;,"
is positive under the conditions (45a)-(45¢).
Now, by substituting the value of w;,” in these
equations we obtain:
AI(WII*) = ;T%(X*Dl + )’*D4)

which is positive due to condition (45a);

e
b (~wey Dy—x"D3)

(x"Dy +y D) (DyDy — D, Dy)

45 (Wll*) =

’ [hfz*
%2 y, %

“(=we Dy +D3)+(D5 —wpb f(x ))

) [(W6D2 —Dy)(~wey Dy —x Dy)

_i_:(—x*Dl —wey Dy)(—weD, +D3)]]

Clearly, 4;(w,,")>0 under the conditions (45a),

(45b), (45c) and (64b). Now rewrite equation
(44c) gives that

A=- )‘b:{ (x*Dy +y*D, D,D, - D,D,)
. 2w . .
+ );Zs (Ds —wpb f(x )X—x Dy —wgy Dz)

+

ybzs Dy (_ Wﬁy*D4 - X*D3)

N AO)
1 3
b

(— w6y*D4 - x*D3)
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where ¢(y") is given in Eq.(42b). Hence it easy
to verify that A(w;,")=0. Finally, since

_y'2g'0D
b*’

dA
dwyy

(= wey" Dy =x"D3) # 0

W11:W11*
Thus, a simple Hopf bifurcation occurs in

system (6) at wy, = wy;". [
8. Numerical Analysis

In this section the global dynamics of
system (6), for case 1 and case 2, is studied
numerically. In both the cases, system (6) is
solved numerically for different sets of
parameters and different sets of initial
conditions, and then the attracting sets and their
time series are drown.
For the following set of parameters

w; =0.5,w, =0.75,w; =L w, =1.1,

ws =0.75,wg =L w,; =0.5,w3 =0.5,

wy =0.1,wy =0.2,w;; =0.2,w, =0.75,
w3 =0.75,w, =0.7,w;3 =0.7,

a; =1,d, =1

(65)

The attracting sets along with their time series of
system (6) are drown in figure 1 and figure 2,
starting from different sets of initial conditions,
for case 1 and case 2 respectively. Note that
from now onward, in time series figures, we will
use solid line type forx, dash line type for y

and dot line type for z .
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Figure 1- The phase plot of system (6) in case 1. (a)
The solution of system (6) approaches asymptotically
to stable limit cycle initiated at different initial
points. (b) Time series of the attractor in (a) initiated
at (0.85, 0.75, 0.65). (c¢) Time series of the attractor
in (a) initiated at (0.65, 0.55, 0.45). (d) Time series of
the attractor in (a) initiated at (0.45, 0.35, 0.25).
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Figure 2- The phase plot of system (6) in case 2. (a)
The solution of system (6) approaches asymptotically
to stable limit cycle initiated at different initial
points. (b) Time series of the attractor in (a) initiated
at (0.85, 0.75, 0.65). (c) Time series of the attractor
in (a) initiated at (0.65, 0.55, 0.45). (d) Time series of
the attractor in (a) initiated at (0.45, 0.35, 0.25).

Obviously, these figures show that, system (6)
approaches to the globally asymp-totically stable

limit cycle in the Int.R? starting from different

sets of initial conditions. However, for the set of
parameters values (65) with w, =0.6, system (6)

approaches asymptotically
equilibrium point E,, in the Int.R} starting

to  coexistence

from different sets of initial conditions, see
figure 3 and figure 4 for case 1 and case 2
respectively.
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Figure 3- The phase plot of system (6) in case 1. (a)
The solution of system (6) approaches asymptotically
to stable positive point initiated at different initial
points. (b) Time series of the attractor in (a) initiated
at (0.85, 0.75, 0.65). (c¢) Time series of the attractor
in (a) initiated at (0.65, 0.55, 0.45). (d) Time series of
the attractor in (a) initiated at (0.45, 0.35, 0.25).
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Figure 4- The phase plot of system (6) in case 2. (a)
The solution of system (6) approaches asymptotically
to stable positive point initiated at different initial
points. (b) Time series of the attractor in (a) initiated
at (0.85, 0.75, 0.65). (c) Time series of the attractor
in (a) initiated at (0.65, 0.55, 0.45). (d) Time series of
the attractor in (a) initiated at (0.45, 0.35, 0.25).

