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Abstract 

 The k-out-of-n:G (or k/n:G) system structure is a very popular of redundancy in 
fault-tolerant systems, with wide applications in so many fields. This paper presents 
two states of multi-state k/n:G systems. The first part, we present the definition that 

introduced by Al-Neweihi et al [1], where the  values are the same with respect 

to all system states and we show that there exists an alternative equivalent definition 
to Al-Neweihi's definition. In the second part of this paper we give more general 

definition proposed by Huang et al [2], where it allows different  values with 

respect to different system states and we provide there exists an equivalent definition 

to Huang's definition when the  values are increasing. We show it is simply to 

generalize the mathematical theory of static reliability of binary k/n:G systems to the 
multistate k/n:G systems. Several new results are established concerning the 
evaluation of the stochastic of the system static performance measures, together with 
their computer algorithm (Belfour algorithm).  
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1. Introduction 

 One inherent weakness of traditional 
binary reliability theory is that both the system 
and its components are considered to take only 
two possible states “performance levels”: 

working or failed. This approach represents an 
over simplification in many real- life situation 
[3] where the system and their components are 
capable of assuming a whole range (more than 
two) of levels of performance, varying from 
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perfect functioning to complete failure. Thus, 
reliability theory must not only take into account 
a yes or no (functioning or failure) for each the 
system and its components, but the possibility of 
working with a slightly degraded system. This 
motivates so called multistate system with 
multistate components. 
 consider a system with n components, 
let C={1,2,…,n} denotes the set of components 
indices, where the system and each of its 
components have finite number (M+1) of 
distinct states, d={0,1,2,…,M} representing 
various level of performances such that they 
ranging from perfect functioning denoted by 
(state M) to complete failure (state 0). Let the 
random variable Xi∈d; i=1,2,…,n, be the state 
or performance level of component i, and 
X=(X1,X2,…,Xn) ∈d

n be the components state 
random vector. Assume that the performance of 
the system depends deterministically on the 
performance of each of its components viewed 
at a fixed moment of time. Hence, we can 
assume that a system state or performance level 
is a random variable determined by the function 
Ψ. 
Definition (1.2) A multistate system with 
multistate components is said to be multistate 
monotone system (MMS) iff its structure 
function Ψ satisfies: 

1) Ψ is a non-decreasing function in each 
argument, 

2) Ψ( j ) = j ; j = 1, 2, …, M, where       

j   =(j, j,…, j). 

    we assume throughout this paper that 
X1,X2,…,Xn are stochastically independent, 
where the following notations are adopted, let 
Pr(Xi = j) =Pij; i =1,2,…,n;  j = 0, 1, 2, …, M 

; ∑
=

M

j
ijP

0

= 1, be the probability of component i is in 

state j. Also, let Pr(Ψ(X) = j) = Pj ;  j = 0,1,2,…, 

M; ∑
=

M

j

jP
0

=1, be the probability of  the system 

is in state j. Thus, both Pij and Pj; j= 0,1,2,…, M, 
represents the state or performance distribution 
of the multistate component i; i=1,2,…,n, and 
the multistate system, respectively. Another 
important measure given by ESP [1] is called 
the performance function defined by: h = E 
Ψ(X). 

Other related vital notations are given 

by: Pr(Xi ≥ j) = ∑
=

M

jr
irP = Pi( j) ; i =1,2, …,n ;  j = 0, 

1,2,…,M, the probability of component i in state 

j or above. Also, Pr(Ψ(X) ≥ j) = ∑
=

M

jr
rP = P( j) ; j = 

0,1,2,…, M, the probability of the multistate 
system in state j or above.  
2. Simple multistate k-out-of-n:g system 
Definition (2.1) A multistate system with 
multistate components is called a simple 
multistate k/n:G system, denoted by (SM) k/n:G 
system, iff its structure function Ψ is given by:   

∀X; X ∈d
n
 →  Ψ(X) = X(n-k+1), 

where X(1) ≤ X(2) ≤ … ≤ X(n) is a non-
decreasing arrangement of X1,X2,…,Xn and k 
=1,2,…,n is independent of the system 
performance level j ; j = 0,1,2,…,M. 
 Another vital property that can be 
derived is given by the following lemma. 
Lemma(2.1) A(SM) k/n:G system with structure 
function Ψ is an (MMS). 
Proof. By using definition (2.1), we want to 
show that: 

1) Ψ is a non-decreasing function in each 
argument, 

2) Ψ( j ) = j ; j = 1, 2, …, M, where        

j = (j, j,…, j). 

