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Abstract

The k-out-of-n:G (or k/n:G) system structure is a very popular of redundancy in
fault-tolerant systems, with wide applications in so many fields. This paper presents
two states of multi-state k/n:G systems. The first part, we present the definition that
introduced by Al-Neweihi et al [1], where the k" values are the same with respect

to all system states and we show that there exists an alternative equivalent definition
to Al-Neweihi's definition. In the second part of this paper we give more general
definition proposed by Huang et al [2], where it allows different it values with
respect to different system states and we provide there exists an equivalent definition
to Huang's definition when the k*" values are increasing. We show it is simply to

generalize the mathematical theory of static reliability of binary k/n:G systems to the
multistate k/n:G systems. Several new results are established concerning the
evaluation of the stochastic of the system static performance measures, together with
their computer algorithm (Belfour algorithm).
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1. Introduction

One inherent weakness of traditional
binary reliability theory is that both the system
and its components are considered to take only
two possible states “performance levels”:
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working or failed. This approach represents an
over simplification in many real- life situation
[3] where the system and their components are
capable of assuming a whole range (more than
two) of levels of performance, varying from
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perfect functioning to complete failure. Thus,
reliability theory must not only take into account
a yes or no (functioning or failure) for each the
system and its components, but the possibility of
working with a slightly degraded system. This
motivates so called multistate system with
multistate components.
consider a system with n components,

let C={1,2,...,n} denotes the set of components
indices, where the system and each of its
components have finite number (M+1) of
distinct states, d={0,1,2,...,M} representing
various level of performances such that they
ranging from perfect functioning denoted by
(state M) to complete failure (state 0). Let the
random variable X;ed; i=1,2,...,n, be the state
or performance level of component i, and
X=(X1,Xs,...,X,) €d" be the components state
random vector. Assume that the performance of
the system depends deterministically on the
performance of each of its components viewed
at a fixed moment of time. Hence, we can
assume that a system state or performance level
is a random variable determined by the function
v,
Definition (1.2) A multistate system with
multistate components is said to be multistate
monotone system (MMS) iff its structure
function ¥ satisfies:

1) V¥ is anon-decreasing function in each

argument,

2) lP(l) =j;j=12,.. M, where

l =y Jseer])-
we assume throughout this paper that
X1,X5,...,X, are stochastically independent,

where the following notations are adopted, let

P(X;=j) =P i=12,...n; j=0,1,2,... M
; % P, 1, be the probability of component 7 is in
j=0

state /. Also, let PA(P(X)=j)=P;; j=0,1.2,...,
M; Aﬁ P ; =1, be the probability of the system

j=0

is in state j. Thus, both P; and P;; j=0,1,2,..., M,
represents the state or performance distribution
of the multistate component i; i=1,2,...,n, and
the multistate system, respectively. Another
important measure given by ESP [1] is called
the performance function defined by: # = E
W(X).

Other related vital notations are given
by: P(Xi=j)=%p =P(j);i=12,...n; j=0,

r=j

1,2,...,M, the probability of component i in state

1y
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j or above. Also, P.(P(X) >j) = %P,.: P(j;j=
r=j

0,1,2,..., M, the probability of the multistate

system in state j or above.

2. Simple multistate k-out-of-n:g system

Definition (2.1) A multistate system with

multistate components is called a simple

multistate k/n:G system, denoted by (SM) k/n:G

system, iff its structure function ¥ is given by:

VX, X ed - ¥Y(X)=X(n-k+1),
where X(1) < X(2) < ... < X(n) is a non-
decreasing arrangement of X;,X,,...,X, and k
=1,2,....,n is independent of the system
performance level j ; 7 =0,1,2,...,M.

Another vital property that can be
derived is given by the following lemma.
Lemma(2.1) A(SM) k/n:G system with structure
function ¥ is an (MMS).

Proof. By using definition (2.1), we want to
show that:
1) ¥ is a non-decreasing function in each

argument,
)¥(j)=jisi=12 .., M, where
J=Godseend).

Now, for X, Y ed", assume that X > Y then
for every k; k=1,2,...,n, we have X(n—k+1) is
equal or larger to (n-k+1) arguments X; of the
vector X . Since X > Y, so X(n—k+1) is equal or
larger to (n—k+1) arguments Y, or the vector Y,
equivalently to Y(n—k+1).

