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Abstract 

In this note we consider a generalization of the notion of a purely extending 
modules, defined using y– closed submodules. 
We show that a ring R is purely y – extending if and only if every cyclic nonsingular 
R – module is flat. In particular every nonsingular purely y extending ring is 
principal flat. 
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Introduction: 

Throughout R will be an associative ring with 
identity and all modules will be unital left R – 
modules. A sub module N of an R- module M is 
said to be closed if it has no proper essential 
extension in M. 
A module M is said to be extending if provided 
every closed submodule of M is a direct 
summand, see for example [1-3]. 
A submodule N of an R – module M is said to 

be an y – closed submodule of M provided  is 

nonsingular, see [4]. Clearly that every y-closed 
is closed. The converse is true if M is 
nonsingular. 
A submodule N of an R – module M is said to 

be pure in M if IN = IM ∩ N, for every finitely 
generated ideal I in R, see [5]. 

Clearly that every direct summand is pure, but 
the converse is not true, see [5].  
A module M is said to be purely extending if 
every closed submodule of M is a pure 
submodule, see [3]. 
In this paper we define purely y-extending 
modules as a generalization of purely extending 
modules. 

The notation K ⊆e M indicates that K is an 
essential submodule of M. 
1- Purely y-Extending Modules. 

Definition 1.1: an R-module M is called purely 
y-extending if every y-closed submodule of M is 
a pure submodule of M. 
Trivially, every purely extending is purely y-
extending,  
The converse is not true as the following 
example shows : 
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Example 1.2: Consider the module M = ⊕  

as a Z-module. Since M is singular, then M is 
the only y-closed submodule of M and hence M 
is purely y-extending module. Now let A = 
((2,1)) be the submodule generated by (2,1).It is 
easily checked that A is closed in M. But A is 

not pure in M, where (4,0) = 4(1,0) ∈ 4( ⊕ ) 

∩ A, but (4,0) ∉ 4A = (0,0). 
Thus M is not purely extending. 
In the following two Lemmas We recall some 
basic properties of the pure submodules that are 
relevant to our work, for more details, see [6], 
[5]. 
Lemma1.3: Let M be an R-module and let A 

and B be submodules of M such that A ⊆ B. 
1- if A is pure in B and B is pure in M, then A is 
pure in M. 
2- if A is pure in M, then A is pure in B. 

3- if B is pure in M, then is pure in . 

4- if A is pure in M and  is pure in , then B is 

pure in M. 
Lemma 1.4: let M = , where  is a 

submodule of M, ∀i∈I and let be a sub 

module of , ∀i∈I. Then  is pure in M 

if and only if  is pure in , ∀i∈I. 

The following result shows that purely y – 
extending modules behave like purely extending 
in terms of direct summands  
Lemma 1.5: Any direct summand of purely y-
extending module is purely y-extending module. 

Proof : let M = A ⊕ B, for some submodules A 
and B of M  
Let K be a y-closed submodule of A. Since  

 = ,  

Then K ⊕ B is a y-closed submodule of M.So 

that K ⊕ B is a pure submodule of M. Thus, K is 
a pure submodule of A.  
Proposition 1.6: Any y-closed submodule of a 
purely y-extending module is a purely y-
extending. 
Proof: Let A be a y-closed submodule of M and 
K be a y-closed submodule of A. Now consider 
the following exact sequence 

 0 →      0,where i is the inclusion 

map and π is the natural epimorphism. Since 

, is nonsingular and  is non singular then 

K is y-closed in M by [4]. So K is a pure in M 
and hence K is pure in A. 
Let M be an R-module. Recall that M is said to 
have the purely intersection property (briefly 

PIP) if the intersection of any two pure 
submodules of M is pure in M, see[٧]. 
Proposition 1.7: Let R be a nonsingular ring 
and A be a pure submodule of a purely y-
extending module M. If M has the PIP, then A is 
a purely y-extending module. 
Proof : Let K be a y-closed submodule of A. 
Then there exists a y-closed submodule B in M 

such that K ⊆ B and  is singular, by (prop 2.3 

of [4]) So B is a pure in M. Since M has the PIP, 

then A ∩ B is pure in M. Clearly that  = 

∩ . But  is non singular and  is singular, 

therefore A ∩ B = K. Thus K is pure in M and 
hence K is pure in A. 
 