    Now, for X, Y ∈d
n, assume that X ≥  Y then 

for every k; k=1,2,…,n, we have X(n−k+1) is 
equal or larger to (n-k+1) arguments Xi of the 
vector X . Since X ≥ Y, so X(n−k+1) is equal or 
larger to (n−k+1) arguments Yi or the vector Y, 
equivalently to Y(n−k+1).  
Hence, Ψ(X) = X(n−k+1) ≥ Y(n−k+1) = Ψ(Y). 

The proof of (1) is completed. Also, let j =(j, 

j,…, j) ; j = 1,2, …, M. From definition (3.2.1), 
we have: 
X(1) = X(2) = … = X(n) = j; ∀ j=1,2,…,M. 

So, Ψ( j ) = j ; ∀  j = 1, 2, …, M 

    This lemma expresses that improving 
component performance of a (SM) k/n:G system 
cannot harm the system, and if all components 
are in a certain state the system itself will also 
be in this state. In particularly, Ψ(0)=0 and 
Ψ(M)=M merely states if all components are in 
the complete failure then the system is in the 
complete failure state, and if all components are 
functioning perfectly, the system functions 
perfectly. 
    Until (2003) a little have been said about the 
definition of a (SM)k/n:G system. At that time, 
Huang et al [4] investigate extensively this 
definition and they established the following 
important property that we represented in the 
following lemma. 
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Lemma(2.2) A(SM) k/n:G system with structure 
function Ψ is in state j or above iff at least k 
components are in state j or above, for each j ;  j 
= 1,2,…,M. Equivalently, for each j;j= 
1,2,…,M, we have: Ψ(X) ≥ j iff ∃  at least k 
components are in state ≥ j. 
Proof. By the definition of a (SM) k/n:G system, 
we have the state of the system is determined by 
the state of the best k components. The proof is 
completed. 
    With the aid of the above lemma we suggest 
another alternative equivalent definition to a 
(SM) k/n:G system. To do this, we need the 
following notations, let for all j; j = 1, 2, …, M, 
and for all X∈d

n
 ; Xj=(X1j, X2j, …,Xnj be a 

random state vector of a binary indicator 
functions Xij ; i = 1, 2,…, n, such that:                   

                    Xij = 






<

≥

,0

1

jiff

jiff

X

X

i

i

 

     This shows, with respect to any given 
component of level j; j =1, 2,…,  M, the states of 
each component i; i =1, 2,…,n, are divided in 
two separate groups: the functioning states {j, 
j+1, …,M } and the failure states {0,1, …, j−1 
}, i.e. component i working if  Xi ≥ j (Xij=1) and 
failed if Xi < j (Xij= 0). Next, let Φ be a binary 
structure function defined on Xj

 
such that for 

each j; j = 1, 2,…, M, 

Φ(Xj) = 










<

=≥

∑

∑

=

=

.0

,,...,2,1,1

1

1

kiff

nkkiff

n

i
ij

n

i
ij

X

X
 

In other words, Φ(Xj)=1 iff at least k 
components in state ≥ j . 
 Thus, we conclude that Φ constitutes a 
binary structure function of a binary k/n:G 
system, and it is the same structure function for 
each level of performance j;  j = 1, 2, …, M.  
 From this construction, we suggest the 
following definition. 
Definition(2.2) A multistate system with 
multistate components and a structure function 

Ψ is said to be a (SM) k/n:G system iff for all  j; 
j = 1, 2, …, M, and all X∈d

n and Xj∈S
n  there 

exists a binary k/n:G system with structure 
function Φ such that the following relation is 
satisfied, Ψ(X) ≥ j   ⇔    Φ(Xj) = 1 . 
          Based on this definition it follows that the 
structure function Ψ of a (SM) k/n:G system 
specified by ESP is very closely related to the 
structure function of a binary k/n:G system, and 
exploiting this relationship makes it easy to 

generalize results from binary k/n:G system to a  
(SM) k/n:G system. 
     The following gives a unique correspondence 
between the two structure functions Ψ and Φ. 
Lemma (2.3) Given a (SM) k/n:G system, then 
for every X ∈d

n we have: 
1) Ψ(X) < j   ⇔   Φ(Xj) = 0; j = 1,2,…, 

M, 
2) Ψ(X) = j   ⇔   Φ(X1) = 0, 

3) Ψ(X) = j   ⇔   Φ(Xj) − Φ(Xj+1)= 1; j = 
1, 2,…, M−1, 

4) Ψ(X) = M   ⇔   Φ(XM) = 1, 

5) Ψ(X) = ∑
=

M

j 1

 Φ(Xj) . 