Hence, ¥(X) = X(n—k+1) > Y(n—k+1) = Y(Y).
The proof of (1) is completed. Also, let j =(j,

Js-esJ) 51 =12, ..., M. From definition (3.2.1),
we have:

X()=X2)=...=X(n)=j; Vj=12,...M.
So,‘P(l)=j; vi=1,2,...M
This lemma expresses that improving

component performance of a (SM) k/n:G system
cannot harm the system, and if all components
are in a certain state the system itself will also
be in this state. In particularly, ¥(0)=0 and
Y(M)=M merely states if all components are in
the complete failure then the system is in the
complete failure state, and if all components are
functioning perfectly, the system functions
perfectly.

Until (2003) a little have been said about the
definition of a (SM)k/n:G system. At that time,
Huang et al [4] investigate extensively this
definition and they established the following
important property that we represented in the
following lemma.
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Lemma(2.2) A(SM) k/n:G system with structure
function W is in state j or above iff at least k
components are in state j or above, for eachj ; j
1,2,...,M. Equivalently, for each j;=
1,2,...,M, we have: W(X) >j iff 3 at least k
components are in state > j.

Proof. By the definition of a (SM) k/n:G system,
we have the state of the system is determined by
the state of the best k components. The proof is
completed.

With the aid of the above lemma we suggest
another alternative equivalent definition to a
(SM) k/n:G system. To do this, we need the
following notations, let for all j; j =1, 2, ..., M,
and for all Xed" ; Xi=(X,;, Xy, ....X,; be a
random state vector of a binary indicator
functions Xjj ; 1 =1, 2,..., n, such that:

Liff X;2J
1
0iff X< Js

This shows, with respect to any given
component of level j; j =1, 2,..., M, the states of
each component i; i =1, 2,...,n, are divided in
two separate groups: the functioning states {j,
j*+1, ...,M } and the failure states {0,1, ..., j—1
}, 1.e. component i working if X; >j (X;=1) and
failed if X; <j (X;= 0). Next, let ® be a binary
structure function defined on X; such that for
eachj;j=1,2,.... M,

WY X2 kk=12,m,
i=l1

D(X)) = "
Oiﬁg X, <k.

In other words, ®(Xj=1
components in state > j .
Thus, we conclude that ® constitutes a
binary structure function of a binary k/n:G
system, and it is the same structure function for
each level of performance j; j=1,2, ..., M.
From this construction, we suggest the
following definition.
Definition(2.2) A multistate system with
multistate components and a structure function
Y is said to be a (SM) k/n:G system iff for all j;
j=1,2,..,M, and all Xed" and X;eS" there
exists a binary k/n:G system with structure
function @ such that the following relation is
satisfied, ¥(X)>j] < OX)=1.

Based on this definition it follows that the
structure function ¥ of a (SM) k/n:G system
specified by ESP is very closely related to the
structure function of a binary k/n:G system, and
exploiting this relationship makes it easy to

iff at least k
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generalize results from binary k/n:G system to a
(SM) k/n:G system.

The following gives a unique correspondence
between the two structure functions ¥ and ®.
Lemma (2.3) Given a (SM) k/n:G system, then
for every X € d"we have:

) ¥X) <] o OX)=0;j=12,...,
M’

2) ¥X)=j & BX)=0,

H WX =] e BX) - DX)= 1) =
1,2,...,M—1,

H YX) =M S OXy)=1,

5 ¥X) =Y OX).

Jj=1
Proof. We give the proof of (3) and (5) only,
others are follow immediately from the above
definition.

3) Since by lemma (2.1) ® is a non-decreasing
function, then

O(X) —PXj1)=1 & X)) =1 AO(X;:1)=0
e ¥X)2) ¥X) <jtl & ¥X) =) A
YX)<j © js¥X) =] « YX)=].
5)Forany X ; X €d", we have:

Xiz2X,>...2Xu
and since @ is a non-decreasing function (see
lemma (2.1)) we have:

O(X)) = D(Xy) > ... = D(Xy).

Thus, if ®(Xj)=1 then O(X,)=1;for r=1,2,...,j-1,
and if O(X;)=0 then ®(X,)=0 ; for s= j+1, j+2,
...,M. The proof follows from (3).

Next, in terms of the static performance
distributions of multistate components P; or
PG);i=12,...,n;j=1,2,....M, we consider the
problem of evaluation the static stochastic
performance measures of a (SM) k/n:G system,
namely, the exact and bounds of :

1) The system performance distribution P; or

P3G);5=0,1,2,..., M,

2) The system performance function 7= E ¥(X).

To do this, we begin first with the two easy
cases (k = n) and (k =1) given in the following
lemma, where, R(k, n, j) =P(¥(X)>j)=P;;j=
0,1,2,...,M.

