

Orthogonal Derivations and Orthogonal Generalized Derivations on $Г \mathrm{M}-$ Modules

Salah Mehdi Salih
Department of mathematics, College of Education, Al-Mustansiryah University, Baghdad, Iraq

Abstract

Let M be Γ-ring and X be $Г \mathrm{M}$-module, Bresar and Vukman studied orthogonal derivations on semiprime rings. Ashraf and Jamal defined the orthogonal derivations on \square-rings M . This research defines and studies the concepts of orthogonal derivation and orthogonal generalized derivations on ГМ -Module X and introduces the relation between the products of generalized derivations and orthogonality on ГМ -module.

Mathematics Subject Classification: 16W30, 16W25, 16 U 80.
Keywords: semiprime ГМ -module, derivation, orthogonal derivation, generalized derivation, orthogonal generalized derivation.

ГM - المشتقات المتعامدة واعمام المشتقات المتعامدة على المقاسات من النمط

الخلاصة


```
الNتعامدة على الحلقات شبه الاولية وبينما درس كل من Ashraf و Jamal المشتقات الNتعامدة على 
الحقات من النمط -\Gamma . . في هذا البحث قدمنا ودرسنا المفاهيم النالية الاشتقاق الNتعامد واعمام الشتقاق
المتعامد على المقاس X من النمط -UD وقدمنا العلاقة بين اعمام جداء المشتقات والتعامد على المقاسات من 
    .ال\M- \
```


1. Introduction

Nobusawa [1] presented the definition of Γ ring and generalized by Barnes [2] as following:

Let M and Γ be additive abelian groups. Suppose that there is a mapping from $\mathrm{M} \times \Gamma \times \mathrm{M} \rightarrow \mathrm{M}$ (the image of ($\mathrm{a}, \alpha, \mathrm{b}$) being denoted by a $\alpha \mathrm{b}, \mathrm{a}, \mathrm{b} \in \mathrm{M}$ and $\alpha \in \Gamma$) satisfying for all $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{M}, \alpha \in \Gamma$:
i) $(\mathrm{a}+\mathrm{b}) \alpha \mathrm{c}=\mathrm{a} \alpha \mathrm{c}+\mathrm{b} \alpha \mathrm{c}$
$\mathrm{a}(\alpha+\beta) \mathrm{c}=\mathrm{a} \alpha \mathrm{c}+\mathrm{a} \beta \mathrm{c}$
$\mathrm{a} \alpha(\mathrm{b}+\mathrm{c})=\mathrm{a} \alpha \mathrm{b}+\mathrm{a} \alpha \mathrm{c}$
ii) $(\mathrm{a} \alpha \mathrm{b}) \beta \mathrm{c}=\mathrm{a} \alpha(\mathrm{b} \beta \mathrm{c})$

Then M is Γ-ring. M is said to be 2-torsion free if $2 \mathrm{a}=0$ implies $\mathrm{a}=0$ for all $\mathrm{a} \in \mathrm{M}$. Besides, M is called a prime Γ-ring if for all $a, b \in M$, $\mathrm{a} \Gamma \mathrm{M} \Gamma \mathrm{b}=(0)$ implies either $\mathrm{a}=0$ or $\mathrm{b}=0, \mathrm{M}$ is called semiprime if $\mathrm{a} \Gamma Г \mathrm{M}=(0)$ with $\mathrm{a} \in \mathrm{M}$ implies $\mathrm{a}=0$. Note that every prime Γ-ring is obviously semiprime [3].

Let M be a Γ-ring and X be an additive abelian group, X is a left $\Gamma \mathrm{M}$ - module if there exists a mapping $\mathrm{M} \times \Gamma \times \mathrm{X} \rightarrow \mathrm{X}$ (sending ($\mathrm{m}, \alpha, \mathrm{x}$) into \max where $\mathrm{m} \in \mathrm{M}, \alpha, \beta \in \Gamma$ and
$\mathrm{x} \in \mathrm{X})$ satisfying for all $\mathrm{m}, \mathrm{m}_{1}, \mathrm{~m}_{2} \in \mathrm{M}, \alpha, \beta \in \Gamma$ and $\mathrm{x}, \mathrm{x}_{1}, \mathrm{x}_{2} \in \mathrm{X}[4]:$
i) $\left(m_{1}+m_{2}\right) \alpha x=m_{1} \alpha x+m_{2} \alpha x$
ii) $\mathrm{m}(\alpha+\beta) \mathrm{x}=\mathrm{m} \alpha \mathrm{x}+\mathrm{m} \beta \mathrm{x}$
iii) $m \alpha\left(x_{1}+x_{2}\right)=m \alpha x_{1}+m \alpha x_{2}$
iv) $\left(\mathrm{m}_{1} \alpha \mathrm{~m}_{2}\right) \beta \mathrm{x}=\mathrm{m}_{1} \alpha\left(\mathrm{~m}_{2} \beta \mathrm{x}\right)$

X is called a right $\Gamma \mathrm{M}$ - module if there exists a mapping $\mathrm{X} \times \Gamma \times \mathrm{M} \rightarrow \mathrm{X}, \mathrm{X}$ is called $\Gamma \mathrm{M}$ module if X is both left and right $Г \mathrm{M}$ - module, X is called a left prime (right prime) if a ММГb=(0) then $\mathrm{a}=0$ or $\mathrm{b}=0, \mathrm{a} \in \mathrm{M}, \mathrm{b} \in \mathrm{X}$ $(a \in X, b \in M)$ respectively and X is prime if its both left and right prime. X is called semipeime if $a Г М Г a=(0)$ where $a \in X$ implies $a=0, X$ is called 2-torsion free if $2 \mathrm{x}=0$ implies $\mathrm{x}=0$ for all $x \in X$ [4]. Jing [5] defined a derivation on Γ-ring as following, an additive map $\mathrm{d}: \mathrm{M} \rightarrow \mathrm{M}$ is said to be a derivation of M if $\mathrm{d}(\mathrm{a} \alpha \mathrm{b})=\mathrm{d}(\mathrm{a}) \alpha \mathrm{b}+$ $\mathrm{a} \alpha \mathrm{d}(\mathrm{b})$, for all $\mathrm{a}, \mathrm{b} \in \mathrm{M}$ and $\alpha \in \Gamma$. Ceven and Ozturk [6] defined a generalized derivation on Γ-ring M as follows, an additive map $\mathrm{D}: \mathrm{M} \rightarrow \mathrm{M}$ is said to be generalized derivation on M if there exists a derivation $d: M \rightarrow M$ such that $\mathrm{D}(\mathrm{a} \alpha \mathrm{b})=\mathrm{D}(\mathrm{a}) \alpha \mathrm{b}+\mathrm{a} \alpha \mathrm{d}(\mathrm{b})$, for all $\mathrm{a}, \mathrm{b} \in \mathrm{M}$ and $\alpha \in \Gamma$.

Paul and Halder [4] defined a left derivation and Jordan left derivation of Γ-ring M onto $\Gamma \mathrm{M}$-module X as follows $\mathrm{d}: \mathrm{M} \rightarrow \mathrm{X}$ is a left derivation if $\mathrm{d}(\mathrm{a} \alpha \mathrm{b})=\mathrm{a} \alpha \mathrm{d}(\mathrm{b})+\mathrm{b} \alpha \mathrm{d}(\mathrm{a})$, $\quad \mathrm{a}$ Jordan left derivation $\mathrm{d}(\mathrm{a} \alpha \mathrm{a})=2 \mathrm{a} \alpha \mathrm{d}(\mathrm{a})$. Also Paul and Halder proved that every Jordan left derivation of Γ-ring M into $\Gamma \mathrm{M}$-module is a left derivation. Salih [7] defined derivation and Jordan derivation on ГМ-module as follows $\mathrm{d}: \mathrm{M} \rightarrow \mathrm{X}$ is a derivation if $\mathrm{d}(\mathrm{a} \alpha \mathrm{b})=\mathrm{d}(\mathrm{a}) \alpha \mathrm{b}+\mathrm{a} \alpha \mathrm{d}(\mathrm{b})$, a Jordan derivation $\mathrm{d}(\mathrm{a} \alpha \mathrm{a})=\mathrm{d}(\mathrm{a}) \alpha \mathrm{a}+\mathrm{a} \alpha \mathrm{d}(\mathrm{a})$ and proved that every Jordan derivation of Γ-ring M into $Г \mathrm{M}$ module is a derivation as well as in [8] defined generalized derivation and Jordan generalized derivation as follow f: $M \rightarrow X$ is generalized derivation if there exist a derivation $\mathrm{d}: \mathrm{M} \rightarrow \mathrm{X}$ such that $\mathrm{f}(\mathrm{a} \alpha \mathrm{b})=\mathrm{f}(\mathrm{a}) \alpha \mathrm{b}+\mathrm{a} \alpha \mathrm{d}(\mathrm{b})$ and prove that every Jordan generalized derivation of Γ ring M into $\Gamma \mathrm{M}$-module is a generalized derivation.
The study of orthogonal derivation in rings was initiated by Bresar and Vukman [9]. In fact, they obtained some results on orthogonal derivations in semiprime rings related to product of derivations. Ashraf and Jamal [10] defined and studied the orthogonal derivation on Γ-rings
and generalized the result of Bresar and Vukman into Γ-ring. Argac, Nakajima and Albas [11] presented the definition of orthogonal generalized derivations on rings.

In the present paper, we define and study the concepts of orthogonal derivations and orthogonal generalized derivations on ГМmodule and obtained some results parallel to those earlier obtained by Bresar, Vukman in [9], Argac, Nakajima and Albas in [11].

