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Abstract
Let X be a Banach space, £ be a nonempty closed convex subset of X, and Tbe self

nonexpansive  map. The sequence fx,} generated by the iterative method
Ty =%, flag )4 (1 —0t,,,)Tx, , where f:{ — £ be a contractive mapping
and {0, 1 is a sequence in [0,1]. We generalize the mapping T to non-selt-Strongly
Pseudocontractive .
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1-Introduction Kpe1 =% U+ (1 -0 9)Tx, ..o (1.2)
Let X be a Banach space, € be a nonempty whereu = f(x) €EC in  (1.1). In 1996,
closed convex subset of X, and T:C =X be a Bauschke[2] considered the iteration (1.1),where
finite family of - u = f(x) € Cand{T;:C = C;i =1,2,...,N} are
stronglypseudocontractivemapping, f: C = C be nonexpansive mappings and X be a Hilbert
a contraction mapping with contractive space then (1.1) is equal to the iteration as
constant;a € (0,1). In this paper we use the bellow
following iteration to study the strong Xnt1 =%ppq U+ (L —0641 ) Tp %,
convergence to a common fixed point q. L A I (1.3)
Tty =Xnsa ) + (1 =040 )Tit In 2005, Jung [3] introduced iteration (1.3)
Vn :_3:‘ ﬂ --------------------------------- (1-1) When X be a uniformly Smooth Banach Spaces
There are several types of iterations used to with the weakly sequentially continuous duality

compute the fixed point of the systems of  manning Whenfi€ = € is a contractive
mappings. In 1992, Wittman [1] had obtained

the following iteration mapping, and re=c 15 a
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nonexpansivemapping , therefore (1.1) is
equivalent to the iteration as bellow:

Xnet =%pas flag) + (0 -0, T2, ¥r = 0. (1.4)
It was obtain and studied by Moudafi[3] in
Hilbert spaces and Xu[4] in uniformly smooth
Banach spaces. Chang[5] in 2006, proved the

iteration as bellow in uniformly smooth Banach

spacesX {T;:C = :i =1,2,...,N} are
nonexpansive mappings,

X1 =% flrg) + (1 =004 )T 2y

¥n =0, Tn = Tn(modfv‘} ................ (15)

The main result of this paper is to extend the
mappings] to  O-stronglypseudocontractive

mapping.
2- Preliminaries
SupposeX is a realBanach space, and X *is the

dual space of X and Suppose that C is a
nonempty closed convex subset of X, D(T) the
domain of Tand that F(T} is the set of all fixed

points of mapping T. Denote the generalized
duality paring between X and X* by {.,.)(where
(.,.)is afunctional from X into X*) and the
identity mapping by I. The normalized duality
mapping J: X — 2% is defined by

JO) =G e X (e, p = llxll - 11l = 7% =
11}

, XEX(2.1)

If {x,} is a sequence in X, then x, —* x(resp.,
Xp X, Xy —"x) denotes strong(resp.,weak
and weak*) convergence of the sequence{x,, ] to
x

Definition 2.1([7]):

A mapping T:D(T) =X = X is said to be
accretive if for all x yEX,
jlx—v) € J(x — ¥) such that
{Tx — Ty, jlx — ) = 0.

The mapping T is said to be strongly accretive if
there exists a constant & € {0,1) such that for all
x,vE X, there exists j{x—v) € J{x — y)such
that

(Tx =Ty, j(x—y)) = kllx — ¥l?

and is said to be ®-strongly accretive if there is a
strictly increasing function o©t:[0,00) = [0,c0)
with o (0) = 0 such that for any x, ¥ € X there
existsj{x — v} € J{x — vJsuch that

(Tx — Ty, j(x — ¥)) =e< (Jlx — ¥IDlx — yll.

there exists

Definition2.2 [6]:
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The mapping T:X = X is calledstrongly
pseudocontractiveif there exists & € (0,1) and
for all xnyeEX,
j{x —¥) € J(x — vJsuch that
(Tx — Ty, jlx— ) = (1 - k)llx—yllI%
Definition 2.3[8]:

The mapping T: X' — X is called
o-strongly pseudocontractive and there exists a
strictly increasing function o©<: [0, co] — [0, 0]
with @ (0) = 0 such that for allx,y € X there
existsj{x — g € J{x — g)such that
{Tx — Ty, jlx— )}
< [lx = yllF—ec (llx = ¥IDllx = yll.

