

Orthogonal Derivations and Orthogonal Generalized Derivations on ΓM-Modules

Salah Mehdi Salih

Department of mathematics, College of Education, Al-Mustansiryah University, Baghdad, Iraq

Abstract

Let M be Γ -ring and X be Γ M-module, Bresar and Vukman studied orthogonal derivations on semiprime rings. Ashraf and Jamal defined the orthogonal derivations on \Box -rings M. This research defines and studies the concepts of orthogonal derivation and orthogonal generalized derivations on Γ M -Module X and introduces the relation between the products of generalized derivations and orthogonality on Γ M -module.

Mathematics Subject Classification: 16W30, 16W25, 16U80.

Keywords: semiprime Γ M -module, derivation, orthogonal derivation, generalized derivation, orthogonal generalized derivation.

المشتقات المتعامدة وإعمام المشتقات المتعامدة على المقاسات من النمط - TM

صلاح مهدي صالح

قسم الرياضيات، كلية التربية، الجامعة المستنصرية، بغداد، العراق

الخلاصة

لتكن M حلقه من النمط $-\Gamma \in X$ مقاس من النمط -M درس كل من Bresar و Bresar المشتقات المتعامدة على الحلقات شبه الاولية وبينما درس كل من Ashraf و Jamal المشتقات المتعامدة على الحلقات من النمط $-\Gamma$. في هذا البحث قدمنا ودرسنا المفاهيم التالية الاشتقاق المتعامد واعمام الاشتقاق المتعامد على المقاس X من النمط $-\Pi$ وقدمنا العلاقة بين اعمام جداء المشتقات والتعامد على المقاسات من النمط $-\Pi$.

1. Introduction

Nobusawa [1] presented the definition of Γ -ring and generalized by Barnes [2] as following:

Let M and Γ be additive abelian groups. Suppose that there is a mapping from $M \times \Gamma \times M \rightarrow M$ (the image of (a, α, b) being denoted by $a \alpha b$, $a, b \in M$ and $\alpha \in \Gamma$) satisfying for all $a, b, c \in M$, $\alpha \in \Gamma$:

i) $(a+b)\alpha c= a\alpha c+ b\alpha c$ $a(\alpha + \beta)c = a\alpha c+ a\beta c$ $a\alpha (b+c) = a\alpha b+ a\alpha c$ ii) $(a\alpha b)\beta c = a\alpha (b\beta c)$ Then M is Γ -ring. M is said to be 2-torsion free if 2a = 0 implies a=0 for all $a \in M$. Besides, M is called a prime Γ -ring if for all $a,b \in M$, $a\Gamma M \Gamma b = (0)$ implies either a=0 or b=0, M is called semiprime if $a\Gamma M \Gamma a = (0)$ with $a \in M$ implies a=0. Note that every prime Γ -ring is obviously semiprime [3].

Let M be a Γ -ring and X be an additive abelian group, X is a left Γ M- module if there exists a mapping $M \times \Gamma \times X \rightarrow X$ (sending (m,α,x) into max where $m \in M$, $\alpha, \beta \in \Gamma$ and $x \in X$) satisfying for all $m, m_1, m_2 \in M$, $\alpha, \beta \in \Gamma$ and $x, x_1, x_2 \in X$ [4]: i) $(m_1+m_2)\alpha x = m_1\alpha x + m_2\alpha x$ ii) $m(\alpha + \beta)x = m\alpha x + m\beta x$

iii) ma(x_1+x_2)=max₁+max₂

iv) $(m_1 \alpha m_2) \beta x = m_1 \alpha (m_2 \beta x)$

X is called a right Γ M- module if there exists a mapping $X \times \Gamma \times M \rightarrow X$, X is called ΓM module if X is both left and right Γ M- module, X is called a left prime (right prime) if $a\Gamma M\Gamma b=(0)$ then a=0 or b=0, $a\in M$, $b\in X$ $(a \in X, b \in M)$ respectively and X is prime if its both left and right prime. X is called semipeime if $a\Gamma M\Gamma a = (0)$ where $a \in X$ implies a=0, X is called 2-torsion free if 2x=0 implies x=0 for all $x \in X$ [4]. Jing [5] defined a derivation on Γ -ring as following, an additive map $d: M \rightarrow M$ is said to be a derivation of M if $d(a \alpha b) = d(a) \alpha b +$ $a \alpha d(b)$, for all $a, b \in M$ and $\alpha \in \Gamma$. Ceven and Ozturk [6] defined a generalized derivation on Γ -ring M as follows, an additive map D:M \rightarrow M is said to be generalized derivation on M if there exists a derivation d: $M \rightarrow M$ such that $D(a \alpha b) = D(a) \alpha b + a \alpha d(b)$, for all $a, b \in M$ and $\alpha \in \Gamma$.