2. Orthogonal Derivations on ГМModule:

In this section, this research presents and studies the definition of orthogonal derivations on $\Gamma \mathrm{M}$-module, we prove that if M is a Γ-ring and X a 2 -torsion free semiprime $Г \mathrm{M}$-module. Suppose that d and g are derivations of M into X. If
$\mathrm{d}^{2}=\mathrm{g}^{2}$ or $\mathrm{d}(\mathrm{x}) \alpha \mathrm{d}(\mathrm{x})=\mathrm{g}(\mathrm{x}) \alpha \mathrm{g}(\mathrm{x})$ for all $\mathrm{x} \in \mathrm{M}$ and $\alpha \in \Gamma$,Then $\mathrm{d}+\mathrm{g}$ and $\mathrm{d}-\mathrm{g}$ are orthogonal.

Definition 2.1:

Let M be a Γ-ring and X a $\Gamma \mathrm{M}$-module, the derivations d and g of M into X are said to be orthogonal if
$\mathrm{d}(\mathrm{x}) \Gamma М \Gamma \mathrm{~g}(\mathrm{y})=\mathrm{g}(\mathrm{y}) \Gamma М Г \mathrm{~d}(\mathrm{x})$, for all $x, y \in M$.
Now, we give an example of orthogonal derivation:

Example 2.2:

Let d and g be derivations of a ring $R, M=\mathbf{Z}$ $\oplus \mathbf{Z}$ and $\Gamma=\mathbf{Z} \oplus \mathbf{Z}$ where \mathbf{Z} is the set of integer numbers, then M is Γ-ring, $X=R \oplus R$, then X is $\Gamma \mathrm{M}$-module we define d_{1} and g_{1} on X by

$$
\mathrm{d}_{1}((\mathrm{x}, \mathrm{y}))=(\mathrm{d}(\mathrm{x}), 0) \text { and } \quad \mathrm{g}_{1}((\mathrm{x}, \mathrm{y}))=(0,
$$ $g(y)$) for all $x, y \in R$.

then d_{1} and g_{1} are orthogonal.
Now we give the following lemma we need later:

Lemma 1:

Let M be Γ-ring and X a 2-tortion free semiprime $Г \mathrm{M}$-module and a, b the elements of X . Then the following conditions are equivalent: i) $\mathrm{a} \Gamma \mathrm{M} \Gamma \mathrm{b}=(0)$
ii) \quad ГМГa=(0)
iii) a ГМГb+bГМГа=(0)

If one of these conditions are fulfilled then $\mathrm{a} \Gamma \mathrm{b}=\mathrm{b} \Gamma \mathrm{a}=(0)$.

Proof:

(i) \rightarrow (ii) Suppose that $\mathrm{a} \Gamma \mathrm{M} Г \mathrm{~b}=(0)$.

Then (bГМГа) ГМГ (bГМГа) $=(0), \quad$ by semiprimeness of X we get $\mathrm{b} Г М Г \mathrm{a}=(0)$.
(ii) \rightarrow (iii) Suppose that $\mathrm{b} \Gamma \mathrm{M} \Gamma \mathrm{a}=(0)$, that is $\mathrm{a} \Gamma \mathrm{M} \mathrm{b}=(0)$, this implies $\mathrm{a} \Gamma \mathrm{M} Г \mathrm{~b}+\mathrm{b} \Gamma \mathrm{M} Г \mathrm{a}=(0)$.
(iii) \rightarrow (i) Suppose that $\mathrm{a} \Gamma \mathrm{M} \Gamma \mathrm{b}+\mathrm{b} \Gamma \mathrm{M} \mathrm{a}=(0)$ that is $\mathrm{a} \Gamma \mathrm{M} \mathrm{b}=-\mathrm{b} \Gamma \mathrm{M} Г \mathrm{a}$
Let m and m be two arbitrary elements of M. Then by hypothesis, we have:
$(\mathrm{a} \Gamma \mathrm{m} \Gamma \mathrm{b}) \Gamma \mathrm{m}^{\prime} \Gamma(\mathrm{a} \Gamma \mathrm{m} \Gamma \mathrm{b})$
$=-\Gamma \mathrm{m} \Gamma \mathrm{a}) \Gamma \mathrm{m}^{\prime} \Gamma(\mathrm{a} \Gamma \mathrm{m} \Gamma \mathrm{b})$
$=-\left(\mathrm{b} \Gamma\left(\mathrm{m} \Gamma \mathrm{a} \Gamma \mathrm{m}^{\prime}\right) \Gamma \mathrm{a}\right) \Gamma \mathrm{m} \Gamma \mathrm{b}$
$=\left(\mathrm{a} \Gamma\left(\mathrm{m} \Gamma \mathrm{a} \Gamma \mathrm{m}^{\prime}\right) \Gamma \mathrm{b}\right) \Gamma \mathrm{m} \Gamma \mathrm{b}$
$=a \Gamma m \Gamma\left(a \Gamma m^{\prime} \Gamma b\right) \Gamma m \Gamma b$
$=-\mathrm{a} \Gamma \mathrm{m} \Gamma\left(\mathrm{b} \Gamma \mathrm{m}^{\prime} \Gamma \mathrm{a}\right) \Gamma \mathrm{m} \Gamma \mathrm{b}$
$=-(\mathrm{a} \Gamma \mathrm{m} \Gamma \mathrm{b}) \Gamma \mathrm{m}^{\prime} \Gamma(\mathrm{a} \Gamma \mathrm{m} \Gamma \mathrm{b})$
Thus $2\left((\mathrm{a} \Gamma \mathrm{m} \Gamma \mathrm{b}) \Gamma \mathrm{m}^{\prime} \Gamma(\mathrm{a} \Gamma \mathrm{m} \Gamma \mathrm{b})\right)=0$, since X is 2-torsion free, therefore, $(a \Gamma \mathrm{~m} \Gamma \mathrm{~b}) \Gamma \mathrm{m}^{\prime} \Gamma(\mathrm{a} \Gamma \mathrm{m} \Gamma \mathrm{b})$ $=0$. By the semiprimeness of X, then $a \Gamma \mathrm{~m} \Gamma \mathrm{~b}=0$ for all $\mathrm{m} \in \mathrm{M}$. Hence we get, $\mathrm{a} \Gamma \mathrm{m} \Gamma \mathrm{b}=\mathrm{b} \Gamma \mathrm{m} \Gamma \mathrm{a}$ $=0$ for all $\mathrm{m} \in \mathrm{M}$.

Lemma 2:

Let X be a semiprime ГМ-module. Suppose that additive mappings f and h of Γ-ring M into X satisfy $f(x) \Gamma M \Gamma h(x)=(0)$, for all $x \in M$ then $f(x) \Gamma M \Gamma h(y)=(0)$, for all $x, y \in M$.

Proof:

Suppose $\mathrm{f}(\mathrm{x}) \alpha \mathrm{z} \beta \mathrm{h}(\mathrm{x})=0$ for all $\mathrm{x}, \mathrm{z} \in \mathrm{M}$ and $\alpha, \beta \in \Gamma$. On linearizing we get :
$0=\mathrm{f}(\mathrm{x}+\mathrm{y}) \alpha \mathrm{z} \beta \mathrm{h}(\mathrm{x}+\mathrm{y})$
$=(\mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{y})) \alpha \mathrm{z} \beta(\mathrm{h}(\mathrm{x})+\mathrm{h}(\mathrm{y}))$
$=\mathrm{f}(\mathrm{x}) \alpha \mathrm{z} \beta \mathrm{h}(\mathrm{x}) \quad+\mathrm{f}(\mathrm{x}) \alpha \mathrm{z} \beta \mathrm{h}(\mathrm{y})$
$\mathrm{f}(\mathrm{y}) \alpha \mathrm{z} \beta \mathrm{h}(\mathrm{x})+\mathrm{f}(\mathrm{y}) \alpha \mathrm{z} \beta \mathrm{h}(\mathrm{y})$
$=\mathrm{f}(\mathrm{x}) \alpha \mathrm{z} \beta \mathrm{h}(\mathrm{y})+\mathrm{f}(\mathrm{y}) \alpha \mathrm{z} \beta \mathrm{h}(\mathrm{x})$
Therefore by our assumption we get
$\mathrm{f}(\mathrm{x}) \alpha \mathrm{z} \beta \mathrm{h}(\mathrm{y}) \gamma \mathrm{t} \delta \mathrm{f}(\mathrm{x}) \alpha \mathrm{z} \beta \mathrm{h}(\mathrm{y})$
$=-\mathrm{f}(\mathrm{x}) \alpha \mathrm{z} \beta \mathrm{h}(\mathrm{y}) \gamma \mathrm{t} \delta \mathrm{f}(\mathrm{y}) \alpha \mathrm{z} \beta \mathrm{h}(\mathrm{x})$
$=0$
Since X is semiprime, this implies
$\mathrm{f}(\mathrm{x}) \alpha \mathrm{z} \beta \mathrm{h}(\mathrm{y})=0 \quad$ for \quad all $\quad \mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{M} \quad$ and $\alpha, \beta \in \Gamma$.

In the following lemmas we give the properties of orthogonal derivation on ГМ-module:

Lemma 3:

Let X be a 2-tortion free semiprime ГМmodule and let d and g be derivations of Γ ring M into X. Derivations d and g are orthogonal if and only if $\mathrm{d}(\mathrm{x}) \alpha \mathrm{g}(\mathrm{y})+\mathrm{g}(\mathrm{y}) \alpha \mathrm{d}(\mathrm{x})$ $=0$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{M}, \alpha \in \Gamma$.