Definition 2.4[8]:

The mapping T is pseudocontractive if and

only if I—T 1is accretive and is strongly

there exists

pseudocontractive if and only if I —Tis
stronglyaccretive  (respectively,  t¢-strongly
pseudocontractive).

Definition 2.5 [10]:

A Banach space is said to admit a weakly
sequentially continuous normalized duality
mapping [, if J:X = X* is single-valued and
weak-weak* sequentially continuous. i.e., if
%, = x inXthen](x, ) =* J(x) in X*,

We will give the definition of the concepts of
non-self contraction mappings
Definition 2.6[11]:

Let € be a nonempty subset of a Banachspace
X. For x € C, the inward set of x relative to C is
the set
Ic(x):i={x+t{y—x):vECandt = 0}

And the outward set of x relative to C is the set
Ox):={x—tly—x):ye Cand t = 0}
Now, we will give the definition of weakly
inward and weakly outward mappings:
Definition 2.7 [12]:

Let € be a nonempty subset of a Banach
space X and T:C — X mapping. Then T is said
tobea
(i) Inward mapping if Tx € I-(x) forall x € C.

(ii) Weakly inward mapping if T, € I-(x)for all
xe L

(iii) Weakly outward mapping if T, € Oq(x)for
allx e C.

In the following we will obtain the definitions of
smoothness and convexity of a Banach space.
Definition 2.8 [12]:
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Let U={x € X:|lx|| = 1}. Xis said to be a
smooth Banach  space, if the limit

. +tyll— )
llmﬁu.llxr}—r””'r” exists for all x, v € U,

Definition 2.9[11]:

The modulus of convexity of a Banach
space X is the function &,:[0,2] — [0,1] defined
by

- (1

8.(e)= zitn_fil — I
Note That [11]:
1- For anye > 0 the number of &, (€)is the
largest number for which the following
implication always holds for x, ¥ € X,

lxll =1

x+y o

vl =1 = ”TH =1-4.(e)
lx—wll =e
2.1
2- For later reference we note that (2.1) has
the following equivalent formulation. For
xyp€EX,R>0,andr € [0,2R],

Ixll < R

x+y ™
Il=r b= ”p - —}u < (1 — 5, (—]) R
2 B
lx—yll =7
2.2)
Lemma 2.10[8]

Let {a,}, {b,}, {c,] be three non-three
nonnegative real sequences satisfying the
following conditions:
Opeq = (1—t,)a,+b, +c,, forall n =ng,
whererniy is some nonnegative integer, with
t, € [01), with¥ _,t,=c , b, =o0(t,),
and¥. ;= C, < 0. Then a,, — Oas 1 = o2,
Lemma 2.11[6]

Let X be a real Banach space, and J: X = 2%

be the normalized duality mapping. Then for
any x,y € X, the following conclusion holds:

lxll? + 20y, ; ()} = llx + ¥l
= Nlxll% + 20y, j(x + ),
forall j(x) € J(x), jlx +v) €J(x + ).

Corollary 2.12[12]:
Let £ be a nonempty closed convex

+

x

Vil
Sl =Ll =1 -yl 2

O

£

subset of a Banach space X and T:C =X a
weakly  inward  continuous o-strongly
pseudocontractive mapping. Then T has a
unique fixed point in €.

3. Main results

The following theorem gives a generalize of
the most essential mapping need to prove the
main theorem in this paper.