Proof. We give the proof of (3) and (5) only, 
others are follow immediately from the above 
definition. 
3) Since by lemma (2.1) Φ is a non-decreasing 
function, then 
 Φ(Xj) − Φ(Xj+1) = 1 ⇔  Φ(Xj) = 1 ∧Φ(Xj+1) = 0 

⇔  Ψ(X) ≥ j   Ψ(X) < j+1 ⇔   Ψ(X) ≥ j ∧     

Ψ(X) ≤ j  ⇔  j ≤ Ψ(X) ≤ j  ⇔  Ψ(X) = j. 
5) For any X ; X  ∈d

n , we have: 
     X1 ≥ X2 ≥ … ≥ XM 

and since Φ is a non-decreasing function (see 
lemma (2.1)) we have: 
Φ(X1) ≥ Φ(X2) ≥ … ≥ Φ(XM). 
Thus, if Φ(Xj)=1 then Φ(Xr)=1;for r=1,2,…, j−1,  
and if Φ(Xj)=0 then Φ(Xs)=0 ; for s= j+1, j+2, 
…,M. The proof follows from (3). 
    Next, in terms of the static performance 
distributions of multistate components Pij or 
Pi(j); i =1,2,…, n; j =1, 2,…,M, we consider the 
problem of evaluation the static stochastic 
performance measures of a (SM) k/n:G system, 
namely, the exact and bounds of : 
1) The system performance distribution Pj or 

P(j) ; j= 0,1,2,…, M, 
2) The system performance function h= E Ψ(X). 
    To do this, we begin first with the two easy 
cases (k = n) and (k =1) given in the following 
lemma, where,  R(k, n, j) = Pr(Ψ(X) ≥ j) =Pj ; j = 
0, 1, 2,…, M. 
    The next lemma evaluates the static 
performance measures for a general (SM) k/n:G 
system, where: Rj(k, n, 1) = Pr(Φ(Xj) = 1) ; j = 
1,2,…,M, is the reliability function of a binary 
k/n:G system with the structure function Φ 
defined on Xj , Xj∈Sn . 
Lemma (2.4) Given a (SM) k/n:G system with 
structure function Ψ having a binary structure 
function Φ of a binary k/n:G system, then: 
1) For each j, j =1,2,…,M, we have: R(k, n, j) 

= Pr(Ψ(X) ≥ j) = Pr(Φ(Xj) = 1) = E Φ(Xj)   
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= Rj(k,n,1) =Rj(P(j)).           Where,         
P(j) = (P1(j), P2(j),…, Pn(j)). 

2) P0 = Pr(Ψ(X) = 0) = 1− R1(k,n,1), 
3) Pj=Pr(Ψ(X)=j)=Rj(k,n,1)−Rj+1(k,n,1); 

j=1,2,…, M−1, 
4) PM = Pr(Ψ(X) = M) = RM(k,n,1), 

5) h= )1,,(
1

nk
M

j
jR∑

=

= ),,(
1

jnk
M

j
R∑

=

. 

proof.    1) Follows definition (2.2). 
2) P0 = Pr(Ψ(X) = 0) = Pr(Φ(X1) = 0)                               
= 1− Pr(Φ(X1) = 1) = 1−R1(k, n, 1). 
3) From lemma (2.3), we have: 
 Pj =Pr (Ψ(X) = j) = Pr( [Φ(Xj) − Φ(Xj+1)] = 1) = 
E [Φ(Xj) − Φ(Xj+1)] = EΦ(Xj) − EΦ(Xj+1) 
    = Rj(k, n, 1) − Rj+1(k, n, 1). 
4) PM=Pr(Ψ(X)=M)= Pr (Φ(XM)= 1)=RM(k, n,1). 

5)  h=E Ψ(X)=E ∑
=

M

j 1

Φ(Xj) = ∑
=

M

j 1

 E Φ(Xj) . 