Paul and Halder [4] defined a left derivation and Jordan left derivation of T-ring M onto Γ M-module X as follows d:M \rightarrow X is a left derivation if $d(a \alpha b) = a \alpha d(b) + b \alpha d(a)$, a Jordan left derivation $d(a \alpha a) = 2a \alpha d(a)$. Also Paul and Halder proved that every Jordan left derivation of Γ -ring M into Γ M-module is a left derivation. Salih [7] defined derivation and Jordan derivation on TM-module as follows $d: M \rightarrow X$ is derivation if а $d(a \alpha b) = d(a) \alpha b + a \alpha d(b)$, a Jordan derivation $d(a \alpha a) = d(a) \alpha a + a \alpha d(a)$ and proved that every Jordan derivation of Γ-ring M into ΓMmodule is a derivation as well as in [8] defined generalized derivation and Jordan generalized derivation as follow f: $M \rightarrow X$ is generalized derivation if there exist a derivation $d:M \rightarrow X$ such that $f(a \alpha b) = f(a) \alpha b + a \alpha d(b)$ and prove that every Jordan generalized derivation of Γ ring M into FM-module is a generalized derivation.

The study of orthogonal derivation in rings was initiated by Bresar and Vukman [9]. In fact, they obtained some results on orthogonal derivations in semiprime rings related to product of derivations. Ashraf and Jamal [10] defined and studied the orthogonal derivation on Γ -rings and generalized the result of Bresar and Vukman into Γ -ring. Argac , Nakajima and Albas [11] presented the definition of orthogonal generalized derivations on rings.

In the present paper, we define and study the concepts of orthogonal derivations and orthogonal generalized derivations on Γ M-module and obtained some results parallel to those earlier obtained by Bresar, Vukman in [9], Argac, Nakajima and Albas in [11].

2. Orthogonal Derivations on ΓM-Module:

In this section, this research presents and studies the definition of orthogonal derivations on Γ M-module, we prove that if M is a Γ -ring and X a 2-torsion free semiprime Γ M-module. Suppose that d and g are derivations of M into X. If

 $d^2=g^2$ or $d(x)\alpha d(x) = g(x)\alpha g(x)$ for all $x \in M$ and $\alpha \in \Gamma$, Then d+g and d-g are orthogonal.

Definition 2.1:

Let M be a Γ -ring and X a Γ M-module, the derivations d and g of M into X are said to be orthogonal if

 $\begin{array}{lll} d(x)\Gamma M\Gamma g(y) \ = \ g(y)\Gamma M\Gamma d(x) \ , \ for \qquad all \\ x,y \in M. \end{array}$

Now, we give an example of orthogonal derivation:

Example 2.2:

Let d and g be derivations of a ring R, M = Z $\oplus Z$ and $\Gamma = Z \oplus Z$ where Z is the set of integer numbers, then M is Γ -ring, $X=R \oplus R$, then X is Γ M-module we define d₁ and g₁ on X by

 $d_1((x,y)) = (d(x), 0) \text{ and } g_1((x,y)) = (0, g(y)) \text{ for all } x, y \in \mathbb{R}.$

then d_1 and g_1 are orthogonal.

Now we give the following lemma we need later:

Lemma 1:

Let M be Γ -ring and X a 2-tortion free semiprime Γ M-module and a,b the elements of X. Then the following conditions are equivalent: i) a Γ M Γ b=(0)

ii) $b\Gamma M\Gamma a=(0)$

iii) $a\Gamma M \Gamma b + b\Gamma M \Gamma a = (0)$

If one of these conditions are fulfilled then $a\Gamma b=b\Gamma a=(0)$.

Proof:

(i) \rightarrow (ii) Suppose that a Γ M Γ b=(0).

Then $(b\Gamma M\Gamma a)$ $\Gamma M\Gamma (b\Gamma M\Gamma a) =(0)$, by semiprimeness of X we get $b\Gamma M\Gamma a=(0)$.

(ii) \rightarrow (iii) Suppose that b Γ M Γ a=(0), that is a Γ M Γ b=(0), this implies a Γ M Γ b+b Γ M Γ a=(0). (iii) \rightarrow (i) Suppose that a Γ M Γ b+b Γ M Γ a=(0) that

is $a\Gamma M \Gamma b = -b\Gamma M \Gamma a$

Let m and m' be two arbitrary elements of M. Then by hypothesis, we have:

 $(a\Gamma m\Gamma b)\Gamma m'\Gamma(a\Gamma m\Gamma b)$

=- ΓmΓa) Γm'Γ(aΓmΓb)

=-($b\Gamma(m\Gamma a\Gamma m')\Gamma a$) $\Gamma m\Gamma b$

= $(a\Gamma(m\Gamma a\Gamma m') \Gamma b) \Gamma m\Gamma b$

 $=a\Gamma m\Gamma(a\Gamma m'\Gamma b)\Gamma m\Gamma b$

 $=-a\Gamma m\Gamma(b\Gamma m'\Gamma a)$ ΓmΓb

= - $(a\Gamma m\Gamma b)\Gamma m'\Gamma(a\Gamma m\Gamma b)$

Thus $2((a\Gamma m\Gamma b) \Gamma m'\Gamma(a\Gamma m\Gamma b))=0$, since X is 2-torsion free, therefore, $(a\Gamma m\Gamma b)\Gamma m'\Gamma(a\Gamma m\Gamma b) = 0$. By the semiprimeness of X, then $a\Gamma m\Gamma b=0$ for all $m \in M$. Hence we get, $a\Gamma m\Gamma b = b\Gamma m\Gamma a = 0$ for all $m \in M$.