Proof:

Suppose $\mathrm{d}(\mathrm{x}) \alpha \mathrm{g}(\mathrm{y})+\mathrm{g}(\mathrm{x}) \alpha \mathrm{d}(\mathrm{y})=0$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{M}, \alpha \in \Gamma$.Replace y by y $\beta \mathrm{x}$, to get
$0=\mathrm{d}(\mathrm{x}) \alpha \mathrm{g}(\mathrm{y} \beta \mathrm{x})+\mathrm{g}(\mathrm{x}) \alpha \mathrm{d}(\mathrm{y} \beta \mathrm{x})$
$=\mathrm{d}(\mathrm{x}) \alpha \mathrm{g}(\mathrm{y}) \beta \mathrm{x} \quad+\mathrm{d}(\mathrm{x}) \alpha \mathrm{y} \beta \mathrm{g}(\mathrm{x}) \quad+$ $\mathrm{g}(\mathrm{x}) \alpha \mathrm{d}(\mathrm{y}) \beta \mathrm{x}+\mathrm{g}(\mathrm{x}) \alpha$ y $\beta \mathrm{d}(\mathrm{x})$
$=\mathrm{d}(\mathrm{x}) \alpha \mathrm{y} \beta \mathrm{g}(\mathrm{x})+\mathrm{g}(\mathrm{x}) \alpha \mathrm{y} \beta \mathrm{d}(\mathrm{x})$
Hence by Lemma 1
$\mathrm{d}(\mathrm{x}) \alpha \mathrm{y} \beta \mathrm{g}(\mathrm{z}) \quad=\quad 0, \quad$ for \quad all $\quad \mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{M}$ and $\alpha, \beta \in \Gamma$.
Therefore, d and g are orthogonal.
Conversely, if d and g are orthogonal, then
$\mathrm{d}(\mathrm{x}) \alpha \mathrm{z} \beta \mathrm{g}(\mathrm{y})=0=\mathrm{g}(\mathrm{y}) \alpha \mathrm{z} \beta \mathrm{d}(\mathrm{x})$.
Therefore by Lemma 1,
$\mathrm{d}(\mathrm{x}) \alpha \mathrm{g}(\mathrm{y})=0=\mathrm{g}(\mathrm{y}) \alpha \mathrm{d}(\mathrm{x})$.
This implies that
$\mathrm{d}(\mathrm{x}) \alpha \mathrm{g}(\mathrm{y})+\mathrm{g}(\mathrm{y}) \alpha \mathrm{d}(\mathrm{x})=0$, for
all $\mathrm{x}, \mathrm{y} \in \mathrm{M}$ and $\alpha \in \Gamma$.

Lemma 4:

Let M be Γ-ring and X a 2-torsion free semiprime $Г \mathrm{M}$-module. Suppose d and g are derivations of M into X. Then d and g are orthogonal if and only if $\mathrm{dg}=0$.

Proof:

Suppose that $\mathrm{dg}=0$, and $\mathrm{x}, \mathrm{y} \in \mathrm{M}, \alpha \in \Gamma$.
$0=\operatorname{dg}(\mathrm{x} \alpha \mathrm{y})=\mathrm{d}(\mathrm{g}(\mathrm{x}) \alpha \mathrm{y}+\mathrm{x} \alpha \mathrm{g}(\mathrm{y}))$
$=\operatorname{dg}(\mathrm{x}) \alpha \mathrm{y}+\mathrm{g}(\mathrm{x}) \alpha \mathrm{d}(\mathrm{y})+\mathrm{d}(\mathrm{x}) \alpha \mathrm{g}(\mathrm{y})+$
$\mathrm{x} \alpha \operatorname{dg}(\mathrm{x})$
$=\mathrm{g}(\mathrm{x}) \alpha \mathrm{d}(\mathrm{y})+\mathrm{d}(\mathrm{x}) \alpha \mathrm{g}(\mathrm{y})$
Therefore by Lemma 3, d and g are orthogonal.
Conversely, suppose that d and g are orthogonal.
Then $\mathrm{d}(\mathrm{x}) \alpha \mathrm{y} \beta \mathrm{g}(\mathrm{z})=0$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{M}$, $\alpha, \beta \in \Gamma$.
Hence
$0=\mathrm{d}(\mathrm{d}(\mathrm{x}) \alpha \mathrm{y} \beta \mathrm{g}(\mathrm{z}))$
$=\mathrm{d}^{2}(\mathrm{x}) \alpha \mathrm{y} \beta \mathrm{g}(\mathrm{z})+\mathrm{d}(\mathrm{x}) \alpha \mathrm{d}(\mathrm{y}) \beta \mathrm{g}(\mathrm{z})+$ $\mathrm{d}(\mathrm{x}) \alpha \mathrm{y} \beta \mathrm{dg}(\mathrm{x})$
Then $\mathrm{d}(\mathrm{x}) \alpha$ y $\beta \mathrm{dg}(\mathrm{x})=0$
Replacing x by $\mathrm{g}(\mathrm{x})$ and using semiprimeness of X, we find that $\operatorname{dg}(z)=0$
for all $z \in M$, hence $d g=0$.

Lemma 5:

Let X be 2- torsion free semiprime ГМmodule. Suppose d and g are derivations
of Γ-ring M into X , then d and g are orthogonal if and only if $\mathrm{dg}+\mathrm{gd}=0$.

Proof:

Suppose that $\mathrm{dg}+\mathrm{gd}=0$. Then we have for all $\mathrm{x}, \mathrm{y} \in \mathrm{M}, \alpha, \beta \in \Gamma$

```
\(0=(\mathrm{dg}+\mathrm{gd})(\mathrm{x} \alpha \mathrm{y})\)
    \(=\mathrm{g}(\mathrm{d}(\mathrm{x}) \alpha \mathrm{y}+\mathrm{x} \alpha \mathrm{d}(\mathrm{y}))+\mathrm{d}(\mathrm{g}(\mathrm{x}) \alpha \mathrm{y}+\mathrm{x} \alpha \mathrm{g}(\mathrm{y}))\)
    \(=\operatorname{gd}(\mathrm{x}) \alpha \mathrm{y}+\mathrm{d}(\mathrm{x}) \alpha \mathrm{g}(\mathrm{y})+\mathrm{g}(\mathrm{x}) \alpha \mathrm{d}(\mathrm{y})+\mathrm{x} \alpha \mathrm{gd}(\mathrm{y})\)
\(+\operatorname{dg}(\mathrm{x}) \alpha \mathrm{y}+\mathrm{g}(\mathrm{x}) \alpha \mathrm{d}(\mathrm{y})+\quad \mathrm{d}(\mathrm{x}) \alpha g(\mathrm{y})\)
\(+x \alpha \operatorname{dg}(\mathrm{y})\)
\(=(\mathrm{gd}+\mathrm{dg})(\mathrm{x}) \alpha \mathrm{y}+2(\mathrm{~d}(\mathrm{x}) \alpha \mathrm{g}(\mathrm{y})+\mathrm{g}(\mathrm{x}) \alpha \mathrm{d}(\mathrm{y}))+\)
\(\mathrm{x} \alpha(\mathrm{gd}+\mathrm{dg})(\mathrm{y})\)
\(=2(\mathrm{~d}(\mathrm{x}) \alpha \mathrm{g}(\mathrm{y})+\mathrm{g}(\mathrm{x}) \alpha \mathrm{d}(\mathrm{y}))\)
Since \(X\) is 2-torsion free
    \(\mathrm{d}(\mathrm{x}) \alpha \mathrm{g}(\mathrm{y})+\mathrm{g}(\mathrm{x}) \alpha \mathrm{d}(\mathrm{y})=0\)
hence by Lemma 3, \(d\) and \(g\) are orthogonal.
Conversely, since \(d\) and \(g\) are orthogonal, then
by Lemma \(4, \mathrm{dg}=0=\mathrm{gd}\), therefore \(\mathrm{dg}+\mathrm{gd}=0\).
```


Lemma 6:

Let M be Γ-ring and X a 2-tortion free semiprime $Г \mathrm{M}$-module. Suppose d and g are derivations of M into X . Then d and g are orthogonal if and if dg is a derivation.

Proof:

Since d and g are derivations, we have for all $x, y \in M, \alpha \in \Gamma$
$\operatorname{dg}(x \alpha y)=\operatorname{dg}(x) \alpha y+x \alpha \operatorname{dg}(y)$
on the other hand
$d g(x \alpha y)=d(g(x) \alpha y+x \alpha g(y))$
$=\operatorname{dg}(\mathrm{x}) \alpha \mathrm{y}+\mathrm{g}(\mathrm{x}) \alpha \mathrm{d}(\mathrm{y})+\mathrm{d}(\mathrm{x}) \alpha \mathrm{g}(\mathrm{y})+\mathrm{x} \alpha \mathrm{dg}(\mathrm{y}) \ldots$ (2)
Comparing (1) and (2) we have
$\mathrm{g}(\mathrm{x}) \alpha \mathrm{d}(\mathrm{y})+\mathrm{d}(\mathrm{x}) \alpha \mathrm{g}(\mathrm{y})=0$
Hence, by Lemma 3, d and g are orthogonal.
Conversely, suppose d and g are orthogonal, by Lemma 4 we have $d g=0$ therefore $d g$ is a derivation.

Corollary 7:

Let M be Γ-ring and X a 2-tortion free semiprime $Г \mathrm{M}$-module. If d a derivation of M into X such that d^{2} is also derivation, then $\mathrm{d}=0$.