The next lemma evaluates the static
performance measures for a general (SM) k/n:G
system, where: Rj(k, n, 1) = P(P(X) =1);j=
1,2,...,M, is the reliability function of a binary
k/n:G system with the structure function @
defined on X, X; € S".

Lemma (2.4) Given a (SM) k/n:G system with
structure function ¥ having a binary structure

function @ of a binary k/n:G system, then:
1) For each j, j =1,2,....M, we have: R(k, n, j)
= P(¥(X) 2 j) = PA®(X) = 1) = E &(X))
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= Ry(k,n,1) =R;(B(j)).

1_)(.]) = (PI(])’ PZ(])& 9 Pn(]))

Py= Pr(LP(X) = 0) =1- Rl(k’nal)a
P/: r(\P(X):] ):&(kana 1 )_1{j+l(k9nv 1 );
=12, M—1,

PM = Pr(qJ(X) = M) = RM(k’nal)a

M M
h= ZR/(kanal) = ZR (k,n, J) .
j=1

proof. | 1) Follows dé;mition (2.2).

2) Py = P¥X) = 0) = P(®X) = 0)
=1-P(D(X1)=1)=1-Ry(k, n, 1).

3) From lemma (2.3), we have:

P,=P, (¥(X) = j) = PA [O(X)) — BX;-)] = 1) =
E [O(X)) — ®(Xj+1)] = EQ(X)) — EO(X;+1)

= Rj(k, n, 1) - Rj+1(k, n, 1)
4) Py=P(¥(X)=M)= P, (O(Xn)= 1)=Ry(k, n,1).

5) FEWX)EY. 0(X)= Y E®(X).
j=1

This lemma shows clearly that the stochastic
performance measures of both systems, the
(SM) k/n:G and the binary k/n:G, are closely
related. This relation makes it easy to evaluate
the performance  distribution and the
performance function of the (SM) k/n:G system
from the binary k/n:G system, simply by
employing the formula: R(k, n, j) = P(¥(X) >
.]) = Rj(k’ 1’1,1) :Pr((D(XJ) = 1),.] :1’2""’ M.

3. Generalized multistate k-out-of-n:g
systems

Huang et al [2] proposed the following
definition of generalization
Definition (3.1) A multistate system with
multistate components is called a generalized
multistate k/n:G system iff for each j; j = 1,
2,...., M, ¥(X) > j if there exists an integer
value [; [ =], j+1, ..., M, such that at least &
components are in state > /.

Note that, in this definition, the &; do not have
to the same for different system states j;j
=1,2,...,M. This means that the structure of this
system can be different for different system state
levels. Generally speaking k; values are not
necessarily in a monotone ordering. As a special
the constant case, when k; is a constant, that is;
k; = k; =...= ky = k, say, the structure of the
system is the same for all state levels. This
reduce the definition of the generalized
multistate k/n:G system to the definition of the
(SM) k/n:G system.

We shall be particularly interested in the
following case given by Huang, where all the
concepts and results of a binary k/n:G system,
again, can be easily extended.

Where,

2)
3)

4)
5)

J=1
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Definition (3.2) A generalized multistate k/n:G
system is called an increasing generalized
multistate k/n:G system, denoted by (IGM)
k/n:G system, iff: ki <k, <...<ky.

In this case, for the system to be in a higher
state level > j, a large number of components
must be in state > j. That is, an increasing
requirement on the number of components that
must be in a certain state or above for the system
to be in a higher state or above. That is why it is
called an (IGM) k/n:G system.

For an (IGM) k/n:G system we have the
following lemma.

Lemma (3.1) When k; < k;, < ... < ky , the
definition (3.2) of a generalized multistate k/n:G
system is equivalent to: VX; X€d" and Vj;
=1, 2,..., M, we have : ¥(X) >j iff 3 at least k;
components are in state > j.

Proof. For a given state vector X, let N; be the
number of components in X that are in state > j,
so we have: N; 2Njy; >2...>2Ny.

The definition (3.1) can be rephrased as ¥(X) >
j iff at least one of the following inequalities is
satisfied: ]Vj > kj s ]vj+1 > kﬁ] s Ny >k
Assume that for some p; j <p <M, that N, > k,.
Then we have: N;> N, >k, > k;.

Hence, Y(X)>jiff N;>k;.