Theorem3.1:
Let X be uniformly convex Banach space, £

is a closed convex subset of X, and T:C — X be
a-strongly pseudocontractive mapping. Then the
mapping f =1 —T is demiclosed on L. That is,
for any sequence fx,}in X, if x,—=x and
(X —Txp) = ythen I —Tlx =1y.

To proof the above theorem we need the
following two propositions.

Proposition 3.2:
Suppose € is a bounded, convex subset

of a uniformly convex space X and suppose
T:C—=X be a-strongly pseudocontractive
mapping. Then for {u,}, {=,}in C and

1 . ye
Z, = :(un =+ ‘E-"n}lﬂlmn—m:”un — T, =0 and
lim,, . |lv, —Tu,|| = Othen
lim,, ez, — Tz, = 0.
Proof:

Let € == 0 and there are two sequences
{fu,}, {v,] belongs to € such that
lim,, e |1, — T, || = 0and
lim e ||, — T, || = O, suppose
Zy = %(un + 17, ) such that
lim,, e llz, — Tz,ll = €, € = 0 Suppose
d =diamC and for some >0, we have
Hm o lluy — Zoll = iMool — z,ll =7
Choose
t < e/dwheret = 0.Therefore
t < e/[2lun — zull = allluy, — 2,1]
Also ifn —= o,
E< e/l — Ty | + 2w, — 2,1l — allu, —z,11]

And,
”u:—z - Tzn |I = ”un - Tu.'—: ” + ” Tu.'vz - Tzn ||

= ||un - Tun ” + ”un — Zn ” - ﬂ(”un — Zn |D

(3.1)
If u, is replaced by v, in (3.1) we have the
same result.

Now, by using the inequality (2.2) and
when 1 — o= then

-

I PR |
[Vn —5(Zn + Tz,)||
1 £ 1

= a(llu, — z,1))]
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[1 — 6@ (llv, — Tl + Il — 2, |l —
. a(llv, = z,1)]
= ([”un - Tun ” + ”un —in ” - I5“:”1"[:*;! -
Zu D] + [l = Tl + v, — 2,1l —
alllv, — 2, IDD(21 — 8(8))
If n — oo we obtain the contradiction
2r = [rl=e(llu, = z,1) = ellv, -z,
3(t))
The next proposition shows that T has a fixed
point inC if T is @-strongly pseudocontractive
which satisfies infi||x — Tx||:x €C} = 0.

Proposition 3.3:
Suppose C is a bounded, closed and

convex subset of uniformly convex space X and

S

L=

suppose T:C = Xis a-strongly
pseudocontractive mapping which satisfies
infillx — Tx|:x € C} =0. Then T has a fixed
point in C.

Proof:

For any numbers r = 0, we can define
RasR := {r:B(0, r) M C = 0}, suppose
cg = infR. Therefore ¢ << oo, clearly ¢y = 0 or
tp = .So we donecy = 0 implies that 0 € Cand
TD=10. Now, if ¢; = 0. Choose for each n,
X, E B(CD&} nc

lim,,oll%, — Tx,,/l = 0. Suppose {x,,} be

satisfying

strongly convergent subsequence of {x,] such

that ||xnk—xnk+._|| = ¢ k=12 .., and it have

a limit point as it’s a fixed point of T. Let
My = 1/2(x,, + Xy, .) for all k. By using

M+
inequality (2.2 ) and take £ = 0 is any number
smaller than &/cy, t= g/||xy| as k = o we

have

Il = (g0 + (1/n))(1 = 8(1)). (3.2)
From inequality (3.2) we get
limy,, o51pl[m || = c.;,l[i - 6&}} < €g
Therefore Proposition  (3.2)  yields

lim,,_, ..|[m, — Tm, || = 0, but this contradiction
with the definition of ¢p.
Now, we will give the proof of theorem