Further analysis for the role of changing the half
saturation constant w, on the dynamics of

system (6) is performed, and the following
results are obtained: In case 1, system (6) has a

periodic dynamic in the Int.R} for w, <0.54

with the rest of parameters as given in Eq. (65),
while for 0.55<w, <1.18 the system (6) has a

globally asymptotically stable positive point in
the Int.R}. Finally, it approaches asymptotically
to  zooplankton free equilibrium point
E,, =(0.28,0.71,0) in the IntR} of xy— plane
when w; >1.19 as shown in figure 5a. However,
in case 2, the system (6) has a periodic dynamic
in the Int.R} when w, <0.5, while the system
(6) has a globally asymptotically stable positive
point in the nt.R? for 0.51<w, <1.10 and finally

the system approaches asymptotically to
zooplankton free equilibrium point

E,, =(0.28,0.71,0) in the Int.R} of xy— plane for

w; >1.11as shown in figure 5b.
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Figure 5- The trajectéry of system (6) appréaches
asymptotically to zooplankton free equilibrium point
E,, =(0.28,0.71,0) in the Int.Rf of xy— plane for

w; =1.25 with other parameters as in (65). (a) The

time series of the system (6) in case 1. (b) The time
series of the system (6) in case 2.
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Obviously the parameter w, plays a vital role in
the extinction of zooplankton species causes
losing the persistence of system (6).

Now, the effect of varying the intrinsic growth
rate of the second phytoplankton y, the
parameter w;, on the dynamics of system (6) is
studied. It is observed that, for case 1, system
(6) has periodic dynamics in the Int.R? of the
xz — plane for parameters values given by (65)
with wy <0.94, while it approaches to periodic
attractor in the Int.R} for the range of values
0.95<w; <1.01; the system (6)
approaches asymptotically to the first
phytoplankton free equilibrium point in the
Int.R* of yz—plane when w, >1.02, see figure
6. However, for case 2, the system (6)
approaches to periodic dynamics in the nz.R? of

finally

xz — plane for wy; <0.94, while it has a periodic

attractor in the Int.R; where 095<w, <1,
further the solution of system (6) return to
approach at the positive equilibrium point in the
Int.R? at the values of w, =1.01. Finally, it is
observed that wy;>1.02  system (6)
approaches asymp-totically to the first
phytoplankton free equilibrium point in the
mnt.R? of yz—plane as shown in figure 7.
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Figure 6- Time series\g)f the solution of syste;h (6),
in case 1, for different values of w; with other
parameters as given in (65). (a) Periodic attractor in
the Int.Rf of xz—plane at wy; =0.9. (b) Stable point
E,.=(0,0.150.53) in the Int.R} of yz—plane at
wy =1.05.
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Figure 7- Time series of the soluti‘;)n of system (6),
in case 2, for different values of wj with other
parameters as given in (65). (a) Periodic attractor in
the Int.Rf of xz —plane at w; =0.9. (b) stable point

E,.=(0.030.150.52) in the IntR}. (c) Stable
=(0,0.17,0.53) in the Int.R* of yz —plane
atw; =1.05.

point £

According to the figures 6 and 7, it is clear that
the persistence of system (6) is very sensitive to
the changing in the intrinsic growth rate of the
second phytoplankton that represented by the
parameter w; in both the cases and hence it
represent a bifurcation parameters. Moreover, on
contrast of case 1, in case 2 the system (6) still
has two types of attractors in the Int.R} (stable
point and periodic) as the parameter w; passes
through some critical values.

Now before we summarize our obtained
numerical results for other parameters on the
dynamical behavior of system (6) in the form of
tables, we will show the occurrence of Hopf
bifurcation in both the cases as a function of the
conversion rate of zooplankton from the first
phytoplankton that represented by the parameter
wy.

It is observed that, for case 1, the system (6)
approaches asymptotically to the positive
equilibrium point E,,. in the Int.R}

w, <0.27 keeping other parameters fixed as in
(65), while it is approaches to a periodic
Int.R}
see Figure 8. However, for case 2,
approaches to the
in the Int.R?

when

dynamic in the
w, 20.27,
system  (6)

equilibrium point E,,

as the parameter
positive
for the
values of w; <0.49 keeping other parameters
fixed as in (65), while it has a periodic attractor
in Int.R} as the parameter w, >0.49, see figure
9.
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Figure 8- Hopf blfurcatlon in system (6) as
function of w, with other parameters fixed as in (65)

in case 1. (a) Stable point for w; =0.24 . (b) Small
periodic for w; =0.26. (c) Periodic attractor for
wy; =0.28.
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Figure 9- Hopf blﬁlrcatlon in system (6) as a
function of w; with other parameters fixed as in (65)

in case 2. (a) Stable point for w; =0.46. (b) Small
periodic for w; =0.5.
w, =0.52.