Thus, based on the above lemma and as far as
state level j; j=1, 2, ..., M, is concerned: if at
least k; components are in state > j then these
components can be considered “functioning”,
while the system be in state > j the system is
considered to be “functioning”. We will suggest
an alternative equivalent definition to the (IGM)
k/n:G system. To do this, again, let for all j; j=1,
2,...Mandforall X, X €d":

X= (Xij, Xy, .., X, )be a random state vector of
a binary indicator functions Xj ; i = 1, 2,..., n,
such that:

[ugxizj

0iff X ;< Js

That is, the state levels of each component i;
i=1,2,...,n, are divided in two separate groups:
The functioning states {j, j+1,....M} and the
failure states {0,1,..., j—1}, i.e. component i
working if X; >j (Xi=1) and failed if X; < j
(Xi= 0). Next, let ®;; j =1, 2,..., M,be a binary
structure function defined on X; such that ;

hﬁ(ng/ 2 kjakj = 1,2,...,11,

X)={

Y Xy <k;
i=1
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That is, for each j; j=1,2, ..., M, ®; (X)) =1iff
at least k; components are in state > j.

Notice that ®; constitute a binary structure
function of a binary k/n:G system, and they
have different system structure for different
system state levels j; j=1, 2,..., M.

From this construction we suggest the
following equivalent definition to the given
(IGM) k/n:G system.

Definition (3.3) A multistate system with
multistate components and a structure function
Y is said to be an (IGM) k/n:G system iff for j; j
=1,2,..,M,and all X; X €4d"and X; €,
there exists a binary k;/n:G system with structure
function ®; such that the following relation is
satisfied; Y(X)>j] < @;(X)=1
Before we proceed further, it is worth to

mention that the above definition is consistent
with the general definition of a multistate
coherent system suggested by Natvig [5] were
most of the theory for the traditional binary
coherent system can be extended to this system.
Thus, most of the following can be considered
as consequences of the Natvig proposal, where it
is extensively studied by Raheem [6].

The binary structure functions ®j; j=1, 2,..., M,
are with the following property.
Lemma (3.2) Given an (IGM) k/n:G system.
Then for all X; X €d" we have:
D; (X)) = Djer (Xj1); j=1, 2, ..., M—1.
Proof. For a given X €d", let ®j.; (X;11) =1, to
show that ®; (X;) =1.

Since, @ji1 (Xji1) =1 iff i)(ij+1 > ki1, and X >
i=1

Xi+1, we have:

n n
ZiXU = ZiX[jH
i= i=

> ks> k.

Hence, > X, >k or & (X)) =1.
i=1

The next lemma gives unique
correspondence between ¥ and @;; =1,2,..., M.
Lemma (3.3) Given an (IGM) k/n:G system,
then VX, X €d" we have:

) YX)<j o BX)=0;]=12,...,M,
2) ¥X)=0 & (X)) =0,
3) WX) =je [ B (X) —Drr (Xi)]= 15
j=1,2,...,M-1,
YX) =M & & Xy =1,

M
YX) =2 (Xy.

Jj=1
Proof. 1) Follows from the definition (3.3).
)P (X)=0 ¥X) <1 < ¥X)=0.
3) From lemma (3.3.2), we have:

4)
5)

-kvi
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[@; X) — P Xi)] =1 & & (X) =1 A
@1 (Xje1) = 0.

But, @ (X)=1 o ¥(X)>j,and Bps (Xo1)
=0 o YX)<j+l < ¥X)<].

Hence, j<¥(X)<j or Y(X)=].

4) Follows from the definition (3.3.3).

5) Since, ¥(X) = j & & (X))~ 1 A Dy (Xp1)
=0, it follows from lemma (3.2) that:

Pp(X,) =1forp=1,2,...,j-1, and s (X,) =
1 for s=j+2,j+3, ..., M.

M
Hence, we have: Y(X)= > &;(X))
Jj=1

From this lemma we have: starting out
with®;; j = 1, 2,..., M, then ¥ is uniquely

determined and vice-versa.

Next, in terms of the static performance
distribution of multistate components P; or P(j);
i=1,2,...,n; j=1,2,...,M, we consider the problem
of evaluation the static stochastic performance
measures of an (IGM) k/n:G system, namely, the
exact and bounds of :

1) The system performance distribution
PiorP(G);j=0,1,2, ..., M,
2) The system performance function
h=E Y(X).
To do this, define: R(k;,nj) = P(¥(X) > j) =
P();=1,2,...M, and, Ri(k; , n, 1) = P,( ®; (X) =
H=P;j=1,2,...,M.

The following lemma evaluates the static
performance measures for an (IGM) k/n:G
system.

