

Iteration $x_{n+1} = \propto_{n+1} f(x_n) + (1 - \propto_{n+1})Tx_n$ for a Non-Self \propto -Strongly Pseudocontractive Map

Buthainah A.H. Ahmed¹ and Eman A. Hussian^{2*}

¹Department of Math., College of Science, University of Baghded,²Department of Math. And Computer application, College of Science, University of Nahrian

Abstract

Let X be a Banach space, C be a nonempty closed convex subset of X, and T be self nonexpansive map. The sequence $\{x_n\}$ generated by the iterative method $x_{n+1} = \alpha_{n+1} f(x_n) + (1 - \alpha_{n+1})Tx_n$, where $f: C \to C$ be a contractive mapping and $\{\alpha_n\}$ is a sequence in [0,1]. We generalize the mapping T to non-sel α -Strongly Pseudocontractive.

التكرار $x_{n+1} = x_{n+1} f(x_n) + (1 - x_{n+1}) Tx_n$ التكرار التكرار التكرار التكرار التكرار التكرار التكرار التكرار التكرار التكرير الت

أقسم الرياضيات، كلية العلوم، جامعة بغداد، أقسم الرياضيات وتطبيقات الحاسوب، كلية العلوم، جامعة النهرين، بغداد، العراق

الخلاصة

ليكن X فضاء بناخ، C مجموعة غير خالية مغلقة محدبة جزئية من X و Tدالة غير قابلة للانكماش. المتتابعة $[x_n]$ المتولدة بأستخدام النكرار Tx_n $(Tx_n)Tx_n$ حيث انه $f:C \to C$ حيث انه $x_{n+1} = \alpha_{n+1} f(x_n) + (1 - \alpha_{n+1})Tx_n$ حيث انه $x_n \to \infty$ هي دالة قابلة للانكماش و $[x_n]$ هي متتابعة في [0,1]. سوف نعمم النتيجة وذلك باستخدام الدالة Tالى دالة غير ذاتية من النمط ∞ -شبه الانكماشي بشدة.

1-Introduction

Let X be a Banach space, C be a nonempty closed convex subset of X, and $T: C \to X$ be a finite family of α stronglypseudocontractivemapping, $f: C \to C$ be a contraction mapping with contractive constant; $a \in (0,1)$. In this paper we use the following iteration to study the strong convergence to a common fixed point q. $x_{n+1} = \alpha_{n+1} f(x_n) + (1 - \alpha_{n+1})Tx_n$

 $\forall n \ge 0 \quad \dots \quad (1.1)$

There are several types of iterations used to compute the fixed point of the systems of mappings. In 1992, Wittman [1] had obtained the following iteration $x_{n+1} = \alpha_{n+1} u + (1 - \alpha_{n+1})Tx_n \dots (1.2)$ where $u \equiv f(x) \in C$ in (1.1). In 1996, Bauschke[2] considered the iteration (1.1), where $u \equiv f(x) \in C$ and $\{T_i: C \to C; i = 1, 2, \dots, N\}$ are nonexpansive mappings and X be a Hilbert space then (1.1) is equal to the iteration as bellow

$$\begin{aligned} x_{n+1} = \alpha_{n+1} \, u + (1 - \alpha_{n+1}) T_{n+1} x_n \\ \forall n \ge 0 \quad T = T \, , \quad \dots \end{aligned}$$

In 2005, Jung [3] introduced iteration (1.3) when X be a uniformly smooth Banach spaces with the weakly sequentially continuous duality mapping. When $f: C \to C$ is a contractive mapping, and $T: C \to C$ is a

nonexpansive mapping , therefore (1.1) is equivalent to the iteration as bellow:

 $x_{n+1} = \alpha_{n+1} f(x_n) + (1 - \alpha_{n+1})T x_n \forall n \ge 0.$ (1.4) It was obtain and studied by Moudafi[3] in Hilbert spaces and Xu[4] in uniformly smooth Banach spaces. Chang[5] in 2006, proved the iteration as bellow in uniformly smooth Banach spaces $X, \{T_i: C \rightarrow C: i = 1, 2, ..., N\}$ are

nonexpansive mappings,

The main result of this paper is to extend the mappings T to \mathbb{R} -stronglypseudocontractive mapping.

2- Preliminaries

Suppose X is a real Banach space, and X*is the dual space of X and Suppose that C is a nonempty closed convex subset of X, D(T) the domain of T and that F(T) is the set of all fixed points of mapping T. Denote the generalized duality paring between X and X* by $\langle ... \rangle$ (where $\langle ... \rangle$ is a functional from X into X*) and the identity mapping by I. The normalized duality mapping $J: X \to 2^{X*}$ is defined by

 $J(x) = \{ j \in X^* : \langle x, j \rangle = ||x|| \cdot ||j|| = ||j||^2 = ||x||^2 \}$

 $, x \in X(2.1)$

If $\{x_n\}$ is a sequence in X, then $x_n \rightarrow x$ (resp., $x_n \rightarrow x, x_n \rightarrow^* x$) denotes strong(resp.,weak and weak*) convergence of the sequence $\{x_n\}$ to x.