3.1
Proof of theorem(3.1):
Let Hn = Cﬂnt’{un:un+11--- ]3

fu,] be a weakly convergent sequence to u in €

where
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such that lim,_.[lu, —Tu,||=0. Note that

these limits are preserved under the weakly
translation. Now, we use propositions (3.3) to
K, and there are ¥, € K, satisfy 3, = T, and
it have weak subsequential limit belong to

n=a K= {ul. Therefore
lim_, .. ¥, =u .Thenu lies in the weak closure
of the fixed point set, F(TJof T. Then F(T) is
closed and convex, hence weakly closed since X
is uniformly convex which implies X is strictly
convex and reflexive. So u € F(T), completing

the proof.
Before starting the main theorems of this paper,

we will give the definition of the mapping 5 ‘: as

follows:
Definition 3.4[10]
Let T be a-strongly pseudocontractive

mappings from a nonempty closed convex
subset C of a real Banach space Xto X.Define

f: C = (is any given Banach space contraction
mapping with a contractive constant a € {0,1)
and a mapping 5{: C — X by

SE(X} =tflx) +(1-t)T(x) x€C. (3.3)
Clearly from (3.3) that 5':'::(:' — X is a Banach
contraction mapping.Z,is the unique solution in
Cfor the following
z,=tf(z) + (1-t)T(z,)
for any givent € (0,1).

Theorem 3.5:
Let X be a reflexive Banach space

(3.4)

which admits a weakly sequentially continuous
normalize duality mapping | from Xto X*, and

€ be a nonempty closed convex subset of X.
Assume that f:C = Cis a given Banach
contraction with a contractive constant
a€(01), and {z,:t €(0,1}} is the net defined
by (3.4). Suppose T:C—=X
stronglypseudocontractive mapping, then as
t =0, {z.} converges strongly to a common

is a -

fixed point g € F(T) such that gis the unique
solution in F(T) for the following variational
inequality
(I =fg.jlg=w) =0, forallu € F(D 3 5)
Proof:

Now, we will prove that {z,:t €(0,1)} is
bounded.By use (3.4) and let 1 € F{T) we have
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2 — [tf(z.) + (1= hll = (1= )T (z,) -

ull £ (1-1)llz, —ull (3.6)

By applying lemma (2.11) we have

llz = [tf(z.) + (1 = thu] 2= (1 - t)(z, —w) + t(z, - f ()
2 (1= 0llz - ul+2(1 - )z - f@) /G —wh 5 7

We can deduce by (3.6) and (3.7) that

2t(1 — 1)z, — f(ze). (2. —u))

2 llz.— [tf(z) + (L — Bl — (1 - ) ¥z, -

ul] =0 . (3.8)
From (3.8) we get for all w € F(T) there is
j(zs —u) € J(z, — u)such that

(z, — flz), jlz; —ud = 0.
It follows by a Banach’s contraction principle,
and for each u € F(T)

(f(z:) _f(u}:jizr —u)) = ﬂ”Zr—uH: (3.10)
Also

(z. — f(zr}:j(zr - u}::':

(z, —u+u— flu) + flu) - fz.),j(z, —u))
= llzp — ull* + u — fw), jz; —w)

+H(f () — fz),j(z, —u))

= ||z — ull® + (u = fw), j(z: — w) = I f(u) — £zl
“llze —ull

2 (1 -a)llze —ull* + (u—flu),jlz. — u)
By (3.9) and (3.10) we get that

(1- ﬂ)Hzt —ul? 4+ {u - f(ulj-(zr_ u)) = 0(3'12)
It follows from (3.12)

(1 - allze —ull* = (u — flu), jz, —ul)

= Jlu— FQll -l — =zl

(3.13)

Then

lu =zl <

(3.11)

llze—f )l

Tog e (3.14)
This prove that {z,:t € (0,1)} is bounded. Also
[T{z. )t €(0,1)} and

[f(z,):t €{0,1)} are bounded.

Now, we get by (3.4) that
llze = T(ze)ll = tll f(ze) — T(2:)ll = 0
ast — 0.