Lemma 8:

Let X be a semiprime ГМ-module. Suppose that d and g are derivations of Γ-ring M into X. Then d and g are orthogonal if and only if there exists $a, b \in \mathrm{M}$ and
$\alpha, \beta \in \Gamma$ such that $\operatorname{dg}(\mathrm{x})=\mathrm{a} \alpha \mathrm{x}+\mathrm{x} \beta \mathrm{b}$ for all $\mathrm{x} \in \mathrm{M}$.
Proof:
Suppose that $\operatorname{dg}(\mathrm{x})=\mathrm{a} \alpha \mathrm{x}+\mathrm{x} \beta \mathrm{b}$ for all $\mathrm{x} \in \mathrm{M}$. Replacing x by $\mathrm{x} \delta$ y we have $\operatorname{dg}(\mathrm{x} \delta \mathrm{y})=\mathrm{a} \alpha \mathrm{x} \delta \mathrm{y}+\mathrm{x} \delta \mathrm{y} \beta \mathrm{b}$ $\mathrm{d}(\mathrm{g}(\mathrm{x}) \delta \mathrm{y}+\mathrm{x} \delta \mathrm{g}(\mathrm{y}))=\mathrm{a} \alpha \mathrm{x} \delta \mathrm{y}+\mathrm{x} \delta \mathrm{y} \beta \mathrm{b}$
$\operatorname{dg}(\mathrm{x}) \delta \mathrm{y}+\mathrm{g}(\mathrm{x}) \delta \mathrm{d}(\mathrm{y})+\mathrm{d}(\mathrm{x}) \delta \mathrm{g}(\mathrm{y})+$ $\mathrm{x} \delta \operatorname{dg}(\mathrm{y})=\mathrm{a} \alpha \mathrm{x} \delta \mathrm{y}+\mathrm{x} \delta \mathrm{y} \beta \mathrm{b}$
$\mathrm{x} \delta \mathrm{b} \beta \mathrm{y}+\mathrm{x} \gamma \mathrm{a} \alpha \mathrm{y}+\mathrm{d}(\mathrm{x}) \delta \mathrm{g}(\mathrm{y})+\mathrm{g}(\mathrm{x}) \delta \mathrm{d}(\mathrm{y})$
$=0$, for all $\mathrm{x} \in \mathrm{M}$ and $\delta \in \Gamma$.
Replacing y by y $\delta \mathrm{x}$ in (1), we have
$0=\mathrm{x} \beta \mathrm{b} \gamma \mathrm{y} \delta \mathrm{x}+\mathrm{x} \gamma \mathrm{a} \alpha \mathrm{y} \delta \mathrm{x}+\mathrm{d}(\mathrm{x}) \gamma$ $\mathrm{g}(\mathrm{y} \delta \mathrm{x})+\mathrm{g}(\mathrm{x}) \gamma \mathrm{d}(\mathrm{y} \delta \mathrm{x})$
$=\mathrm{x} \beta \mathrm{b} \gamma \mathrm{y} \delta \mathrm{x}+\mathrm{x} \gamma \mathrm{a} \alpha \mathrm{y} \delta \mathrm{x}+\mathrm{d}(\mathrm{x}) \gamma \mathrm{g}(\mathrm{y}) \delta \mathrm{x}$
$+\mathrm{d}(\mathrm{x}) \gamma \mathrm{y} \delta \mathrm{g}(\mathrm{x})+\mathrm{g}(\mathrm{x}) \gamma \mathrm{d}(\mathrm{y}) \delta \mathrm{x}+\mathrm{g}(\mathrm{x}) \gamma \mathrm{y} \delta \mathrm{d}(\mathrm{x})$.
$=(\mathrm{x} \beta \mathrm{b} \gamma \mathrm{y}+\quad \mathrm{x} \gamma \mathrm{a} \alpha \mathrm{y}+\quad \mathrm{d}(\mathrm{x}) \gamma \mathrm{g}(\mathrm{y}) \quad+$
$\mathrm{g}(\mathrm{x}) \gamma \mathrm{d}(\mathrm{y})) \delta \mathrm{x}+\mathrm{d}(\mathrm{x}) \gamma \mathrm{y} \delta \mathrm{g}(\mathrm{x})+\mathrm{g}(\mathrm{x}) \gamma \mathrm{y} \delta \mathrm{d}(\mathrm{x})$.
Hence using (1), we find that
$\mathrm{d}(\mathrm{x}) \gamma \mathrm{y} \delta \mathrm{g}(\mathrm{x})+\mathrm{g}(\mathrm{x}) \gamma \mathrm{y} \delta \mathrm{d}(\mathrm{x})=0$
By Lemma 1, we have
$\mathrm{d}(\mathrm{x}) \gamma \mathrm{y} \delta \mathrm{g}(\mathrm{z})=0$.
Thus, d and g are orthogonal.
Conversely, since d and g are orthogonal, $\mathrm{dg}=$ 0 , so we can choose $\mathrm{a}=\mathrm{b}=0$ and $\alpha, \beta \in \Gamma$ so that $\operatorname{dg}(\mathrm{x})=\mathrm{a} \alpha \mathrm{x}+\mathrm{x} \beta \mathrm{b}$.

Corollary 9:

Let X be a semiprime ГM-module. Suppose that d and g are derivations of Γ-ring M into X. Then d and g are orthogonal if and only if there exists $\mathrm{a}, \mathrm{b} \in \mathrm{M}$ and $\alpha, \beta \in \Gamma$ such that $\mathrm{d}^{2}(\mathrm{x})=$ $\mathrm{a} \alpha \mathrm{x}+\mathrm{x} \beta \mathrm{b}$ for all $\mathrm{x} \in \mathrm{M}$ then $\mathrm{d}=0$.

Theorem 10:

Let M be a Γ-ring and X be a 2 -torsion free semiprime $Г \mathrm{M}$-module. Suppose that d and g are derivations of M into X. Suppose $d^{2}=g^{2}$. Then $\mathrm{d}+\mathrm{g}$ and $\mathrm{d}-\mathrm{g}$ are orthogonal.

Proof:

Suppose $\mathrm{d}^{2}=\mathrm{g}^{2}$, for all $\mathrm{x} \in \mathrm{M}$
$((\mathrm{d}-\mathrm{g})(\mathrm{d}+\mathrm{g})+(\mathrm{d}+\mathrm{g})(\mathrm{d}-\mathrm{g}))(\mathrm{x})=(\mathrm{d}-\mathrm{g})(\mathrm{d}+\mathrm{g})(\mathrm{x})+$ $(\mathrm{d}+\mathrm{g})(\mathrm{d}-\mathrm{g})(\mathrm{x})$
$=d^{2}(x)+\operatorname{dg}(x)-g d(x)-g^{2}(x)+d^{2}(x)-d g(x)+$ $\operatorname{gd}(\mathrm{x})-\mathrm{g}^{2}(\mathrm{x})$
$=0$
Therefore $(\mathrm{d}-\mathrm{g})(\mathrm{d}+\mathrm{g})+(\mathrm{d}+\mathrm{g})(\mathrm{d}-\mathrm{g})=0$, hence by Lemma 5, $\mathrm{d}+\mathrm{g}$ and $\mathrm{d}-\mathrm{g}$ are orthogonal.

Theorem 11:

Let M be a Γ-ring and X be a 2 -torsion free semiprime ГM-module. Suppose that d and g are derivations of M into X . If $\mathrm{d}(\mathrm{x}) \alpha \mathrm{d}(\mathrm{x})=$ $\mathrm{g}(\mathrm{x}) \alpha \mathrm{g}(\mathrm{x})$ for all $\mathrm{x} \in \mathrm{M}$ and $\alpha \in \Gamma$, then $\mathrm{d}+\mathrm{g}$ and $\mathrm{d}-\mathrm{g}$ are orthogonal.

Proof:

For all $\mathrm{x} \in \mathrm{M}$ and $\alpha \in \Gamma$

```
\((\mathrm{d}-\mathrm{g})(\mathrm{x}) \alpha(\mathrm{d}+\mathrm{g})(\mathrm{x})+(\mathrm{d}+\mathrm{g})(\mathrm{x}) \alpha(\mathrm{d}-\mathrm{g})(\mathrm{x})\)
\(=(\mathrm{d}(\mathrm{x})-\mathrm{g}(\mathrm{x})) \alpha(\mathrm{d}(\mathrm{x})+\mathrm{g}(\mathrm{x}))+\)
\((\mathrm{d}(\mathrm{x})+\mathrm{g}(\mathrm{x})) \alpha(\mathrm{d}(\mathrm{x})-\mathrm{g}(\mathrm{x}))\)
    \(=\mathrm{d}(\mathrm{x}) \alpha \mathrm{d}(\mathrm{x})+\mathrm{d}(\mathrm{x}) \alpha \mathrm{g}(\mathrm{x})-\mathrm{g}(\mathrm{x}) \alpha \mathrm{d}(\mathrm{x})-\)
\(\mathrm{g}(\mathrm{x}) \alpha \mathrm{g}(\mathrm{x}) \quad+\mathrm{d}(\mathrm{x}) \alpha \mathrm{d}(\mathrm{x}) \quad-\quad \mathrm{d}(\mathrm{x}) \alpha \mathrm{g}(\mathrm{x}) \quad+\)
\(\mathrm{g}(\mathrm{x}) \alpha \mathrm{d}(\mathrm{x})-\mathrm{g}(\mathrm{x}) \alpha \mathrm{g}(\mathrm{x}) \mathrm{g}(\mathrm{x}) \alpha \mathrm{g}(\mathrm{x})=0\)
Hence, by Lemma 5, then \(\mathrm{d}+\mathrm{g}\) and \(\mathrm{d}-\mathrm{g}\) are orthogonal.
```


3. Orthogonal Generalized Derivations on ГM-Module:

In this section we generalize the results of section two by present the definition of orthogonal generalized derivations on ГМmodule, also we introduce the conditions which mark derivation and generalized derivation on ГM-module are orthogonal we start by the following definition:

Definition 3.1:

Two generalized derivations D and G with derivations d and g respectively of Γ-ring M into $\Gamma \mathrm{M}$-module X are said to be orthogonal if
$\mathrm{D}(\mathrm{x}) \Gamma \mathrm{M} \Gamma \mathrm{G}(\mathrm{y})=0=\mathrm{G}(\mathrm{y}) Г \mathrm{M} \Gamma \mathrm{D}(\mathrm{x})$, for all $x, y \in M$.