Lemma (3.4) Given an (IGM) k/n:G system
with structure function ¥ having a binary
structure function @; of a binary &; /n:G system;
i=1,2,....M, then:
1) Foreachj;j=1,2,...,M, we have:
Rk, n, )= PLEX) > ) =P (X)) = 1)
=E & (X)) =Rk .0, 1) =R ().
Where, 1_)(]) = (PI (J)’ P2(j)"'-a Pn (]))
2) Pp=P,(¥Y(X)=0)=1-Ri(k;,n, 1),
3) =P ¥X) =)= Rkn,l) -
Rj+1 (kj+1 , n, 1), _] = 1, 2, Ceey M_l,
Py =P, (¥(X) =M) = Ru( kyn, 1),

M M )
=2 RnD= 3 Rkn)
j=1 j=

proof. Similar to proof of lemma (2.4).

The above relations between the (IGM) k/n:G
system and the binary k/n:G system makes it
easy to evaluate the performance distribution
and the performance function of the (IGM)
k/n:G system, simply by employing the formula:
P(G) =R(k;, n, j) = Rj( k;,n, 1);j=1,2, ..., M.

4)
5)
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This suggests the following evaluation algorithm 350 PRDTMP = PRDTMP +

that can be summarized by the steps: D(ILOC)*PROD(JTEMP)
Step-1:Given n, M, P;;i=1,2,...,n; j=0,1,2,..., M. 360 PROD(JTEMP) = PRDTMP
Step-2: Calculate P(j) ; i=1,2,...,n;j=1,2,..., M. 370 NEXTJ

Step-3: Given k;; j = 1, 2,..., M; treat for an state
level j the P(j) as P; in the algorithm given in
Belfore approach [7] to calculate Ri( ;,n, 1).

Step-4: The results are R(k;, n, j); j = 1,2, ..., M.
Step-5: Both the performance distribution P=
P.(Y(X)=)); j=0,1,2,...,M, and the performance

380 S(I) = PROD(JTEMP)
390 SUMS = SUMS + S(I)

400 NEXT I

410 S = ALPHA * SUMS

420 PRINT"RELIABILITY FUNCTION =
R(H;K;IV’IV;N;H’H;R;"): H;S

function 4 are easy to compute through: 430 B(R)=S
1) Pp=1-R(k;, n, 1). 440h=h+S
2) P, =Rk, n,j) - Rlksr 0, j+1):j= 1,2, 450NEXTR

Y el
3) PM: R(kM, n, M)

M
4) h = z 1{j(kjanal)
j=1

460 C(1)=1-B (1)

470 FOR I=1 TO M—-1

480 C(I+1)= B(D—B(I+1)

490 C(MM) =B (M)

500 FOR I=1 TO MM

5107 =1-1

520 PRINT “At level “;J

530 PRINT “The performance distribution is”;

Based on the above algorithm we give in the
next computer program in “BASIC” language,
10 INPUT "N="; N
20 INPUT " the maximum state level="; M

30 MM=M+1 C(I)

40 DIM D(N), PROD(N), A(N), S(N), >40 NEXT 1 o
G(N,M), H(N,M), B(M), C(MM) 550 PRINT “The performance function is”; h

50 FORI=1TON 560 END

60 FORJ=1TOM References o

70 PRINT "P(";L;",";J;")=";: INPUT G(LJ) 1. AL-Neweihi, E., Proschan, F., and
80 NEXTJ o ’ ’ Sethuraman, J.1978. Multistate coherent
90 NEXTI system. Journal of applied probability, 15,
100 FOR1=1TON pp:675-688. . '
110FORJ=1TOM 2. Huang, J. et al. 2000. Generalized multi-
120FORT=JTOM state  k-out-of-n:G  systems, [EEE
130 H(L,J) = H(L,J) + G(I,T) Transactions on Reliability, 4(1), pp:105-
140 NEXT T 111

150 NEXT J 3. Huang, J. et al. 1986.. Near-Catastrophe at
160 NEXT I Le-Bugey Journal of Nature, No.(321),
170 DIM A(N+1) pp:462. .

180 FOR R=1 TOM 4. Huang, J. et al. 2003. Multi-state
190 PRINT "K(";R;")="; INPUT K consecutive  k-out-of-n  systems, [EE

200 ALPHA = 1
210 FOR1=1TON

220 P = H(LR)

230 D(I) = (1-P)/P

240 ALPHA = ALPHA*P

Transactions, 35, pp:527-534.

5. Natvig, B.1982. Two suggestions of how to
system,

define a multi-state coherent
Applied probability, 14, pp:391-402.

6. Raheem M. A. F. 2011. On the reliability of

250 PROD(I) = 1 multistate  systems  with  multistate
260 NEXT I components, M.Sc. thesis, College of
270 SUMS = 1 science University of Baghdad,.
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