Lemma 2:

Let X be a semiprime Γ M-module. Suppose that additive mappings f and h of Γ -ring M into X satisfy $f(x)\Gamma$ M Γ h(x)=(0), for all $x \in$ M then $f(x)\Gamma$ M Γ h(y)=(0), for all $x, y \in$ M.

Proof:

Suppose $f(x) \alpha z \beta h(x)=0$ for all $x,z \in M$ and $\alpha, \beta \in \Gamma$. On linearizing we get : $0=f(x+y)\alpha z\beta h(x+y)$ =(f(x)+f(y)) $\alpha z \beta$ (h(x)+h(y)) $=f(x) \alpha z \beta h(x)$ $+f(x) \alpha z \beta h(y)$ + $f(y) \alpha z \beta h(x) + f(y) \alpha z \beta h(y)$ $= f(x) \alpha z \beta h(y) + f(y) \alpha z \beta h(x)$ Therefore by our assumption we get $f(x) \alpha z \beta h(y) \gamma t \delta f(x) \alpha z \beta h(y)$ =- $f(x) \alpha z \beta h(y) \gamma t \delta f(y) \alpha z \beta h(x)$ =0 Since X is semiprime, this implies $f(x) \alpha z \beta h(y)=0$ for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$.

In the following lemmas we give the properties of orthogonal derivation on Γ M-module:

Lemma 3:

Let X be a 2-tortion free semiprime Γ Mmodule and let d and g be derivations of Γ ring M into X. Derivations d and g are orthogonal if and only if $d(x) \alpha g(y)+g(y) \alpha d(x)$ =0, for all $x,y \in M$, $\alpha \in \Gamma$. **Proof**:

Suppose $d(x) \alpha g(y) + g(x) \alpha d(y) = 0$, for all $x, y \in M, \alpha \in \Gamma$. Replace y by y βx , to get $0 = d(x) \alpha g(y \beta x) + g(x) \alpha d(y \beta x)$ $d(x) \alpha g(y) \beta x + d(x) \alpha y \beta g(x)$ + $g(x) \alpha d(y) \beta x + g(x) \alpha y \beta d(x)$ $= d(x) \alpha y \beta g(x) + g(x) \alpha y \beta d(x)$ Hence by Lemma 1 $d(x) \alpha y \beta g(z) = 0,$ for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$. Therefore, d and g are orthogonal. Conversely, if d and g are orthogonal, then $d(x) \alpha z \beta g(y) = 0 = g(y) \alpha z \beta d(x).$ Therefore by Lemma 1, $d(x) \alpha g(y) = 0 = g(y) \alpha d(x).$ This implies that $d(x) \alpha g(y) + g(y) \alpha d(x) = 0$, for all $x, y \in M$ and $\alpha \in \Gamma$.

Lemma 4:

Let M be Γ -ring and X a 2-torsion free semiprime Γ M-module. Suppose d and g are derivations of M into X. Then d and g are orthogonal if and only if dg=0.

Proof:

Suppose that dg=0, and x, y \in M, $\alpha \in \Gamma$. $0=dg(x \alpha y) = d(g(x) \alpha y + x \alpha g(y))$ $=dg(x) \alpha y + g(x) \alpha d(y) + d(x) \alpha g(y) + x \alpha dg(x)$ $= g(x) \alpha d(y) + d(x) \alpha g(y)$ Therefore by Lemma 3, d and g are orthogonal. Conversely, suppose that d and g are orthogonal. Then $d(x) \alpha y \beta g(z) = 0$ for all x, y, z \in M , $\alpha, \beta \in \Gamma$. Hence $0 = d(d(x)\alpha y\beta g(z))$ $= d^2(x) \alpha y \beta g(z) + d(x) \alpha d(y) \beta g(z) + d(x) \alpha y \beta dg(x)$ Then $d(x) \alpha y \beta dg(x) = 0$

Replacing x by g(x) and using semiprimeness of X, we find that dg(z)=0 for all $z \in M$, hence dg=0.

Lemma 5:

Let X be 2- torsion free semiprime Γ M-module. Suppose d and g are derivations

of Γ -ring M into X, then d and g are orthogonal if and only if dg + gd =0.

Proof:

Suppose that dg + gd =0. Then we have for all x,y \in M, α , $\beta \in \Gamma$

0= (dg+gd)(xay) =g(d(x)ay + xad(y)) + d(g(x)ay + xag(y)) =gd(x)ay + d(x)ag(y) + g(x)ad(y) + xagd(y) + dg(x)ay + g(x)ad(y) + d(x)ag(y) +xadg(y) =(gd + dg)(x)ay + 2(d(x)ag(y) + g(x)ad(y)) + xa(gd + dg)(y) = 2(d(x)ag(y) + g(x)ad(y))Since X is 2-torsion free d(x)ag(y) + g(x)ad(y) = 0hence by Lemma 3, d and g are orthogonal. Conversely, since d and g are orthogonal, then by Lemma 4, dg = 0 = gd, therefore dg + gd = 0.

Lemma 6:

Let M be Γ -ring and X a 2-tortion free semiprime Γ M-module. Suppose d and g are derivations of M into X. Then d and g are orthogonal if and if dg is a derivation.