Now, we give the example of orthogonal generalized derivation

Example 3.2:

Let X, M and Γ as in Example 2.2 and D, G are generalized derivations on R we define D_{1} and G_{1} by
$\mathrm{D}_{1}((\mathrm{x}, \mathrm{y}))=(\mathrm{D}(\mathrm{x}), 0)$ and $\mathrm{G}_{1}((\mathrm{x}, \mathrm{y}))=(0$, $G(y))$, for all $x, y \in R$

Then D_{1} and G_{1} are orthogonal generalized derivations.
In the following theorem we give the relations which mark the derivation and generalized derivation are orthogonal on ГМ-module:

Theorem 12:

If D and G are orthogonal generalized derivations and d, g are derivations associative with D and G respectively of Γ-ring M into $Г \mathrm{M}$ module X then the following relations hold:
i) $\mathrm{D}(\mathrm{x}) \alpha \mathrm{G}(\mathrm{y})=\mathrm{G}(\mathrm{x}) \alpha \mathrm{D}(\mathrm{y})=0$, hence $\mathrm{D}(\mathrm{x}) \alpha \mathrm{G}(\mathrm{y})+\mathrm{G}(\mathrm{x}) \alpha \mathrm{D}(\mathrm{y})=0$, for all $\quad \mathrm{x}, \mathrm{y} \in \mathrm{M}$, $\alpha \in \Gamma$.
ii) d and G are orthogonal, and $\mathrm{d}(\mathrm{x}) \alpha \mathrm{G}(\mathrm{y})=$ $\mathrm{G}(\mathrm{y}) \alpha \mathrm{d}(\mathrm{x})=0$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{M}, \alpha \in \Gamma$.
iii) g and D are orthogonal, and $\mathrm{g}(\mathrm{x}) \alpha \mathrm{D}(\mathrm{y})=$ $\mathrm{D}(\mathrm{y}) \alpha \mathrm{g}(\mathrm{x})=0$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{M}, \alpha \in \Gamma$.
iv) d and g are orthogonal derivations.

Proof:

i)By the hypothesis we have
$\mathrm{D}(\mathrm{x}) \alpha \mathrm{z} \beta \mathrm{G}(\mathrm{y})=0$, for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{M}, \alpha, \beta \in \Gamma$.
Hence by Lemma 1 we get
$\mathrm{D}(\mathrm{x}) \alpha \mathrm{G}(\mathrm{y})=\mathrm{G}(\mathrm{x}) \alpha \mathrm{D}(\mathrm{x})=0$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{M}$, $\alpha \in \Gamma$.
ii) $\mathrm{By} \mathrm{D}(\mathrm{x}) \alpha \mathrm{G}(\mathrm{y})=0$ and $\mathrm{D}(\mathrm{x}) \alpha \mathrm{z} \beta \mathrm{G}(\mathrm{y})=0$, for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{M}, \alpha, \beta \in \Gamma$, we get
$0=\mathrm{D}(\mathrm{r} \beta \mathrm{x}) \alpha \mathrm{G}(\mathrm{y})=(\mathrm{D}(\mathrm{r}) \beta \mathrm{x}+\mathrm{r} \beta \mathrm{d}(\mathrm{x}))$ $\alpha \mathrm{G}(\mathrm{y})$
$=\mathrm{D}(\mathrm{r}) \beta \mathrm{x} \alpha \mathrm{G}(\mathrm{y})+\mathrm{r} \beta \mathrm{d}(\mathrm{x}) \alpha \mathrm{G}(\mathrm{y})$
$=\mathrm{r} \beta \mathrm{d}(\mathrm{x}) \alpha \mathrm{G}(\mathrm{y})$, for all $\mathrm{x}, \mathrm{y}, \mathrm{r} \in \mathrm{M}, \alpha \in \Gamma$.
Then $\mathrm{d}(\mathrm{x}) \alpha \mathrm{G}(\mathrm{y})=0$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{M}, \alpha \in \Gamma$.
Then we have
$0=\mathrm{G}(\mathrm{y}) \alpha \mathrm{D}(\mathrm{r} \beta \mathrm{x})=\mathrm{G}(\mathrm{y}) \alpha(\mathrm{D}(\mathrm{r}) \beta \mathrm{x}+$ $\mathrm{r} \beta \mathrm{d}(\mathrm{x}))$
$=\mathrm{G}(\mathrm{y}) \alpha \mathrm{D}(\mathrm{r}) \beta \mathrm{x}+\mathrm{G}(\mathrm{y}) \alpha \mathrm{r} \beta \mathrm{d}(\mathrm{x})$
$=\mathrm{G}(\mathrm{y}) \alpha \mathrm{r} \beta \mathrm{d}(\mathrm{x})$ for all $\mathrm{x}, \mathrm{y}, \mathrm{r} \in \mathrm{M}, \alpha, \beta \in \Gamma$.
Then by Lemma 1 we obtain
$\mathrm{G}(\mathrm{y}) \alpha \mathrm{d}(\mathrm{x})=0$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{M}, \alpha \in \Gamma$.
iii) $0=\mathrm{D}(\mathrm{x}) \alpha \mathrm{G}(\mathrm{m} \beta \mathrm{y})$
$=\mathrm{D}(\mathrm{x}) \alpha(\mathrm{G}(\mathrm{m}) \beta \mathrm{y}+\mathrm{m} \beta \mathrm{g}(\mathrm{y}))$
$=\mathrm{D}(\mathrm{x}) \alpha \mathrm{G}(\mathrm{m}) \beta \mathrm{y}+\mathrm{D}(\mathrm{x}) \alpha \mathrm{m} \beta \mathrm{g}(\mathrm{y})$
$=\mathrm{D}(\mathrm{x}) \alpha \mathrm{m} \beta \mathrm{g}(\mathrm{y}) \quad$ for all $\mathrm{x}, \mathrm{y}, \mathrm{m} \in \mathrm{M}$, $\alpha, \beta \in \Gamma$.
Then $\mathrm{d}(\mathrm{x}) \alpha \mathrm{G}(\mathrm{y})=0$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{M}, \alpha \in \Gamma$.
Hence we have
$0=\mathrm{g}(\mathrm{x} \beta \mathrm{m}) \alpha \mathrm{D}(\mathrm{y})$
$=(\mathrm{g}(\mathrm{x}) \beta \mathrm{m}+\mathrm{x} \beta \mathrm{g}(\mathrm{m})) \alpha \mathrm{D}(\mathrm{y})$
$=\mathrm{g}(\mathrm{x}) \beta \mathrm{m} \alpha \mathrm{D}(\mathrm{y})+\mathrm{x} \beta \mathrm{g}(\mathrm{m}) \alpha \mathrm{D}(\mathrm{y})$
$=\mathrm{g}(\mathrm{x}) \beta \mathrm{m} \alpha \mathrm{D}(\mathrm{y})$ for all $\mathrm{x}, \mathrm{y}, \mathrm{m} \in \mathrm{M}, \alpha, \beta \in \Gamma$.
Since by Lemma 1 we get
$\mathrm{g}(\mathrm{x}) \alpha \mathrm{D}(\mathrm{y})=0$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{M}, \alpha \in \Gamma$.
iv) We have
$0=\mathrm{D}(\mathrm{x} \alpha \mathrm{z}) \beta \mathrm{G}(\mathrm{y} \alpha \mathrm{w})$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{w} \in \mathrm{M}$, $\alpha, \beta \in \Gamma$.
$=(\mathrm{D}(\mathrm{x}) \alpha \mathrm{z}+\mathrm{x} \alpha \mathrm{d}(\mathrm{z})) \beta(\mathrm{G}(\mathrm{y}) \alpha \mathrm{w}+\mathrm{y} \alpha \mathrm{g}(\mathrm{w}))$
$=\mathrm{D}(\mathrm{x}) \alpha \mathrm{z} \beta \mathrm{G}(\mathrm{y}) \alpha \mathrm{w}+\mathrm{D}(\mathrm{x}) \alpha \mathrm{z} \beta \mathrm{y} \alpha \mathrm{g}(\mathrm{w})+$
$\mathrm{x} \alpha \mathrm{d}(\mathrm{z}) \beta \mathrm{G}(\mathrm{y}) \alpha \mathrm{w}+\mathrm{x} \alpha \mathrm{d}(\mathrm{z}) \beta \mathrm{y} \alpha \mathrm{g}(\mathrm{w})$
By hypothesis and (ii), (iii) we get
$\mathrm{x} \alpha \mathrm{d}(\mathrm{z}) \beta \mathrm{g}(\mathrm{y}) \alpha \mathrm{w}=0$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{w} \in \mathrm{M}$, $\alpha, \beta \in \Gamma$. Hence d and g are orthogonal.

Lemma 13:

Let X be a semiprime $Г \mathrm{M}$-module and D be a generalized derivation of Γ-ring M into X with derivation d of M into X . If $\mathrm{D}(\mathrm{x}) \alpha \mathrm{D}(\mathrm{y})=0$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{M}, \alpha \in \Gamma$, then $\mathrm{D}=\mathrm{d}=0$.