Proposition 1.8: If an R-module M is purely y-
extending and A is a y-closed submodule of M, 

then  is purely y-extending. 

Proof : Let  be a y-closed submodule of . 

Since , then B is pure in M. Thus  is pure 

in . 

Before we give our next result, we need the 
following :  
 
Remark 1.9[4,p.49] Let A be a submodule of an 
R-module M. By Zorns Lemma, there is a 
smallest y-closed submodule H of M containing 
A called the y-closure of A in M {we denote it 
by }. 
 
Proposition 1.10: An R-module M is purely y-
extending if and only if  is pure in M, for 
every submodule A of M. 
Proof : Let M be purely y-extending and Let A 
be a sub module of M.Since  is y-closed in 
M, then  is pure in M. 
The converse, Let A be a y-closed sub module 
of M, Then  = A. Thus A is pure in M. 
 
Theorem 1.11: An R-module M is purely y-

extending if and if A ∩ M is pure in M, for 
every direct summand A of E(M) the injective 

hull of M with A ∩ M is y-closed in M. 
Proof : Let A be a y-closed submodule of M and 
B be a relative complement of A in M. Thus A 

⊕ B  M. By [4],A ⊕ B E(M) and hence 

E(A) ⊕ E(B) = E(A⊕B) = E(M). Since A=A∩M 

 E(A) ∩ M and hence  is singular by 

[4]. But   and  is non singular, 
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therefore A = E(A) ∩ M. By our assumption, A 
is pure in M. 
The converse is clear.  
Recall that an R-module M is a flat R-module if 

IM  I ⊗M, for every finitely generated ideal I 
of R, see [8], [9]. 
Before we give our next result, we need the 
following theorem. 
 
Theorem 1.12[9] Let M be any R-module and P 
a submodule of M : 

1) if  is a flat R-module, then P is a pure 

submodule of M. 

2) if M is a flat R- module, then  is a flat R-

module if and only  if  P is a pure sub module of 
M. 
3) if P is a pure submodule of a flat R-module 
M, then P is a flat R-module. 
 
Proposition 1.13 : Let M be an R – module 
such that for any direct summand A of the 

injective hull E(M) of M with A ∩ M is y-
closed in M, A + M is flat. Then M is purely y-
extending module. 
Proof : Let A be a direct summand of E(M) with 

A ∩M is y-closed in M. Consider the following 
short exact sequences  

0 → A ∩ M  M → 0 

 0 → A  A+M → 0 

Where ,  are the inclusion maps and ,  

are the natural epimorphisms. Since A is a direct 
summand of  E(M), then A is a direct summand 
of A + M and hence the second sequence is 

splits.But A + M is flat, so  is flat. 

Thus A ∩ M is pure in M. 
Recall that an R-module M is called a 
multiplication R-module if N = (N:M)M, for 
every sub module N of M, see [10]. 
 
Proposition 1.14: Let M be a faithful 
multiplication R-module. 
If R is purely y-extending module, then M is 
purely y-extending module.  
Proof : Let A be a y-closed submodule of M. 
Since M is multiplication, then A = [A : M]M. 
claim that (A:M) is y-closed in R, assume not, 

so there exits r ∈ R such that        r + [A:M] ≠ 
[A:M] and ann (r + [A:M]) R. 

Then there exists ∈ M such that r ∉A. One 

can easily show that ann (r + [A:M]) ⊆ann 

(r + A). Thus ann (r + A) R. But  is non 

singular, so r + A = A which is a 

contradiction since R is purely y-extending, then 
[A:M] is pure in R. 
Now let I be a finitely generated ideal of R, then 

IA = I (A:M)M = (I ∩ (A:M))M = IM ∩ 

(A:M)M = IM ∩ A, by [10]. Thus A is a pure 
submodule of M. 

2-The direct sum of purely y-extending 

modules  
A ring R is called PF if each of its principal 
ideals is flat, see [11]. 
 
Theorem 2.1: A ring R is purely y-extending if 
and only if every cyclic nonsingular R-module is 
flat. In particular every nonsingular purely 
extending ring is principal flat (PF). 
Proof : assume R is purely y-extending and let 
M = Ra be a cyclic nonsingular R-module 

generated by a. Define         f : R → Ra by f(n) = 
ra. It is easily seen that f is an epimorphism. 