Proof:

Since d and g are derivations, we have for all $x, y \in M, \alpha \in \Gamma$

 $dg(x\alpha y) = dg(x)\alpha y + x\alpha dg(y) \quad \dots(1)$

on the other hand

 $dg(x\alpha y) = d(g(x)\alpha y + x\alpha g(y))$

 $= dg(x)\alpha y + g(x)\alpha d(y) + d(x)\alpha g(y) + x\alpha dg(y)...(2)$

Comparing (1) and (2) we have

 $g(x)\alpha d(y) + d(x)\alpha g(y) = 0$

Hence, by Lemma 3, d and g are orthogonal.

Conversely, suppose d and g are orthogonal, by Lemma 4 we have dg=0 therefore dg is a derivation. \blacklozenge

Corollary 7:

Let M be Γ -ring and X a 2-tortion free semiprime Γ M-module. If d a derivation of M into X such that d² is also derivation, then d=0.

Lemma 8:

Let X be a semiprime Γ M-module. Suppose that d and g are derivations of Γ -ring M into X. Then d and g are orthogonal if and only if there exists a,b \in M and

 $\alpha, \beta \in \Gamma$ such that $dg(x) = a\alpha x + x \beta b$ for all $x \in M$.

Proof:

Suppose that $dg(x) = a\alpha x + x \beta b$ for all $x \in M$. Replacing x by x δ y we have $dg(x \delta y) = a\alpha x \delta y + x \delta y \beta b$ $d(g(x) \delta y + x \delta g(y)) = a\alpha x \delta y + x \delta y \beta b$

 $dg(x) \delta y + g(x) \delta d(y) + d(x) \delta g(y) +$ $x \delta dg(y) = a\alpha x \delta y + x \delta y \beta b$ $x \delta b \beta y + x \gamma a \alpha y + d(x) \delta g(y) + g(x) \delta d(y)$ = 0, for all $x \in M$ and $\delta \in \Gamma$(1) Replacing y by $y \delta x$ in (1), we have $0 = x \beta b \gamma y \delta x + x \gamma a \alpha y \delta x + d(x) \gamma$ $g(y \delta x) + g(x) \gamma d(y \delta x)$ = $x \beta b \gamma y \delta x + x \gamma a \alpha y \delta x + d(x) \gamma g(y) \delta x$ $+d(x) \gamma y \delta g(x)+g(x) \gamma d(y) \delta x+g(x) \gamma y \delta d(x).$ $=(x \beta b \gamma y +$ $x \gamma a \alpha y +$ $d(x) \gamma g(y)$ $g(x) \gamma d(y) \delta x + d(x) \gamma y \delta g(x) + g(x) \gamma y \delta d(x).$ Hence using (1), we find that $d(x) \gamma y \delta g(x) + g(x) \gamma y \delta d(x) = 0$ By Lemma 1, we have $d(x) \gamma y \delta g(z) = 0.$ Thus, d and g are orthogonal. Conversely, since d and g are orthogonal, dg =0, so we can choose a=b=0 and $\alpha, \beta \in \Gamma$ so that

 $dg(x) = a\alpha x + x \beta b.$

Corollary 9:

Let X be a semiprime Γ M-module. Suppose that d and g are derivations of Γ -ring M into X. Then d and g are orthogonal if and only if there exists $a,b \in M$ and $\alpha, \beta \in \Gamma$ such that $d^2(x) =$ $a\alpha x + x \beta b$ for all $x \in M$ then d=0.

Theorem 10:

Let M be a Γ -ring and X be a 2-torsion free semiprime Γ M-module. Suppose that d and g are derivations of M into X. Suppose $d^2=g^2$. Then d+g and d-g are orthogonal.

Proof:

Suppose $d^2=g^2$, for all $x \in M$ ((d-g)(d+g) + (d+g)(d-g))(x) = (d-g)(d+g)(x) + (d+g)(d-g)(x) $= d^2(x) + dg(x) - gd(x) - g^2(x) + d^2(x) - dg(x) + gd(x) - g^2(x)$ = 0

Therefore (d-g)(d+g) + (d+g)(d-g) = 0, hence by Lemma 5, d+g and d-g are orthogonal.

Theorem 11:

Let M be a Γ -ring and X be a 2-torsion free semiprime Γ M-module. Suppose that d and g are derivations of M into X. If $d(x)\alpha d(x) =$ $g(x)\alpha g(x)$ for all $x \in M$ and $\alpha \in \Gamma$, then d+g and d-g are orthogonal.

Proof:

For all $x \in M$ and $\alpha \in \Gamma$

 $(d-g) (x) \alpha (d+g)(x) + (d+g)(x) \alpha (d-g)(x)$ $= (d(x) - g(x))\alpha(d(x) + g(x)) +$ $(d(x) + g(x))\alpha(d(x) - g(x))$ $= d(x) \alpha d(x) + d(x) \alpha g(x) - g(x) \alpha d(x)$ $g(x) \alpha g(x) + d(x) \alpha d(x) - d(x) \alpha g(x) +$ $g(x) \alpha d(x) - g(x) \alpha g(x)g(x) \alpha g(x) = 0$ $Hence, by Lemma 5, then d+g and d-g are orthogonal. <math>\blacklozenge$

3. Orthogonal Generalized Derivations on Γ**M-Module**:

In this section we generalize the results of section two by present the definition of orthogonal generalized derivations on Γ M-module, also we introduce the conditions which mark derivation and generalized derivation on Γ M-module are orthogonal we start by the following definition:

Definition 3.1:

Two generalized derivations D and G with derivations d and g respectively of Γ -ring M into Γ M-module X are said to be orthogonal if

 $D(x)\Gamma M\Gamma G(y) = 0 = G(y)\Gamma M\Gamma D(x)$, for all $x, y \in M$.