    This lemma shows clearly that the stochastic 
performance measures of both systems, the 
(SM) k/n:G and the binary k/n:G, are closely 
related. This relation makes it easy to evaluate 
the performance distribution and the 
performance function of the (SM) k/n:G system 
from the binary k/n:G system, simply by 
employing the formula:  R(k, n, j) = Pr(Ψ(X) ≥ 
j) = Rj(k, n,1) = Pr(Φ(Xj) = 1); j =1,2,…, M. 
3. Generalized multistate k-out-of-n:g 

systems 
    Huang et al [2] proposed the following 
definition of generalization  
Definition (3.1) A multistate system with 
multistate components is called a generalized 
multistate k/n:G system iff for each j; j = 1, 
2,…, M,  Ψ(X) ≥ j if there exists an integer 
value l;  l = j, j+1, …, M, such that at least kl 
components are in state ≥ l. 
    Note that, in this definition, the kl do not have 
to the same for different system states j;j 
=1,2,…,M. This means that the structure of this 
system can be different for different system state 
levels. Generally speaking kl values are not 
necessarily in a monotone ordering. As a special 
the constant case, when kl  is a constant, that is; 
k1 = k2 =…= kM = k, say, the structure of the 
system is the same for all state levels. This 
reduce the definition of the generalized 
multistate k/n:G system to the definition of the 
(SM) k/n:G system. 
    We shall be particularly interested in the 
following case given by Huang, where all the 
concepts and results of a binary k/n:G system, 
again, can be easily extended. 

Definition (3.2) A generalized multistate k/n:G 
system is called an increasing generalized 
multistate k/n:G system, denoted by (IGM) 
k/n:G system, iff:        k1  ≤ k2  ≤ … ≤ kM . 
    In this case, for the system to be in a higher 
state level ≥ j, a large number of components 
must be in state ≥ j. That is, an increasing 
requirement on the number of components that 
must be in a certain state or above for the system 
to be in a higher state or above. That is why it is 
called an (IGM) k/n:G system. 
    For an (IGM) k/n:G system we have the 
following lemma. 
Lemma (3.1) When k1 ≤ k2 ≤ … ≤ kM , the 
definition (3.2) of a generalized multistate k/n:G 
system is equivalent to: ∀X; X∈d

n and ∀ j; 
j=1, 2,…, M, we have : Ψ(X) ≥ j iff ∃  at least kj 
components are in state ≥ j. 
Proof. For a given state vector X, let Nj be the 
number of components in X that are in state ≥ j, 
so we have:         Nj  ≥ Nj+1  ≥ … ≥ NM .  
The definition (3.1) can be rephrased as Ψ(X) ≥ 
j iff at least one of the following inequalities is 
satisfied: Nj  ≥ kj , Nj+1  ≥ kj+1 , …, NM  ≥ kM . 
Assume that for some p; j ≤ p ≤ M, that Np ≥ kp. 
Then we have:  Nj ≥ Np ≥ kp ≥ kj. 
Hence,  Ψ(X) ≥ j iff  Nj ≥ kj . 
    Thus, based on the above lemma and as far as 
state level j; j=1, 2, …, M, is concerned: if at 
least kj components are in state ≥ j then these 
components can be considered “functioning”, 
while the system be in state ≥ j the system is 
considered to be “functioning”. We will suggest 
an alternative equivalent definition to the (IGM) 
k/n:G system. To do this, again, let for all j; j=1, 
2,…,M and for all X, X  ∈d

n
 : 

 Xj= (X1j, X2j, …,Xnj )be a random state vector of 
a binary indicator functions Xij ; i = 1, 2,…, n, 
such that:  

                       Xij = 






<

≥

,0

1

jiff

jiff

X

X

i

i

 

    That is, the state levels of each component i; 
i=1,2,…,n, are divided in two separate groups: 
The functioning states {j, j+1,…,M} and the 
failure states {0,1,…, j−1}, i.e. component i 
working if  Xi ≥ j (Xij=1) and failed if Xi < j 
(Xij= 0). Next, let Φj ; j = 1, 2,…, M,be a binary 
structure function defined on Xj

 
such that ; 

Φ(Xj) = 










<

=≥

∑

∑

=

=

.0

,,...,2,1,1

1

1

kX

kkX

j

n

i
ij

jj

n

i
ij

iff

niff
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That is, for each j; j=1, 2, …, M,    Φj (Xj) = 1 iff 
at least kj components are in state ≥ j. 
    Notice that Φj constitute a binary structure 
function of a binary kj/n:G system, and they 
have different system structure for different 
system state levels j; j=1, 2,…, M. 
    From this construction we suggest the 
following equivalent definition to the given 
(IGM) k/n:G system. 
Definition (3.3) A multistate system with 
multistate components and a structure function 
Ψ is said to be an (IGM) k/n:G system iff for j; j 
= 1, 2, …, M, and all X; X ∈d