Therefore
lim, gllz, — T(z ) =0................. (3.15)

To see that {z,:t € (0,1)} is relatively compact,
note that X is reflexive and {z.:t € {0,1)} is

bounded.
Let {z: ] be a subsequence of {z;} with

{tn} €1(0,1), also there is a subsequence of
{z:,] (we denote it by {z.,}) satisfy
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z,. — gwhent, — 0(3.16)

We can deduce by (3.15)

”Zrn - T{ztn}” — Owhent,, = 0

It follows by (3.16 ) and theorem (3.1)

yieldsI —T satisfy the demiclosed principle.
Hence

g € F(T)3.17)

Replace u by g and fby £, then

-
=

<t f (g)ilg-ze,))

|lz.,, — g = (3.18)

Since | is weakly sequentially continuous, we
have

lg —fla)ilag—=,))

1—n

=0
(3.19)

lim

. 2 =
tl:ﬂlﬁnzrn - G‘” =

The end step of the prove in this theorem that
the entire net {z,:t € (0,1)} converges strongly

to q.

Suppose there is another subsequence {Zr;] of
{z:)
same argument as given above, then

g € F(T)Now, we will prove that

(I -4, jg—wy =0, forallu € F(T)

It follows that {z, —u} and{z,— f(z.)] are
bounded for all u € F(T).

Since | be normalized duality mapping and
:ll-i—%zfl' = ( that

such that z, —das t; = 0. And use the

(7= Pze,ilz, - w))= (G- NG (g -]
=[{U- Pz, — = Pz~ ) 440 - PGujlze,—u) = (G — )]

2 0= Pz = 0= P4 e =l 4100 - gz~ ) - g =)
— Das &; = 0.

Thus, by (3.9) we have

(I —134,j(g —u)

= 33-%{” —fzeuilz; —u)) =0

And we may also prove that

(U-flg.jlg—ud=0

It is clear that

(U =flg—T—f)g,jlqg—§H=0.

Then

llg — glI* = (flq) — £(4), (g — g))
< allg —4|%

From the above inequality we have

q9=9q,
hence the theorem has been proved.
Theorem 3.6 :

Let X be a reflexive Banach space which
admits a weakly sequentially continuous
normalized duality mapping [from Xto X* and
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C be a nonempty closed subset of X. Assume ®pe1 (Fl@qj ey — q))

f: € — C is a given Banach contraction with a 2 01 {1, = qlF + pe1 = ql1%) + 2 % (FQ) = g, (x40 - )
contractive  constant ae{01). Let =049 alllx, —qll? + llxpss —qll?)

{z.:t €(0,1)} be the net defined by (3.4) and +2 ®piq Vn+1(3.24)

T:C—=X be non-self of oi-strongly Such that _ ;
pseudocontractive mapping. ¥n = max{0,(f(g) —q,j(x,— g))ifor  each

Let xy € C be any given point, and {x,} be n = 0(3.25)
generated by the iteration (1.1) and x4 € C. If, in By (3.23) anfl (3.24) we have

addition, the following conditions hold: %041 — qll® i i
(a) limn_>¢ o= 0 = (-l _Dcn+1}‘[”xn —q ”—L'.!C (“-xn - fq‘”}]‘
(b) E:C:E. Dcn =@ +Ixn+1 ﬂ'(”xn - ti‘||2 + “xn+1 - QHE}

(¢) lx, — Tx,ll = 0,asm = @ T2 sy Vrsr

then{x,,} generated by ¥y € C and iteration (1.1) Hence, . i .
" s — gl = 201 =090l — gll* — 201 —00,44)°

(o (llx,, — qll))?
+0 e alllx, — qll? +00,44 allxpes — gll?)
+2 ®psq Vst
Therefore,
(1—0Cp51 @)l1Xpe1 — gl
= (1 —otppq )3 +00, 0 @) + [lx, — g2

converges strongly to g = li_r%zz such that g is

the unique solution inF(T) for the following
variational inequality

(T —1g.jlg—u)) =0, forallu € F(T)
Proof:

On the one hand, ];1_1}1[1’ 7z, =g €EF(T) from

theorem (3.5). We want to prove {%, } generated +2 011 Vrs1
by iteration (1.1) is bounded sequence. Now, by use the condition (a) that there is a
So nonne atlve T11 such tha

s — gl S04 () — gll+ (1005 ) Ts 1 (0 g 4@ él}; X }gﬁ'}” +;Jjﬁ(t}'} —qll)
+ (1 Dcn-!-l}[”xn I'-EI'”_"_"C (”xn Q% i f Saﬁa_l

=0t,44 IF(q) — qll+0¢,4q allx, —qll + (1 ocnﬂm %f rall = ﬁ —0t,41) ¢ (llx, — gl

=00,54 IF(q) —gll — (1 —ot,q) o (llx, — qll) + (1 efll e geﬁ’cnﬂ}llxn qll

w(llan—gll) ILfigi—all Tn+1
‘—:maX{llxn —qll, f:ﬂq . f_ﬂq ] - (1 —0e, 2y )2 400,44 a e —al? = 3 g Freq
By using induction method, we have 1=, 1-00, 0
I — gqll = =@1- %M)nxn q|2+1°c;+- (11 + ligl)>
max{llxu. —qll, m“lf_:qlljj ||11:._—:‘||]for each 2 0ytg Pt
=0, (3.22) 1-0tpsa0
I

Then, we get {x,] bounded. By theorem =(1-20t, (1 —a))llx,—qll® + 1_;:; .

(3.5), we have {z,} be bounded, suppose there
. . 28+ 1¥n+s

are a constant M = 0 satisfying 2(llx, 11+ NglD* + PR
2ol + Izl + g2+ + el + el < (121- 0) )t~ g+ () e o
< Mforall n=0and t €(0,1). = (1-201- ) o )llv, — gl + 4 oty (M Dcn+1+}/?z+13(3.26)

It follows by lemma ( 2.11) and (1.1),we have
g1 =l € (1=t 1 Ttsg = 12 4 20,4 () =, (0041 = 9))
= (1 _Ixn-l-l}z[”xn - QH_DC (“xn - QH}]Z

+2 0y (Fl) — qf(xps— @) (3.23)
By applying f is contraction mapping, we get
2 0eq (f () — g f(Xpe1 — )=
2 0pq (fx,) — Fl@) + flg) —q,j(xpe1 —q))

Finally, we will prove lim,,... Y,, = 0.
Since X is reflexive and {x,,] is bounded, we can

get a subsequence
{%,, 1 C {x, satisfy

lim sup(g — f(q),7(q —x,))
= lim{q — 7(@).j(q — %) (3.27)

= 20,41 allx, — gl - llxpes —gll +2
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Also, there is a subsequence {xnl.} c {xnk} such
that x,,, — xgas i =+ @2, Hence we conclude that
by using (3.27)

lim suplg — f(q),jlg —x,))

Fl== 00

lim(q — £(q), j(q — )

By condition (c), we obtain

||xnl. - T(xnl.}” = 0asi— oo

Now, we show by the theorem (3.1) that
%y € F(T). Then, we have by (3.5)

lim suplg — f(q),j(q — %))

= lim (g — f(g),/(q — xx;))

=g —flg)jlg —xo)) = 0.

It follows that for all given €3> 0 there

correspondingly
ns = 1y satisfy
(g — g, jlg —x,)) <e forall n> n,

This is yields 0 =Y, < &, and then Y,, = 0. We
setd, = 2(1 — a) o, 44,

a, = llx, — qll%

b,=40, ., (Mo, 1+ ¥,21) and £, =0 for
all m > Mg, It follows from (3.26) and lemma

(2.10) that
limn—ivac”xn - G‘” = ﬂ;

exists a positive integer

ie.,x,— q=lim,.yz.and g € F(T).

This completes the proof of theorem (3.6).
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