Now, we give the example of orthogonal generalized derivation

Example 3.2:

Let X, M and Γ as in Example 2.2 and D, G are generalized derivations on R we define D_1 and G_1 by

 $D_1((x,y)) = (D(x), 0)$ and $G_1((x,y)) = (0, G(y))$, for all $x, y \in R$

Then D_1 and G_1 are orthogonal generalized derivations.

In the following theorem we give the relations which mark the derivation and generalized derivation are orthogonal on Γ M-module:

Theorem 12:

If D and G are orthogonal generalized derivations and d, g are derivations associative with D and G respectively of Γ -ring M into Γ M-module X then the following relations hold:

i) $D(x) \alpha G(y) = G(x) \alpha D(y) = 0$, hence $D(x) \alpha G(y) + G(x) \alpha D(y) = 0$, for all $x, y \in M$, $\alpha \in \Gamma$.

ii) d and G are orthogonal, and $d(x) \alpha G(y) = G(y) \alpha d(x) = 0$, for all $x, y \in M$, $\alpha \in \Gamma$.

iii) g and D are orthogonal, and $g(x) \alpha D(y) = D(y) \alpha g(x) = 0$, for all $x, y \in M$, $\alpha \in \Gamma$.

iv) d and g are orthogonal derivations.

Proof:

i)By the hypothesis we have

D(x) α z β G(y) = 0, for all x,y,z \in M, α , $\beta \in \Gamma$. Hence by Lemma 1 we get D(x) α G(y) = G(x) α D(x) = 0, for all x,y \in M, $\alpha \in \Gamma$.

ii) By $D(x) \alpha G(y) = 0$ and $D(x) \alpha z \beta G(y) = 0$, for all x,y,z \in M, $\alpha, \beta \in \Gamma$, we get $0 = D(r \beta x) \alpha G(y) = (D(r) \beta x + r \beta d(x))$ $\alpha G(y)$ = D(r) $\beta x \alpha G(y)$ + r $\beta d(x) \alpha G(y)$ = $r \beta d(x) \alpha G(y)$, for all x,y,r $\in M$, $\alpha \in \Gamma$. Then $d(x) \alpha G(y) = 0$, for all $x, y \in M$, $\alpha \in \Gamma$. Then we have $0 = G(y) \alpha D(r \beta x) = G(y) \alpha (D(r) \beta x +$ $r \beta d(x)$ = G(y) α D(r) β x + G(y) α r β d(x) = G(y) α r β d(x) for all x,y,r \in M, α , $\beta \in \Gamma$. Then by Lemma 1 we obtain $G(y) \alpha d(x) = 0$ for all $x, y \in M$, $\alpha \in \Gamma$. iii) $0 = D(x) \alpha G(m \beta y)$ = D(x) α (G(m) β y + m β g(y)) = $D(x) \alpha G(m) \beta y + D(x) \alpha m \beta g(y)$ = $D(x) \alpha m \beta g(y)$ for all $x, y, m \in M$, $\alpha, \beta \in \Gamma$. Then $d(x) \alpha G(y) = 0$ for all $x, y \in M$, $\alpha \in \Gamma$. Hence we have $0 = g(x \beta m) \alpha D(y)$ = $(g(x) \beta m + x \beta g(m)) \alpha D(y)$ $= g(x) \beta m \alpha D(y) + x \beta g(m) \alpha D(y)$ $= g(x) \beta m \alpha D(y)$ for all x,y,m $\in M$, $\alpha, \beta \in \Gamma$. Since by Lemma 1 we get $g(x) \alpha D(y) = 0$ for all $x, y \in M$, $\alpha \in \Gamma$. iv) We have $0 = D(x \alpha z) \beta G(y \alpha w)$ for all $x, y, z, w \in M$, $\alpha, \beta \in \Gamma$. = $(D(x) \alpha z + x \alpha d(z)) \beta (G(y) \alpha w + y \alpha g(w))$ = $D(x) \alpha z \beta G(y) \alpha w + D(x) \alpha z \beta y \alpha g(w) +$ $x \alpha d(z) \beta G(y) \alpha w + x \alpha d(z) \beta y \alpha g(w)$ By hypothesis and (ii), (iii) we get $x \alpha d(z) \beta g(y) \alpha w = 0$ for all $x, y, z, w \in M$, $\alpha, \beta \in \Gamma$. Hence d and g are orthogonal. Lemma 13: Let X be a semiprime IM-module and D be a

Let X be a semiprime Γ M-module and D be a generalized derivation of Γ -ring M into X with derivation d of M into X. If $D(x) \alpha D(y) = 0$, for all $x, y \in M$, $\alpha \in \Gamma$, then D = d = 0.