Thus  =  Ra and hence Kerf is pure 

in R. 
But R is flat, therefore Ra is flat, by Th. 1.12–2. 
The converse let C be a y-closed ideal of R. 

Hence is cyclic and nonsingular. By our 

assumption  is flat. 

Thus C is pure in R, by Th 1.12 – 2. 
It is known that there exists a non – singular R-
module M such that M is not flat, see Prop 5.16 
of [8]. 
 

Theorem 2.2: Let R be a ring, then R ⊕ R is 
purely y-extending if and only if every 
nonsingular two generated R-module is flat. 
Proof : Let M = Rm1 + Rm2 be a nonsingular R-

module and Let f = R ⊕ R → M be a map 
defined by f(r1, r2) = r1m1 + r2m2. 
Clearly that f is an epimorphism and hence 

 M. Thus kerf is y-closed in R ⊕ R. By 

our assumpitation kerf is pure in      R ⊕ R. But 

R ⊕ R is flat, therefore M is flat, by Th 1.12 – 2. 
The converse, Let C be a y-closed submodule of 

R ⊕ R. Hence  is a nonsingular two 

generated R-module. Thus  is flat and hence 

C is pure in R. 
By the same argument, we can prove. 
 
Theorem 2.3: Let R be a ring and I be a finite 
index set, then is purely y-extending if and 
only if every non singular I – generated R-
module is flat. 
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Recall that a ring R is called a flat ring if every 
ideal of R is flat, see [8]. 
 
Proposition 2.4: Let R be a commutative 
integral domain. 
Then the following statements are equivalent  
1) R is a flat ring  

2) R ⊕ R is extending module. 

3) R ⊕ R is a purely extending. 

4) R ⊕ R is a purely y-extending. 

5) For each n ∈ N, R is an extending. 

6) For each n ∈ N  R  is a purely 

extending. 

7) For each n ∈ N, R  is a purely y- 

extending. 
Proof : since R is nonsingular, then clearly that 
(3)  (4) and (6) ↔ (7)  
(1) ↔ (2) ↔ (3) ↔ 5 ↔ 6, see prop 1.6, [3]. 
 
Proposition 2.5: Let R be a ring. The following 
are equivalent  
1) R is purely y-extending, for every index 

set Λ ;  
2) every projective R-module is purely y-
extending ; 
3) every nonsingular R-module is flat. 

Proof : (1) → (2) Let M be a projective R-
module. Then there exists an apimorphism f : 

→ M, for some index set, by [12]. But M is 
projective, then by [12] the following short 

exact sequence is splits. 0 → kerf  M 

→ 0, where i is the inclusion map. So  kerf 

⊕M by [12]. Since  is purely y-extending, 
then M is purely y-extending. 

(2) → (1) clear. 

(1) → (3) Let M be a nonsingular R-module. By 
[12], there is a free R-module  and an 

epimorphism f : → M. 

Thus  M and hence kerf is a y-closed ideal 

of . Thus M is flat, by Th 1.12-2. 

(3) → (1) Let C be a y-closed submodule of 

 and hence  is non singular. By our 

assumption  is flat. Thus C is pure in , 

by Th 1.12 -1. 
 

Proposition 2.6 : Let M =  be an R-

module such that every y-closed submodule of 
M is fully invariant, then M is purely y-
extending if and only if  is purely y-

extending, ∀α∈Λ. 

Proof : → ) clear by prop 1.5  

← ) Let A be a y-closed submodule of M. For 

each i ∈I, Let πα : M →  be the projection 

map. Now Let x ∈ A, then       x = , 

∈  and  = 0, for all except a finite 

number of α∈Λ. Since A is fully invariant, then 

πα(x) = ∈ A∩ . Thus A = (A∩ ). 

Since = . So  is 

nonsingular, ∀α∈Λ and hence A∩  is pure in 

, for each α∈Λ. Now Let I be a finitely 

generated ideal of R. 

IA = I (  =  =  

((I ) ∩  = ∩  

= I ( ∩  

= IM ∩ A 
Thus A is pure in M and M is purely y-
extending. 
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