n and Xj ∈S
n, 

there exists a binary kj/n:G system with structure 
function Φj such that the following relation is 
satisfied;  Ψ(X) ≥ j    ⇔   Φj (Xj) = 1 
         Before we proceed further, it is worth to 
mention that the above definition is consistent 
with the general definition of a multistate 
coherent system suggested by Natvig [5] were 
most of the theory for the traditional binary 
coherent system can be extended to this system. 
Thus, most of the following can be considered 
as consequences of the Natvig proposal, where it 
is extensively studied by Raheem [6]. 
  The binary structure functions Φj; j=1, 2,…, M, 
are with the following property. 
Lemma (3.2) Given an (IGM) k/n:G system. 
Then for all X; X ∈ dn we have:  
Φj (Xj) ≥ Φj+1 (Xj+1); j=1, 2, …, M−1.  
Proof. For a given X ∈ dn, let Φj+1 (Xj+1) =1, to 
show that Φj (Xj) =1. 

Since, Φj+1 (Xj+1) =1 iff  ∑
=

+

n

i
ijX

1
1  ≥ kj+1, and Xj ≥ 

Xj+1, we have:  

 ∑
=

n

i
ijX

1

 ≥ ∑
=

+

n

i
ijX

1
1  ≥ kj+1 ≥ kj .      

Hence,  ∑
=

n

i
ijX

1

 ≥ kj  or Φj (Xj) =1. 

     The next lemma gives unique 
correspondence between Ψ and Φj; j=1,2,…, M. 
Lemma (3.3) Given an (IGM) k/n:G system, 
then ∀ X, X ∈ dn we have: 

1) Ψ(X) < j ⇔  Φj(Xj)=0 ; j =1,2,…, M, 

2) Ψ(X) = 0  ⇔    Φ1 (X1)  = 0, 

3) Ψ(X) = j⇔ [ Φj (Xj) −Φj+1 (Xj+1)]= 1; 
j = 1, 2,…, M−1, 

4) Ψ(X) = M  ⇔   Φj (XM)  = 1, 

5) Ψ(X) = ∑
=

M

j 1

Φj (Xj). 

Proof. 1) Follows from the definition (3.3). 
2) Φ1 (X1) = 0 ⇔  Ψ(X) < 1 ⇔  Ψ(X) = 0.  
3) From lemma (3.3.2), we have: 

[Φj (Xj) − Φj+1 (Xj+1)] = 1 ⇔  Φj (Xj) = 1 ∧      
Φj+1 (Xj+1) = 0. 
But,     Φj (Xj) = 1 ⇔  Ψ(X) ≥ j, and Φj+1 (Xj+1) 

= 0 ⇔  Ψ(X) < j+1  ⇔  Ψ(X) ≤ j. 
Hence,    j ≤ Ψ(X) ≤ j  or  Ψ(X) = j. 
4) Follows from the definition (3.3.3). 

5) Since, Ψ(X) = j ⇔  Φj (Xj)= 1 ∧ Φj+1 (Xj+1)  
= 0, it follows from lemma (3.2) that: 
 Φp(Xp)  = 1 for p= 1, 2, …, j−1, and Φs (Xs)  = 
1 for s= j+2, j+3, …, M. 

Hence, we have:  Ψ(X) = ∑
=

M

j 1

Φj (Xj) 

    From this lemma we have: starting out 
with ; j = 1, 2,…, M, then Ψ is uniquely 

determined and vice-versa. 
    Next, in terms of the static performance 
distribution of multistate components Pij or Pi(j); 
i=1,2,…,n; j=1,2,…,M, we consider the problem 
of evaluation the static stochastic performance 
measures of an (IGM) k/n:G system, namely, the 
exact and bounds of : 

1) The system performance distribution 
Pj or P(j) ; j = 0, 1, 2, …, M,  

2) The system performance function 
h=E Ψ(X). 

 To do this, define:  R(kj,n,j) = Pr(Ψ(X) ≥ j) = 
P(j);j=1,2,…,M, and, Rj(kj , n, 1) = Pr( Φj (Xj) = 
1) = Pj; j = 1, 2, …, M. 
    The following lemma evaluates the static 
performance measures for an (IGM) k/n:G 
system. 
Lemma (3.4) Given an (IGM) k/n:G system 
with structure function Ψ having a binary 
structure function Φj of a binary  kj /n:G system; 
j = 1, 2,…,M, then: 

1) For each j; j = 1, 2, …, M, we have: 
      R(kj , n, j)= Pr(Ψ(X) ≥ j) =Pr(Φj (Xj) = 1) 

= E Φj (Xj) = Rj( kj , n, 1) = Rj( P(j) ). 
         Where,        P(j) = (P1 (j), P2(j),…,  Pn (j)). 