Proof:

By the hypothesis we have $0 = D(x) \alpha D(y \beta z)$ = D(x) α (D(y) β z + y β d(z)) = D(x) α D(y) β z + D(x) α y β d(z) = D(x) α y β d(z), for all x, y, z \in M, $\alpha, \beta \in \Gamma$. Hence by Lemma 1 we have $d(z) \alpha D(x) = 0$ all $x, z \in M, \alpha \in \Gamma$ Replacing x by x β z in last relation, we get $0 = d(z) \alpha D(x \beta z)$ $= d(z) \alpha (D(x) \beta z + x \beta d(z))$ = $d(z) \alpha D(x) \beta z + d(z) \alpha x \beta d(z)$ for all $x,z \in M, \alpha, \beta \in \Gamma$ By the semiprimeness of X, we obtain d = 0. $0 = D(x \beta y) \alpha D(y)$ = $(D(x) \beta y + x \beta d(y)) \alpha D(y)$ = D(x) β y α D(y) + x β d(y) α D(y) $D(x) \beta y \alpha D(y) =$ 0 Hence for all $x, y \in M, \alpha, \beta \in \Gamma$. By the semiprimeness of X, we obtain D = 0. Lemma 14:

Let D and G be generalized derivations of Γ ring M into Γ M-module X, with derivations d and g respectively. If the following relation hold for all x,y \in M and $\alpha \in \Gamma$.

i) $D(x) \alpha G(y) + G(x) \alpha D(y) = 0$ ii) $d(x) \alpha G(y) + g(x) \alpha D(y) = 0$ then D and G are orthogonal. **Proof**:

If we take x β z instead of x in (i) we get D(x β z) α G(y) + G(x β z) α D(y) = 0

 $(D(x) \beta z + x \beta d(z)) \alpha G(y) + (G(x) \beta z + x \beta g(z)) \alpha D(y) = 0$

$$D(x) \beta z \alpha G(y) + x \beta d(z) \alpha G(y) + G(x) \beta z \alpha D(y) + x \beta g(z) \alpha D(y) = 0$$

D(x) $\beta z \alpha G(y) + G(x) \beta z \alpha D(y) = 0$ for all x,y,z∈M and $\alpha, \beta \in \Gamma$. Thus by Lemma 1 we have D(x) Γ M Γ G(y) = G(x) Γ M Γ D(y) = 0, for all x,y∈M. ◆

Lemma 15:

Let X be 2-torsion free semiprime Γ Mmodule D and G are generalized derivations of Γ -ring M into X, with derivations d and g respectively, such that

 $D(x) \alpha G(y) = d(x) \alpha G(y) = 0$, for all $x, y \in M$ and $\alpha \in \Gamma$ then D and G are orthogonal. **Proof**:

If we take x β z instead of x in D(x) α G(y) = 0 we get $D(x \beta z) \alpha G(y) = 0$ $(D(x)\beta z + x\beta d(z))\alpha G(y) = 0$ $D(x) \beta z \alpha G(y) + x \beta d(z) \alpha G(y) = 0$ $D(x) \beta z \alpha G(y) = 0$ Thus by Lemma 1 we get D and G are orthogonal. Lemma 16: Let X be 2-torsion free semiprime TMmodule, D and G are generalized derivations of Γ -ring M into X, with derivations d and g respectively, such that $D(x) \alpha G(y) = 0$, for all $x, y \in M$ and $\alpha \in \Gamma$ and dG=dg=0. Then D and G are orthogonal. Proof: Since dg=0, we have $dG(x \alpha y) = 0$ $d(G(x)\alpha y + x\alpha g(y)) = 0$ $dG(x)\alpha y + G(x)\alpha d(y) + d(x)\alpha g(y) +$ $x \alpha dg(y) = 0$ $G(x) \alpha d(y) = 0$, for all $x, y \in M$ and

 $\alpha \in \Gamma .$ (1)Replacing x by x β z in (1) we have $G(x \beta z) \alpha d(y) = 0$ $(G(x) \beta z + x \beta g(z)) \alpha d(y) = 0$

 $G(x) \beta z \alpha d(y) + x \beta g(z) \alpha d(y) = 0$

 $G(x) \beta z \alpha d(y) = 0$, for all $x, y, z \in M$, $\alpha, \beta \in \Gamma$

Now, $d(y \gamma z) \alpha G(x) = 0$

 $(d(y) \gamma z + y \gamma d(z)) \alpha G(x) = 0$

$$d(y) \gamma z \alpha G(x) + y \gamma d(z) \alpha G(x) = 0$$

 $d(y) \gamma z \alpha G(x) = 0$

Hence by Lemma 1 we get $d(y) \alpha G(x) = 0$, for all x,y \in M and $\alpha \in \Gamma$. Thus by Lemma 15 we get D and G are orthogonal.

Lemma 17:

Let X be 2-torsion free semiprime Γ Mmodule, D and G are generalized derivations of Γ -ring M into X, with derivations d and g respectively, such that

DG is generalized derivation of Γ -ring M into X with derivation dg and $D(x) \alpha G(y)= 0$, for all $x,y \in M$ and $\alpha \in \Gamma$. then D and G are orthogonal.