Proof:

By the hypothesis we have

$$
\begin{aligned}
0 & =\mathrm{D}(\mathrm{x}) \alpha \mathrm{D}(\mathrm{y} \beta \mathrm{z}) \\
& =\mathrm{D}(\mathrm{x}) \alpha(\mathrm{D}(\mathrm{y}) \beta \mathrm{z}+\mathrm{y} \beta \mathrm{~d}(\mathrm{z})) \\
& =\mathrm{D}(\mathrm{x}) \alpha \mathrm{D}(\mathrm{y}) \beta \mathrm{z}+\mathrm{D}(\mathrm{x}) \alpha \mathrm{y} \beta \mathrm{~d}(\mathrm{z}) \\
& =\mathrm{D}(\mathrm{x}) \alpha \mathrm{y} \beta \mathrm{~d}(\mathrm{z}), \text { for all } \mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{M}, \alpha, \beta \in \Gamma .
\end{aligned}
$$

Hence by Lemma 1 we have

$$
\mathrm{d}(\mathrm{z}) \alpha \mathrm{D}(\mathrm{x})=0 \text { all } \mathrm{x}, \mathrm{z} \in \mathrm{M}, \alpha \in \Gamma
$$

Replacing x by $\mathrm{x} \beta \mathrm{z}$ in last relation, we get

$$
\begin{aligned}
0 & =\mathrm{d}(\mathrm{z}) \alpha \mathrm{D}(\mathrm{x} \beta \mathrm{z}) \\
& =\mathrm{d}(\mathrm{z}) \alpha(\mathrm{D}(\mathrm{x}) \beta \mathrm{z}+\mathrm{x} \beta \mathrm{~d}(\mathrm{z})) \\
& =\mathrm{d}(\mathrm{z}) \alpha \mathrm{D}(\mathrm{x}) \beta \mathrm{z}+\mathrm{d}(\mathrm{z}) \alpha \mathrm{x} \beta \mathrm{~d}(\mathrm{z}) \text { for all }
\end{aligned}
$$

$$
\mathrm{x}, \mathrm{z} \in \mathrm{M}, \alpha, \beta \in \Gamma
$$

By the semiprimeness of X, we obtain $d=0$.

$$
\begin{aligned}
0 & =\mathrm{D}(\mathrm{x} \beta \mathrm{y}) \alpha \mathrm{D}(\mathrm{y}) \\
& =(\mathrm{D}(\mathrm{x}) \beta \mathrm{y}+\mathrm{x} \beta \mathrm{~d}(\mathrm{y})) \alpha \mathrm{D}(\mathrm{y}) \\
& =\mathrm{D}(\mathrm{x}) \beta \mathrm{y} \alpha \mathrm{D}(\mathrm{y})+\mathrm{x} \beta \mathrm{~d}(\mathrm{y}) \alpha \mathrm{D}(\mathrm{y})
\end{aligned}
$$

Hence $\mathrm{D}(\mathrm{x}) \beta \mathrm{y} \alpha \mathrm{D}(\mathrm{y})=0$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{M}, \alpha, \beta \in \Gamma$. By the semiprimeness of X , we obtain $\mathrm{D}=0$.

Lemma 14:

Let D and G be generalized derivations of Γ ring M into $\Gamma \mathrm{M}$-module X , with derivations d and g respectively. If the following relation hold for all $\mathrm{x}, \mathrm{y} \in \mathrm{M}$ and $\alpha \in \Gamma$.
i) $\mathrm{D}(\mathrm{x}) \alpha \mathrm{G}(\mathrm{y})+\mathrm{G}(\mathrm{x}) \alpha \mathrm{D}(\mathrm{y})=0$
ii) $\mathrm{d}(\mathrm{x}) \alpha \mathrm{G}(\mathrm{y})+\mathrm{g}(\mathrm{x}) \alpha \mathrm{D}(\mathrm{y})=0$
then D and G are orthogonal.

Proof:

If we take $\mathrm{x} \beta \mathrm{z}$ instead of x in (i) we get
$\mathrm{D}(\mathrm{x} \beta \mathrm{z}) \alpha \mathrm{G}(\mathrm{y})+\mathrm{G}(\mathrm{x} \beta \mathrm{z}) \alpha \mathrm{D}(\mathrm{y})=0$
$(\mathrm{D}(\mathrm{x}) \beta \mathrm{z}+\mathrm{x} \beta \mathrm{d}(\mathrm{z})) \alpha \mathrm{G}(\mathrm{y})+(\mathrm{G}(\mathrm{x}) \beta \mathrm{z}+$ $\mathrm{x} \beta \mathrm{g}(\mathrm{z})) \alpha \mathrm{D}(\mathrm{y})=0$
$\mathrm{D}(\mathrm{x}) \beta \mathrm{z} \alpha \mathrm{G}(\mathrm{y}) \quad+\quad \mathrm{x} \beta \mathrm{d}(\mathrm{z}) \alpha \mathrm{G}(\mathrm{y}) \quad+$ $\mathrm{G}(\mathrm{x}) \beta \mathrm{z} \alpha \mathrm{D}(\mathrm{y})+\mathrm{x} \beta \mathrm{g}(\mathrm{z}) \alpha \mathrm{D}(\mathrm{y})=0$
$\mathrm{D}(\mathrm{x}) \beta \mathrm{z} \alpha \mathrm{G}(\mathrm{y})+\mathrm{G}(\mathrm{x}) \beta \mathrm{z} \alpha \mathrm{D}(\mathrm{y})=0$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{M}$ and $\alpha, \beta \in \Gamma$.Thus by Lemma 1 we have $\mathrm{D}(\mathrm{x}) Г \mathrm{M} Г \mathrm{G}(\mathrm{y})=\mathrm{G}(\mathrm{x}) Г \mathrm{M} Г \mathrm{D}(\mathrm{y})=0$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{M}$.

Lemma 15:

Let X be 2-torsion free semiprime ГМmodule D and G are generalized derivations of Γ-ring M into X , with derivations d and g respectively, such that
$\mathrm{D}(\mathrm{x}) \alpha \mathrm{G}(\mathrm{y})=\mathrm{d}(\mathrm{x}) \alpha \mathrm{G}(\mathrm{y})=0$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{M}$ and $\alpha \in \Gamma$ then D and G are orthogonal.

Proof:

If we take $\mathrm{x} \beta \mathrm{z}$ instead of x in $\mathrm{D}(\mathrm{x}) \alpha \mathrm{G}(\mathrm{y})=$ 0 we get

$$
\begin{aligned}
& \mathrm{D}(\mathrm{x} \beta \mathrm{z}) \alpha \mathrm{G}(\mathrm{y})=0 \\
& (\mathrm{D}(\mathrm{x}) \beta \mathrm{z}+\mathrm{x} \beta \mathrm{~d}(\mathrm{z})) \alpha \mathrm{G}(\mathrm{y})=0 \\
& \mathrm{D}(\mathrm{x}) \beta \mathrm{z} \alpha \mathrm{G}(\mathrm{y})+\mathrm{x} \beta \mathrm{~d}(\mathrm{z}) \alpha \mathrm{G}(\mathrm{y})=0 \\
& \mathrm{D}(\mathrm{x}) \beta \mathrm{z} \alpha \mathrm{G}(\mathrm{y})=0
\end{aligned}
$$

Thus by Lemma 1 we get D and G are orthogonal.

Lemma 16:

Let X be 2-torsion free semiprime ГМmodule, D and G are generalized derivations of Γ-ring M into X , with derivations d and g respectively, such that
$\mathrm{D}(\mathrm{x}) \alpha \mathrm{G}(\mathrm{y})=0$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{M}$ and $\alpha \in \Gamma$ and $\mathrm{dG}=\mathrm{dg}=0$. Then D and G are orthogonal.

Proof:

Since $d g=0$, we have
$\mathrm{dG}(\mathrm{x} \alpha \mathrm{y})=0$
$\mathrm{d}(\mathrm{G}(\mathrm{x}) \alpha \mathrm{y}+\mathrm{x} \alpha \mathrm{g}(\mathrm{y}))=0$
$\mathrm{dG}(\mathrm{x}) \alpha \mathrm{y}+\mathrm{G}(\mathrm{x}) \alpha \mathrm{d}(\mathrm{y})+\mathrm{d}(\mathrm{x}) \alpha \mathrm{g}(\mathrm{y})+$ $\mathrm{x} \alpha \operatorname{dg}(\mathrm{y})=0$
$\mathrm{G}(\mathrm{x}) \alpha \mathrm{d}(\mathrm{y})=0$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{M}$ and
$\alpha \in \Gamma$. ...(1)
Replacing x by $\mathrm{x} \beta \mathrm{z}$ in (1) we have

$$
\begin{aligned}
& \mathrm{G}(\mathrm{x} \beta \mathrm{z}) \alpha \mathrm{d}(\mathrm{y})=0 \\
& (\mathrm{G}(\mathrm{x}) \beta \mathrm{z}+\mathrm{x} \beta \mathrm{~g}(\mathrm{z})) \alpha \mathrm{d}(\mathrm{y})=0 \\
& \mathrm{G}(\mathrm{x}) \beta \mathrm{z} \alpha \mathrm{~d}(\mathrm{y})+\mathrm{x} \beta \mathrm{~g}(\mathrm{z}) \alpha \mathrm{d}(\mathrm{y})=0 \\
& \mathrm{G}(\mathrm{x}) \beta \mathrm{z} \alpha \mathrm{~d}(\mathrm{y})=0, \quad \text { for } \quad \text { all } \quad \mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{M}, \\
& \alpha, \beta \in \Gamma \\
& \text { Now, } \mathrm{d}(\mathrm{y} \gamma \mathrm{z}) \alpha \mathrm{G}(\mathrm{x})=0 \\
& (\mathrm{~d}(\mathrm{y}) \gamma \mathrm{z}+\mathrm{y} \gamma \mathrm{~d}(\mathrm{z})) \alpha \mathrm{G}(\mathrm{x})=0 \\
& \mathrm{~d}(\mathrm{y}) \gamma \mathrm{z} \alpha \mathrm{G}(\mathrm{x})+\mathrm{y} \gamma \mathrm{~d}(\mathrm{z}) \alpha \mathrm{G}(\mathrm{x})=0 \\
& \mathrm{~d}(\mathrm{y}) \gamma \mathrm{z} \alpha \mathrm{G}(\mathrm{x})=0
\end{aligned}
$$

Hence by Lemma 1 we get $\mathrm{d}(\mathrm{y}) \alpha \mathrm{G}(\mathrm{x})=0$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{M}$ and $\alpha \in \Gamma$. Thus by Lemma 15 we get D and G are orthogonal.