2) P0 =Pr (Ψ(X) = 0) = 1− R1( k1 , n, 1), 
3) Pj = Pr( Ψ(X) = j ) = Rj(kj,n,1) −  

Rj+1 (kj+1 , n, 1);  j = 1, 2, …, M−1, 
4) PM  = Pr (Ψ(X) = M) = RM( kM n, 1), 

5) h= ∑
=

M

j 1

  Rj(kj,n,1) = ∑
=

M

j 1

 Rj(kj,n,j) 

proof. Similar to proof of lemma (2.4). 
    The above relations between the (IGM) k/n:G 
system and the binary kj/n:G system makes it 
easy to evaluate the performance distribution 
and the performance function of the (IGM) 
k/n:G system, simply by employing the formula:    
P(j) =R(kj, n, j) = Rj( kj, n, 1); j = 1, 2, …, M. 
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This suggests the following evaluation algorithm 
that can be summarized by the steps: 
Step-1:Given n, M, Pij;i=1,2,…,n; j=0,1,2,…, M. 
Step-2: Calculate Pi(j) ; i=1,2,…, n; j=1,2,…, M. 
Step-3: Given kj; j = 1, 2,…, M; treat for an state 
level j the Pi(j) as Pij in the algorithm given in 
Belfore approach [7] to calculate Rj( kj,n, 1). 
Step-4: The results are R(kj, n, j); j = 1,2, …, M. 
Step-5: Both the performance distribution Pj= 
Pr(Ψ(X)=j); j=0,1,2,…,M, and the performance 
function h are easy to compute through: 
      1) P0 = 1− R(k1, n, 1).      
      2) Pj  = R(kj , n, j) − R(kj+1 , n, j+1); j = 1, 2, 
…, M−1. 
     3) PM = R(kM , n, M).      

     4) h = ∑
=

M

j 1

 Rj(kj,n,1)   

    Based on the above algorithm we give in the 
next computer program in “BASIC” language, 
10  INPUT "N= "; N 
20  INPUT " the maximum state level="; M 
30  MM=M+1  
40  DIM  D(N), PROD(N),  A(N),  S(N), 
G(N,M), H(N,M), B(M), C(MM) 
50  FOR I = 1 TO N 
60  FOR J = 1 TO M 
70  PRINT "P(";I;",";J;")=";: INPUT G(I,J) 
80  NEXT J 
90  NEXT I 
100 FOR I = 1 TO N 
110 FOR J = 1 TO M 
120 FOR T = J TO M 
130 H(I,J) = H(I,J) + G(I,T) 
140 NEXT T 
150 NEXT J 
160 NEXT I 
170 DIM A(N+1) 
180 FOR R=1 TO M 
190 PRINT "K(";R;")="; INPUT K 
200 ALPHA = 1 
210 FOR I = 1 TO N 
220 P = H(I,R) 
230 D(I) = (1-P)/P 
240 ALPHA = ALPHA*P 
250 PROD(I) = 1 
260 NEXT I 
270 SUMS = 1 
280 IEND = N+1 
290 FOR I = 1 TO N-K 
300 PRDTMP = 0 
310 IEND = IEND – 1 
320 FOR J = 1 TO IEND 
330 JTEMP = J 
340 ILOC = IEND +1-J 

350 PRDTMP = PRDTMP + 
D(ILOC)*PROD(JTEMP) 
360 PROD(JTEMP) = PRDTMP 
370 NEXT J 
380 S(I) = PROD(JTEMP) 
390 SUMS = SUMS + S(I) 
400 NEXT I 
410 S = ALPHA * SUMS 
420 PRINT"RELIABILITY FUNCTION = 
R(";K;",";N;",";R;")= ";S 
430 B(R)= S 
440 h = h + S 
450 NEXT R 
460 C(1)= 1−B (1) 
470 FOR I=1 TO M−1 
480 C(I+1)= B(I)−B(I+1) 
490 C(MM) =B (M) 
500 FOR I=1 TO MM 
510 J = I−1 
520 PRINT “At level “; J 
530 PRINT “The performance distribution is”; 
C(I) 
540 NEXT I 
550 PRINT “The performance function is”; h 
560 END 
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