According to the figures 8 and 9, it is clear that.
Although increasing the parameter w, has

destabilizing effects of the dynamics of system
(6) due to transfer of the dynamical behavior
from stability at positive equilibrium point in the
Int.R? to periodic dynamic in the Int.R? too this
means the occurrence of the Hopf bifurcation,
the system (6) still persists and all the species

(c) Periodic attractor for

coexist in the IntR}. In the following, we

summarize our obtained numerical simulation
results for other parameters in case 1 and case 2
as shown in table (1) and table (2) respectively.
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Table 1- Numerical behavior and persistence of system (6) in case 1 as changing in a specific parameter keeping

Iraqi Journal of Science, 2013, Vol.54, No.3, pp.676-695

other parameters fixed as in Eq. (65)

Parameters varied in

Numerical behavior of system (6)

Persistence of

system (6) system (6)
w; 0.57 Approaches to stable point in Int.R? Persists
0.58<w, <1.96 Approaches to periodic dynamic in Int.R} Persists

wy 21.97 Approaches to stable point in xy —plane Not persists

wy £1.02 Approaches to periodic dynamic in yz — plane Not persists
1.03<w, <2.14 odi i 3 Persists

S| e nids o 1|
ws < 0.97 Approaches to periodic dynamic in Int.R? Persists

ws = 0.98 Approaches to periodic dynamic in xz — plane Not persists

we <0.98 Approaches to stable point in yz — plane Not persists
0.99 <wg <1.05 Approaches to periodic dynamic in Int.R? persists

wg 2 1.06 Approaches to periodic dynamic in xz — plane Not persists

wg £0.23 Approaches to stable point in xy —plane Not persists
0.24<wg <04 Approaches to stable in Int.R} persists
wg 20.41 Approaches to periodic dynamic in Int.Ri persists
wy <0.12 Approaches to periodic dynamic in Int.Ri Pers@sts
0.13<wy <0.22 Approaches to stable point in Int.R? Persists

wy =0.23 Approaches to stable point in xy —plane Not persists
wyp <0.68 Approaches to periodic dynamic in Int.Ri P ers@sts
0.69 < wyg <0.83 Approaches to stable point in nt.R? Persists

wig 2 0.84 Approaches to stable point in xy —plane Not persists
wy <0.39 Approaches to periodic dynamic in Int.Ri p ers@sts
0.40 < w;, <058 Approaches to stable point in Int.R? Persists

wiy 20.59 Approaches to stable point in xy —plane Not persists
wyp £2.53 Approaches to periodic dynamic in Int.Ri Pers@sts
254w <3.14 Approaches to stable point in /nt.R; Persists

wip 23.15 Approaches to stable point in xy —plane Not persists
w3 <1.47 Approaches to periodic dynamic in Int.Ri P ers@sts
148 < w3 <2.17 Approaches to stable point in Int.R? Persists

wi3 2 2.18 Approaches to stable point in xy —plane Not persists
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Table 2- Numerical behavior and persistence of system (6) in case 2 as changing in a specific parameter keeping
other parameters fixed as in Eq. (65)

Parameters varied in

Numerical behavior of system (6)

Persistence of system

xy —plane

system (6) (6)
w, <0.65 Approaches to stable point in Int.Ri g ers¥s:s
ersists
0.66<w, <1.53 Approaches to periodic dynamic in Int.Ri
1.54<w, <1. Persists
A<w 70 Approaches to stable point in Int.Ri
wy 2171 Approaches to stable point in xy — plane Not persists
wy <1.01 Approaches to periodic dynamic in yz — plane Not persists
Persists
1.02<w, £2.56 Approaches to periodic dynamic in Int.Ri
w, >2.57 Approaches to periodic dynamic in xz — plane Not Persists
ws <0.98 Approaches to periodic dynamic in Int.Ri N Pt ersist§t
ot persists
ws 20.99 Approaches to periodic dynamic in xz — plane P
we <0.98 Approaches to stable point in x) — plane Not persists
ersists
0.99 <w, <1.06 Approaches to periodic dynamic in Int.Ri P
wg 21.07 Approaches to periodic dynamic in xz — plane Not persists
wg <0.27 Approaches to stable point in x) — plane Not persists
ersists
0.28<wg <047 Approaches to stable in Int.Ri P
wg 20.48 Approaches to periodic dynamic in Int.R? persists
wy <0.1 Approaches to periodic dynamic in Int.Ri gers@sis
ersists
0.11<wy <0.22 Approaches to stable point in Int.Ri Not persists
wy 20.23 Approaches to stable point in x) — plane
wyy <0.27 Approaches to periodic dynamic in Int.Ri g ers@s:s
ersists
0.28<w; <0.63 Approaches to stable point in Int.Ri
wyg 20.64 Approaches to stable point in xy — plane Not persists
wy; £0.23 Approaches to periodic dynamic in Int.Ri gers%sts
0.24<w;; £0.44 . 3 ersists
11 Approaches to stable point in /nt.R;
wyp 2045 Approaches to stable point in xy — plane Not persists
Wy, <0.03 Approaches to stable point in Not persists
xy —plane
. Persists
0.04<w, <0.48 Approaches to stable point in Int.Ri
wip 20.49 Approaches to periodic dynamic in Int.R> Persists
w3 <0.57 Approaches to stable point in Int.Ri Persists
w3 2 0.58 Approaches to periodic dynamic in Int.Ri Persists
a; <1.39 Approaches to periodic dynamic in Int.Ri Persists
1.40<a, <3.16 Approaches to stable point in Int.Ri Persists
a; 23.17 Approaches to stable point in ]
xy — plane Not persists
dy <1.17 Approaches to periodic dynamic in Int.Ri gers@sis
ersists
1.18<d, <2.22 Approaches to stable point in Int.Ri
dy 2223 Approaches to stable point in Not persists
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9. Conclusions and Discussions