Lemma 17:

Let X be 2-torsion free semiprime ГМmodule, D and G are generalized derivations of Γ-ring M into X , with derivations d and g respectively, such that
DG is generalized derivation of Γ-ring M into X with derivation dg and $\mathrm{D}(\mathrm{x}) \alpha \mathrm{G}(\mathrm{y})=0$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{M}$ and $\alpha \in \Gamma$. then D and G are orthogonal.

Proof:

Since DG is generalized derivation with derivation dg
$\mathrm{DG}(\mathrm{x} \alpha \mathrm{y})=\mathrm{DG}(\mathrm{x}) \alpha \mathrm{y}+\mathrm{x} \alpha \operatorname{dg}(\mathrm{y})$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{M}$ and $\alpha \in \Gamma$
on the other hand
$\mathrm{DG}(\mathrm{x} \alpha \mathrm{y})=\mathrm{D}(\mathrm{G}(\mathrm{x}) \alpha \mathrm{y}+\mathrm{x} \alpha \mathrm{g}(\mathrm{y}))$
$=\mathrm{DG}(\mathrm{x}) \alpha \mathrm{y}+\mathrm{G}(\mathrm{x}) \alpha \mathrm{d}(\mathrm{y})+\mathrm{D}(\mathrm{x}) \alpha \mathrm{g}(\mathrm{y})+\mathrm{x} \alpha \mathrm{Dg}(\mathrm{y}$
) for all $\mathrm{x}, \mathrm{y} \in \mathrm{M}, \alpha \in \Gamma \ldots$ (2)
Compare (1) and (2) we get
$\mathrm{G}(\mathrm{x}) \alpha \mathrm{d}(\mathrm{y})+\mathrm{D}(\mathrm{x}) \alpha \mathrm{g}(\mathrm{y})=0$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{M}$ and $\alpha \in \Gamma$.
Since $\mathrm{D}(\mathrm{x}) \alpha \mathrm{G}(\mathrm{y})=0$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{M}$ and $\alpha \in \Gamma$.
Replacing y by y $\beta \mathrm{z}$ in (3) we get
$\mathrm{D}(\mathrm{x}) \alpha \mathrm{G}(\mathrm{y} \beta \mathrm{z})=0$
$\mathrm{D}(\mathrm{x}) \alpha(\mathrm{G}(\mathrm{y}) \beta \mathrm{z}+\mathrm{y} \beta \mathrm{g}(\mathrm{z}))=0$
$\mathrm{D}(\mathrm{x}) \alpha \mathrm{G}(\mathrm{y}) \beta \mathrm{z}+\mathrm{D}(\mathrm{x}) \alpha \mathrm{y} \beta \mathrm{g}(\mathrm{z})=0$
$\mathrm{D}(\mathrm{x}) \alpha \mathrm{y} \beta \mathrm{g}(\mathrm{z})=0$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{M}$ and $\alpha \in \Gamma$.
Now, replacing x by $\mathrm{x} \beta \mathrm{z}$ in (3) we get
$\mathrm{D}(\mathrm{x} \beta \mathrm{z}) \alpha \mathrm{G}(\mathrm{y})=0$
$(\mathrm{D}(\mathrm{x}) \beta \mathrm{z}+\mathrm{x} \beta \mathrm{d}(\mathrm{z})) \alpha \mathrm{G}(\mathrm{y})=0$
$\mathrm{D}(\mathrm{x}) \beta \mathrm{zD}(\mathrm{x}) \beta \mathrm{z}+\mathrm{x} \beta \mathrm{d}(\mathrm{z}) \alpha \mathrm{G}(\mathrm{y})=0$
$\mathrm{x} \beta \mathrm{d}(\mathrm{z}) \alpha \mathrm{G}(\mathrm{y})=0$
Hence $\mathrm{d}(\mathrm{z}) \alpha \mathrm{G}(\mathrm{y})=0$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{M}$ and $\alpha \in \Gamma$.
Thus by Lemma 15 we get D and G are orthogonal.

4. Products of Generalized Derivations on ГМ-Module:

In this section, we introduce and study the relation between the products of generalized derivations and orthogonality on ГМ-module. We state by the following theorem:

Theorem 18:

Let D and G are generalized derivations of Γ ring M into semiprime $Г \mathrm{M}$-module X , with derivations d and g respectively. Then $D G$ is generalized derivation with derivation dg , if and only if D and g are orthogonal, also G and d are orthogonal.

Proof:

Assume that DG is a generalized derivation with derivation dg , we obtain
$\mathrm{DG}(\mathrm{x} \alpha \mathrm{y})=\mathrm{DG}(\mathrm{x}) \alpha \mathrm{y}+\mathrm{x} \alpha \operatorname{dg}(\mathrm{y})$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{M}$
$\alpha \in \Gamma$.
On the other hand
$\mathrm{DG}(\mathrm{x} \alpha \mathrm{y})=\mathrm{D}(\mathrm{G}(\mathrm{x}) \alpha \mathrm{y}+\mathrm{x} \alpha \mathrm{g}(\mathrm{y}))$
$=\mathrm{DG}(\mathrm{x}) \alpha \mathrm{y}+\mathrm{G}(\mathrm{x}) \alpha \mathrm{d}(\mathrm{y})+\mathrm{D}(\mathrm{x}) \alpha \mathrm{g}(\mathrm{y})+$ $\mathrm{x} \alpha \operatorname{dg}(\mathrm{y})$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{M}$ and $\alpha \in \Gamma$.
Compare (1) and (2) we get
$\mathrm{G}(\mathrm{x}) \alpha \mathrm{d}(\mathrm{y})+\mathrm{D}(\mathrm{x}) \alpha \mathrm{g}(\mathrm{y})=0$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{M}$ and $\alpha \in \Gamma$,for all x,y $\in \mathrm{M}$ and $\alpha \in \Gamma \ldots \ldots$.(3)

Replacing y by y $\beta \mathrm{z}$ in relation (3) where $\mathrm{z} \in \mathrm{M}$ and $\beta \in \Gamma$ we get
$\mathrm{G}(\mathrm{x}) \alpha \mathrm{d}(\mathrm{y} \beta \mathrm{z})+\mathrm{D}(\mathrm{x}) \alpha \mathrm{g}(\mathrm{y} \beta \mathrm{z})=0$
$\mathrm{G}(\mathrm{x}) \alpha(\mathrm{d}(\mathrm{y}) \beta \mathrm{z}+\mathrm{y} \beta \mathrm{d}(\mathrm{z}))+\mathrm{D}(\mathrm{x}) \alpha(\mathrm{g}(\mathrm{y}) \beta \mathrm{z}$
$+\mathrm{y} \beta \mathrm{g}(\mathrm{z}))=0$
$\mathrm{G}(\mathrm{x}) \alpha \mathrm{d}(\mathrm{y}) \beta \mathrm{z}+\mathrm{G}(\mathrm{x}) \alpha \mathrm{y} \beta \mathrm{d}(\mathrm{z}) \quad+$
$\mathrm{D}(\mathrm{x}) \alpha \mathrm{g}(\mathrm{y}) \beta \mathrm{z}+\mathrm{D}(\mathrm{x}) \alpha \mathrm{y} \beta \mathrm{g}(\mathrm{z})=0$
By using (3) we get
$\mathrm{G}(\mathrm{x}) \alpha \mathrm{y} \beta \mathrm{d}(\mathrm{z})+\mathrm{D}(\mathrm{x}) \alpha \mathrm{y} \beta \mathrm{g}(\mathrm{z})=0$, for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{M}$ and $\alpha, \beta \in \Gamma$.
Since $D G$ is generalized derivation with derivation dg . Therefore d and g are orthogonal by Lemma 16 and Theorem 12(iv). Thus we have:
$0=\mathrm{G}(\mathrm{x}) \gamma \mathrm{g}(\mathrm{z}) \alpha$ y $\beta \mathrm{d}(\mathrm{z})+\mathrm{D}(\mathrm{x}) \gamma \mathrm{g}(\mathrm{z}) \alpha \mathrm{y} \beta \mathrm{g}(\mathrm{z})$
$=\mathrm{D}(\mathrm{x}) \gamma \mathrm{g}(\mathrm{z}) \alpha \mathrm{y} \beta \mathrm{g}(\mathrm{z})$, for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{M}$ and $\alpha, \beta, \gamma \in \Gamma$
Hence we get $\mathrm{D}(\mathrm{x}) \gamma \mathrm{g}(\mathrm{z}) \Gamma \mathrm{M} \Gamma \mathrm{D}(\mathrm{x}) \gamma \mathrm{g}(\mathrm{z})=0$, for all $\mathrm{x}, \mathrm{z} \in \mathrm{M}$ and $\gamma \in \Gamma$, by the semiprimeness of X, we obtain
$\mathrm{D}(\mathrm{x}) \gamma \mathrm{g}(\mathrm{z})=0$, for all $\mathrm{x}, \mathrm{z} \in \mathrm{M}$ and $\gamma \in \Gamma$.
Thus $\mathrm{D}(\mathrm{x}) \alpha$ y $\beta \mathrm{g}(\mathrm{z})=0$, for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{M}$ and $\alpha, \beta \in \Gamma$, and by (4) we have
$\mathrm{G}(\mathrm{x}) \alpha \mathrm{y} \beta \mathrm{d}(\mathrm{z})=0$, for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{M}$ and $\alpha, \beta \in \Gamma$.
Assume that D and g are orthogonal also G and d are orthogonal.
Since D and g are orthogonal, we get
$\mathrm{D}(\mathrm{x}) \alpha \mathrm{y} \beta \mathrm{g}(\mathrm{z})=0$, for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{M}$ and $\alpha, \beta \in \Gamma$.
Substituting $\mathrm{r} \gamma \mathrm{x}$ for x in relation (5) we get
$\mathrm{D}(\mathrm{r} \gamma \mathrm{x}) \alpha \mathrm{y} \beta \mathrm{g}(\mathrm{z})=0$
($\mathrm{D}(\mathrm{r}) \gamma \mathrm{x}+\mathrm{r} \gamma \mathrm{d}(\mathrm{x})) \alpha \mathrm{y} \beta \mathrm{g}(\mathrm{z})=0$
$\mathrm{D}(\mathrm{r}) \gamma \mathrm{x} \alpha \mathrm{y} \beta \mathrm{g}(\mathrm{z})+\mathrm{r} \gamma \mathrm{d}(\mathrm{x}) \alpha \mathrm{y} \beta \mathrm{g}(\mathrm{z})=0$
By (5) we get $\mathrm{r} \gamma \mathrm{d}(\mathrm{x}) \alpha$ y $\beta \mathrm{g}(\mathrm{z})=0$ for all $\mathrm{r}, \mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{M}$ and $\alpha, \beta, \gamma \in \Gamma$.
Hence $\mathrm{d}(\mathrm{x}) \alpha$ y $\beta \mathrm{g}(\mathrm{z})=0$, for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{M}$ and $\alpha, \beta \in \Gamma$. Thus by Lemma 16 and Theorem 12(iv) we conclude that dg is a derivation.