Proof:

Since DG is generalized derivation with derivation dg

 $DG(x \alpha y) = DG(x)\alpha y + x\alpha dg(y)$ for all x,y \in M and $\alpha \in \Gamma$...(1)

on the other hand $DG(x \alpha y) = D(G(x) \alpha y + x \alpha g(y))$ =DG(x) α y+G(x) α d(y)+D(x) α g(y)+x α Dg(y) for all $x, y \in M, \alpha \in \Gamma$...(2) Compare (1) and (2) we get $G(x) \alpha d(y) + D(x) \alpha g(y) = 0$, for all $x, y \in M$ and $\alpha \in \Gamma$. Since $D(x) \alpha G(y) = 0$, for all $x, y \in M$ and $\alpha \in \Gamma$(3) Replacing y by y β z in (3) we get $D(x) \alpha G(y \beta z) = 0$ $D(x) \alpha (G(y) \beta z + y \beta g(z)) = 0$ $D(x) \alpha G(y) \beta z + D(x) \alpha y \beta g(z) = 0$ $D(x) \alpha y \beta g(z) = 0$, for all $x, y \in M$ and $\alpha \in \Gamma$. Now, replacing x by x β z in (3) we get $D(x \beta z) \alpha G(y) = 0$ $(D(x) \beta z + x \beta d(z)) \alpha G(y) = 0$ $D(x) \beta zD(x) \beta z + x \beta d(z) \alpha G(y) = 0$ $x \beta d(z) \alpha G(y) = 0$

Hence $d(z) \alpha G(y) = 0$, for all $x, y \in M$ and $\alpha \in \Gamma$.

Thus by Lemma 15 we get D and G are orthogonal. \blacklozenge

4. Products of Generalized Derivations on ΓM-Module:

In this section, we introduce and study the relation between the products of generalized derivations and orthogonality on Γ M-module. We state by the following theorem:

Theorem 18:

Let D and G are generalized derivations of Γ ring M into semiprime Γ M-module X, with derivations d and g respectively. Then DG is generalized derivation with derivation dg, if and only if D and g are orthogonal, also G and d are orthogonal.

Proof:

Assume that DG is a generalized derivation with derivation dg, we obtain

Compare (1) and (2) we get

 $\begin{aligned} G(x) \alpha \ d(y) + D(x) \alpha \ g(y) &= 0, \text{ for all } x, y \in M \\ \text{and } \alpha \in \Gamma, \text{for all } x, y \in M \text{ and } \alpha \in \Gamma \dots (3) \end{aligned}$

Replacing y by y β z in relation (3) where $z \in M$ and $\beta \in \Gamma$ we get $G(x) \alpha d(y \beta z) + D(x) \alpha g(y \beta z) = 0$ $G(x) \alpha (d(y) \beta z + y \beta d(z)) + D(x) \alpha (g(y) \beta z)$ $+ y \beta g(z) = 0$ $G(x) \alpha d(y) \beta z$ + $G(x) \alpha y \beta d(z)$ + $D(x) \alpha g(y) \beta z + D(x) \alpha y \beta g(z) = 0$ By using (3) we get $G(x) \alpha y \beta d(z) + D(x) \alpha y \beta g(z) = 0$, for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$(4) Since DG is generalized derivation with derivation dg. Therefore d and g are orthogonal by Lemma 16 and Theorem 12(iv). Thus we have: $0=G(x) \gamma g(z) \alpha y \beta d(z) + D(x) \gamma g(z) \alpha y \beta g(z)$

= $D(x) \gamma g(z) \alpha y \beta g(z)$, for all $x, y, z \in M$ and $\alpha, \beta, \gamma \in \Gamma$

Hence we get $D(x) \gamma g(z) \Gamma M \Gamma D(x) \gamma g(z) = 0$, for all $x, z \in M$ and $\gamma \in \Gamma$, by the semiprimeness of X, we obtain

 $D(x) \gamma g(z) = 0$, for all $x, z \in M$ and $\gamma \in \Gamma$.

Thus $D(x) \alpha y \beta g(z) = 0$, for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$, and by (4) we have

 $G(x) \alpha y \beta d(z) = 0$, for all $x,y,z \in M$ and $\alpha, \beta \in \Gamma$.

Assume that D and g are orthogonal also G and d are orthogonal.

Since D and g are orthogonal, we get

 $D(x) \alpha y \beta g(z) = 0, \text{ for all } x, y, z \in M \text{ and} \\ \alpha, \beta \in \Gamma. \qquad \dots (5)$

Substituting $r \gamma x$ for x in relation (5) we get

 $D(r \gamma x) \alpha y \beta g(z) = 0$

 $(D(r)\gamma x + r\gamma d(x))\alpha y\beta g(z) = 0$

D(r) $\gamma x \alpha y \beta g(z) + r \gamma d(x) \alpha y \beta g(z) = 0$

By (5) we get $r \gamma d(x) \alpha y \beta g(z) = 0$ for all $r,x,y,z \in M$ and $\alpha, \beta, \gamma \in \Gamma$.

Hence $d(x) \alpha \ y \beta \ g(z) = 0$, for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$. Thus by Lemma 16 and Theorem 12(iv) we conclude that dg is a derivation.