In this paper, a mathematical model
consisting of two harmful phytoplankton
interacting with a single zooplankton has been
proposed and analyzed. It is assumed that the
two phytoplankton producing a toxin substance
as a defensive strategy against the predation by
zooplankton. The effect of toxin producing
plankton on the dynamical behavior of
phytoplankton-zooplankton is considered. Two
different scenarios of the distribution of the
toxin substance, through Holling type-I and
Holling type-II, are studied. In both the cases,
the dynamical behavior of system (6) has been
investigated locally as well as globally. The
conditions for the system (6) to be persists have
been derived. The occurrence of local
bifurcation as well as Hopf bifurcation in system
(6) is investigated. Finally the effects of
changing the parameters on the dynamics of
system (6) are studied numerically and the
trajectories of the system are shown in the form
of figures. According to these figures the
following conclusions are obtained.
1. Gradually increasing the parameters w,,

Wo, W, W, W, and wy; in both the cases,

which stand for half saturation constant, natural
death rate of zooplankton, the liberation rates of
toxin substance from first and second
phytoplankton, and the maximum ingestion rates
of zooplankton to the toxin from the first and
second phytoplankton respectively, have
stabilizing effect on the dynamics of system (6)
and keep the system persist. However, further
increasing for these parameters causes extinction
of zooplankton and hence the system (6) losing
the persistence. Consequently, hopf bifurcation
may occurs as the above parameters decrease
passing through a critical value.

2. Similar results are obtained as those
stated in the above point, if we increase the
parameters «, and d,, which stand for the

maximum zooplankton ingestion rates to the
toxin produced from the first and second
phytoplankton, in case 2.

3. The intrinsic growth rate of the second
phytoplankton represented by w; plays a vital
role on the coexistence of all the species in
system (6). However increasing this parameter
above a critical value causes extinction of the

first phytoplankton.
4. The parameters w, and w;; (in case 2),
which represent the conversion rate of

zooplankton from the first phytoplankton and

Iraqi Journal of Science, 2013, Vol.54, No.3, pp.676-695

the half saturation constant of zooplankton to the
toxin produced from the second phytoplankton,
have destabilizing effect on the dynamics of
system (6). In fact as changing these parameters
the system (6) still persists. They are Hopf
bifurcation parameters of system (6) too.

5. Increasing the parameter w, that

represents the preference rate of zooplankton
causes destabilizing of system (6) in the Int.R’

first. However further increasing to this
parameter leads to extinction of zooplankton in
case 1, while the system return to stability at the
positive equilibrium point first and then goes to
extinction of zooplankton in case 2.

6. The parameters w, and w,, which

represent the intra-specific competition and the
maximum attack rate of the second
phytoplankton, represent critical parameters for
the coexistence of all the species. Indeed
increasing those parameters slightly leads to
persistence of system (6). However, further
increasing for them cause extinction in the
second phytoplankton.

7. Keeping the inter-specific competition
parameter represented by ws sufficiently small

make the system persists. However, increasing
this parameter more than a critical value causes
losing the persistence due to extinction of the
second phytoplankton.

8. Finally, the parameters w; and w, (in

case 2), which represent the conversion rate of
zooplankton from the second phytoplankton and
the half saturation constant of zooplankton to the
toxin produced from the first phytoplankton,
play a vital role on the coexistence of all the
species by keeping the system (6) persists as
they increase. In fact they have destabilizing
effect on the dynamics of the system.
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