Moreover since $\mathrm{D}(\mathrm{x}) \alpha \mathrm{y} \beta \mathrm{g}(\mathrm{z})=0$, for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{M} \quad$ and $\quad \alpha, \beta \in \Gamma$. we also get $\mathrm{D}(\mathrm{x}) \alpha \mathrm{g}(\mathrm{z}) ~ Г \mathrm{M} \Gamma \mathrm{D}(\mathrm{x}) \beta \mathrm{g}(\mathrm{z})=0 \quad$ and so by semiprimeness of X we get $\quad \mathrm{D}(\mathrm{x}) \alpha \mathrm{g}(\mathrm{z})=0$ for all $\mathrm{x}, \mathrm{z} \in \mathrm{M}$ and $\alpha \in \Gamma$, similarly, since G and d are orthogonal, we have $\mathrm{G}(\mathrm{x}) \alpha \mathrm{d}(\mathrm{y})=0$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{M}$ and $\alpha \in \Gamma$. Thus we obtain
$\mathrm{DG}(\mathrm{x} \alpha \mathrm{y})=\mathrm{DG}(\mathrm{x}) \alpha \mathrm{y}+\mathrm{x} \alpha \operatorname{dg}(\mathrm{y})$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{M}$ and $\alpha \in \Gamma$, which means that DG is a generalized derivation with derivation dg .

Corollary 19:

Let D and G be generalized derivations with derivations d and g respectively of Γ-ring into semiprime $Г$ M-module X. Then $G D$ is a generalized derivation with derivation gd of M into X if and only if D and g are orthogonal, also G and d are orthogonal.
Corollary 20:
Let D be a generalized derivation with derivation d of Γ-ring M into semiprimeness $\Gamma \mathrm{M}$-module X . If D^{2} is a generalized derivation with derivation d^{2}, then $\mathrm{d}=0$.

Proof:

Since d^{2} is a derivation, d and d are orthogonal by Lemma 17 and Theorem18. Hence we have $\mathrm{d}(\mathrm{x}) \alpha$ y $\beta \mathrm{d}(\mathrm{x})=0$ for all x , $\mathrm{y} \in \mathrm{M}, \quad \alpha, \beta \in \Gamma$. Therefore by the semiprimeness of X, we get $d(M)=0$

Lemma 21:

Let D be a generalized derivation with derivation d of Γ-ring M into semiprimeness $\Gamma \mathrm{M}$-module X . If $\mathrm{D}(\mathrm{x}) \alpha \mathrm{D}(\mathrm{y})=0$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{M}, \alpha \in \Gamma$, then $\mathrm{D}=\mathrm{d}=0$.

Proof:

Since $\mathrm{D}(\mathrm{x}) \alpha \mathrm{D}(\mathrm{y})=0$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{M}$, $\alpha \in \Gamma$,
Replacing $\mathrm{y} \beta \mathrm{z}$ by y in (1) where $\mathrm{z} \in \mathrm{M}$,
$\beta \in \Gamma$ we get
$0=\mathrm{D}(\mathrm{x}) \alpha \mathrm{D}(\mathrm{y} \beta \mathrm{z})$
$=\mathrm{D}(\mathrm{x}) \alpha(\mathrm{D}(\mathrm{y}) \beta \mathrm{z}+\mathrm{y} \beta \mathrm{d}(\mathrm{z}))$
$=\mathrm{D}(\mathrm{x}) \alpha \mathrm{D}(\mathrm{y}) \beta \mathrm{z}+\mathrm{D}(\mathrm{x}) \alpha \mathrm{y} \beta \mathrm{d}(\mathrm{z})$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{M}, \alpha, \beta \in \Gamma$.
Hence by Lemma 1 we get
$\mathrm{d}(\mathrm{z}) \beta \mathrm{D}(\mathrm{x})=0$ for all $\mathrm{x}, \mathrm{z} \in \mathrm{M}, \beta \in \Gamma$.
Replacing x by $\mathrm{x} \gamma \mathrm{z}$ in (2) we get
$0=\mathrm{d}(\mathrm{z}) \beta \mathrm{D}(\mathrm{x} \gamma \mathrm{z})$
$=\mathrm{d}(\mathrm{z}) \beta(\mathrm{D}(\mathrm{x}) \gamma \mathrm{z}+\mathrm{x} \gamma \mathrm{d}(\mathrm{z}))$
$=\mathrm{d}(\mathrm{z}) \beta \mathrm{D}(\mathrm{x}) \gamma \mathrm{z}+\mathrm{d}(\mathrm{z}) \beta \mathrm{x} \gamma \mathrm{d}(\mathrm{z})$ for all
$\mathrm{x}, \mathrm{z} \in \mathrm{M}, \beta, \gamma \in \Gamma$.
By the semiprimeness of X, we obtain $\mathrm{d}=0$.
Then we have:
$0=\mathrm{D}(\mathrm{x} \alpha \mathrm{y}) \beta \mathrm{D}(\mathrm{y})$
$=(\mathrm{D}(\mathrm{x}) \alpha \mathrm{y}+\mathrm{x} \alpha \mathrm{d}(\mathrm{y})) \beta \mathrm{D}(\mathrm{y})$
$=\mathrm{D}(\mathrm{x}) \alpha \mathrm{y} \beta \mathrm{D}(\mathrm{y})+\mathrm{x} \alpha \mathrm{d}(\mathrm{y}) \beta \mathrm{D}(\mathrm{y})$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{M}, \alpha, \beta \in \Gamma$.

By the hypothesis and semiprimeness of X we get $\mathrm{D}=0$.
By using the similar argument we can prove the following lemma:

Lemma 22:

Let X be a 2 -torsion free prime ГМ-module. If D and G are generalized derivations with derivations d and g respectively of M into X satisfy one of the following conditions:
i) DG is a generalized derivation with derivation dg on X .
ii) GD is a generalized derivation with derivation gd on X .
iii) D and g are orthogonal, and G and d are orthogonal.
Then $\mathrm{D}=\mathrm{d}=0$ or $\mathrm{G}=\mathrm{g}=0$.

References

1. Nobusawa, N. 1964. "On a generalization of the ring theory", Osaka Journal of Math., Vol. 1, pp:81-89.
2. Barnes,W. 1966. "On the Γ-ring of Nobusawa", Pacific Journal of Math. Vol.18, No.3, pp:411-422.
3. Ozturk,M. Sapanci,M. Syturk, M. and Kim, K. 2000. "Symmetric bi-derivation on prime gamma rings", Sci. Math. Vol. 3, No. 2, pp:273-281.
4. Paul, A. C. and Halder,A. K. 2009. "Jordan left derivations of two torsion free ГМmodules" Journal of Physical Sciences, Vol. 13, pp:13-19.
5. Jing,F. 1987. "On derivations of Γ-ring", Qu Fu Shi Fan Daxue Xuebeo Ziran Kexue Ban, 13(4), pp:159-161.
6. Ceven, Y. and Ozturk,M. 2004. "On Jordan generalized derivation in gamma rings", Hacettepe Journal of Mathematics and statistic, Vol. 33, pp:11-14.
7. Salih,S. M. "Jordan derivation of ГМmodules", to appear.
8. Salih, S. M. "Jordan generalized derivation of ГМ-modules", to appear.
9. Bresar, M. and Vukman, J. 1989. "Orthogonal derivation and extension of a theorem of Posner" Radovi Matematicki Vol.5, pp:237-246.
10. Ashraf, M. and Jamal, M. 2010. "Orthogonal derivations in Γ-rings", Advances in Algebra, Vol. 3, No:1, pp. 1-6.
11. Argac,N., Nakajima, A. and Albas, E. 2004. "On orthogonal generalized derivation of semiprime rings", Turk. Journal of Math. Vol. 28, pp:185-194.