Moreover since $D(x) \alpha y \beta g(z) = 0$, for all $x,y,z \in M$ and $\alpha, \beta \in \Gamma$. we also get $D(x) \alpha g(z) \Gamma M \Gamma D(x) \beta g(z) = 0$ and so by semiprimeness of X we get $D(x) \alpha g(z) = 0$ for all $x,z \in M$ and $\alpha \in \Gamma$, similarly, since G and d are orthogonal, we have $G(x) \alpha d(y) = 0$ for all $x,y \in M$ and $\alpha \in \Gamma$. Thus we obtain

 $DG(x \alpha y) = DG(x) \alpha y + x \alpha dg(y)$, for all $x, y \in M$ and $\alpha \in \Gamma$, which means that DG is a generalized derivation with derivation dg. •

Corollary 19:

Let D and G be generalized derivations with derivations d and g respectively of Γ -ring into semiprime FM-module X. Then GD is a generalized derivation with derivation gd of M into X if and only if D and g are orthogonal, also G and d are orthogonal.

Corollary 20:

Let D be a generalized derivation with derivation d of Γ -ring M into semiprimeness Γ M-module X. If D² is a generalized derivation with derivation d^2 , then d=0.

Proof:

Since d^2 is a derivation, d and d are orthogonal by Lemma 17 and Theorem18. Hence we have $d(x) \alpha y \beta d(x) = 0$ for all x, $\alpha, \beta \in \Gamma$. Therefore $y \in M$, by the semiprimeness of X, we get $d(M) = 0 \blacklozenge$

Lemma 21:

Let D be a generalized derivation with derivation d of Γ -ring M into semiprimeness Γ M-module X. If $D(x) \alpha D(y) = 0$, for all $x, y \in M, \alpha \in \Gamma$, then D=d=0.

Proof:

Since $D(x) \alpha D(y) = 0$, for all $x, y \in M$, $\alpha \in \Gamma$, ...(1)

Replacing $y \beta z$ by y in (1) where $z \in M$, $\beta \in \Gamma$ we get

 $0 = D(x) \alpha D(y \beta z)$

= D(x) α (D(y) β z + y β d(z))

= $D(x) \alpha D(y) \beta z + D(x) \alpha y \beta d(z)$ for all $x, y, z \in M, \alpha, \beta \in \Gamma.$

Hence by Lemma 1 we get

 $d(z) \beta D(x)=0$ for all $x, z \in M$, $\beta \in \Gamma$(2)

Replacing x by x γ z in (2) we get

$$0 = d(z) \beta D(x \gamma z)$$

$$= d(z) \beta (D(x) \gamma z + x \gamma d(z))$$

$$= d(z) \beta D(x) \gamma z + d(z) \beta x \gamma d(z) \text{ for all}$$

 $x,z \in M, \beta, \gamma \in \Gamma.$

By the semiprimeness of X, we obtain d=0. Then we have:

 $0 = D(x \alpha y) \beta D(y)$

= (D (x)
$$\alpha$$
 y + x α d(y)) β D(y)

= D(x) α y β D(y) + x α d(y) β D(y), for all $x, y \in M, \alpha, \beta \in \Gamma.$

By the hypothesis and semiprimeness of X we get D = 0.

By using the similar argument we can prove the following lemma:

Lemma 22:

Let X be a 2-torsion free prime Γ M-module. If D and G are generalized derivations with derivations d and g respectively of M into X satisfy one of the following conditions:

i) DG is a generalized derivation with derivation dg on X.

ii) GD is a generalized derivation with derivation gd on X.

iii) D and g are orthogonal, and G and d are orthogonal.

Then D=d=0 or G=g=0.

References

- Nobusawa, N. 1964. "On a generalization 1. of the ring theory", Osaka Journal of Math., Vol. 1, pp:81-89.
- 2. Barnes, W. 1966. "On the *Γ*-ring of Nobusawa", Pacific Journal of Math. Vol.18, No.3, pp:411-422.
- Ozturk, M. Sapanci, M. Syturk, M. and Kim, 3. K. 2000. "Symmetric bi-derivation on prime gamma rings", Sci. Math. Vol. 3, No. 2, pp:273-281.
- 4. Paul, A. C. and Halder, A. K. 2009. "Jordan left derivations of two torsion free TMmodules" Journal of Physical Sciences, Vol. 13, pp:13-19.
- 5. Jing, F. 1987. "On derivations of Γ -ring", Qu Fu Shi Fan Daxue Xuebeo Ziran Kexue Ban, 13(4), pp:159-161.
- 6. Ceven, Y. and Ozturk, M. 2004. "On Jordan generalized derivation in gamma rings", Hacettepe Journal of Mathematics and statistic, Vol. 33, pp:11-14.
- Salih,S. M. "Jordan derivation of TM-7. modules", to appear.
- Salih, S. M. "Jordan generalized derivation 8. of *IM-modules*", to appear.
- 9. Bresar, M. and Vukman, J. 1989. "Orthogonal derivation and extension of a theorem of Posner" Radovi Matematicki Vol.5, pp:237-246.
- **10.** Ashraf, M. and Jamal, M. 2010. derivations in Γ -rings", "Orthogonal Advances in Algebra, Vol. 3, No:1, pp. 1-6.
- 11. Argac, N., Nakajima, A. and Albas, E. 2004. "On orthogonal generalized derivation of semiprime rings", Turk. Journal of Math. Vol. 28, pp:185-194.