Definition 2.1([7]):

A mapping $T:D(T) = X \to X$ is said to be accretive if for all $x, y \in X$, there exists $j(x-y) \in J(x-y)$ such that

$$\langle Tx - Ty, j(x - y) \rangle \geq 0.$$

The mapping T is said to be strongly accretive if there exists a constant $k \in (0,1)$ such that for all $x, y \in X$, there exists $j(x - y) \in J(x - y)$ such that

 $\langle Tx - Ty, j(x - y) \rangle \ge k ||x - y||^2$

and is said to be \propto -strongly accretive if there is a strictly increasing function $\alpha : [0, \infty) \rightarrow [0, \infty)$ with $\alpha (0) = 0$ such that for any $x, y \in X$ there exists $f(x - y) \in f(x - y)$ such that

$$\langle Tx - Ty, j(x - y) \rangle \ge \propto (||x - y||)||x - y||.$$

Definition2.2 [6]:

The mapping $T: X \to X$ is calledstrongly pseudocontractive if there exists $k \in (0,1)$ and for all $x, y \in X$, there exists $j(x-y) \in J(x-y)$ such that

 $(Tx - Ty, j(x - y)) \le (1 - k) ||x - y||^2$. Definition 2.3[8]:

The mapping $T: X \to X$ is called

 α -strongly pseudocontractive and there exists a strictly increasing function $\alpha: [0, \infty] \rightarrow [0, \infty]$ with $\alpha(0) = 0$ such that for all $x, y \in X$ there exists $j(x - q) \in J(x - q)$ such that $\langle Tx - Ty, j(x - y) \rangle$

 $\leq ||x - y||^2 - \propto (||x - y||)||x - y||.$

Definition 2.4[8]:

The mapping T is pseudocontractive if and only if I - T is accretive and is strongly pseudocontractive if and only if I - T is stronglyaccretive (respectively, ∞ -strongly pseudocontractive).

Definition 2.5 [10]:

A Banach space is said to admit a weakly sequentially continuous normalized duality mapping J, if $J: X \to X^*$ is single-valued and weak-weak* sequentially continuous. i.e., if $x_n \to x$ in Xthen $J(x_n) \to J(x)$ in X^* .

We will give the definition of the concepts of non-self contraction mappings

Definition 2.6[11]:

Let C be a nonempty subset of a Banachspace X. For $x \in C$, the inward set of x relative to C is the set

$$I_{C}(x) := \{x + t(y - x) : y \in C \text{ and } t \ge 0\}$$

And the outward set of x relative to C is the set $O_C(x) := \{x - t(y - x) : y \in C \text{ and } t \ge 0\}$

Now, we will give the definition of weakly inward and weakly outward mappings:

Definition 2.7 [12]:

Let C be a nonempty subset of a Banach space X and $T: C \to X$ mapping. Then T is said to be a

(i) Inward mapping if $Tx \in I_{\mathcal{C}}(x)$ for all $x \in \mathcal{C}$.

(ii) Weakly inward mapping if $T_x \in I_c(x)$ for all $x \in C$.

(iii) Weakly outward mapping if $T_x \in O_C(x)$ for all $x \in C$.

In the following we will obtain the definitions of smoothness and convexity of a Banach space. **Definition 2.8 [12]**:

Let $U = \{x \in X : ||x|| = 1\}$. X is said to be a smooth Banach space, if the limit $\lim_{t \to 0} \frac{||x+ty|| - ||x||}{t}$ exists for all $x, y \in U$.

Definition 2.9[11]:

The modulus of convexity of a Banach space X is the function $\delta_{\pi}:[0,2] \to [0,1]$ defined by

 $\delta_x(\epsilon) = \inf \left\{ 1 - \left\| \frac{x + y}{2} \right\| : \|x\| \le 1, \|y\| \le 1, \|x - y\| \ge \epsilon \right\}$ Note That [11]:

1- For any $\epsilon > 0$ the number of $\delta_{x}(\epsilon)$ is the largest number for which the following implication always holds for $x_{r} y \in X$,

$$\begin{array}{c} ||x|| \leq 1 \\ ||y|| \leq 1 \\ ||x-y|| \geq \epsilon \end{array} \end{array} \Longrightarrow \left\| \frac{x+y}{2} \right\| \leq 1 - \delta_x(\epsilon).$$

$$(2.1)$$

2- For later reference we note that (2.1) has the following equivalent formulation. For $x, y, p \in X, R > 0$, and $r \in [0, 2R]$,

$$\begin{aligned} \|x\| &\leq R\\ \|y\| &\leq R\\ \|x - y\| &\geq r \end{aligned} \} \Longrightarrow \left\| p - \frac{x + y}{2} \right\| \leq \left(1 - \delta_x \left(\frac{r}{R} \right) \right) R. \end{aligned}$$

(2.2)

Lemma 2.10[8]

Let $\{a_n\}, \{b_n\}, \{c_n\}$ be three non-three nonnegative real sequences satisfying the following conditions: $a_{n+1} \leq (1-t_n)a_n + b_n + c_n$, for all $n \geq n_0$,

where n_0 is some nonnegative integer, with $t_n \subset [0,1)$, with $\sum_{n=0}^{\infty} t_n = \infty$, $b_n = o(t_n)$, and $\sum_{n=0}^{\infty} c_n < \infty$. Then $a_n \to 0$ as $n \to \infty$.

Lemma 2.11[6]

Let X be a real Banach space, and $J: X \to 2^{X^*}$ be the normalized duality mapping. Then for any $x, y \in X$, the following conclusion holds:

 $||x||^2 + 2\langle y, j(x) \rangle \le ||x + y||^2$ $\le ||x||^2 + 2\langle y, j(x + y) \rangle,$ for all $j(x) \in J(x), \ j(x + y) \in J(x + y).$ Corollary 2.12[12]:

Let C be a nonempty closed convex subset of a Banach space X and $T: C \to X$ a weakly inward continuous α -strongly pseudocontractive mapping. Then T has a unique fixed point in C.

3. Main results

The following theorem gives a generalize of the most essential mapping need to prove the main theorem in this paper.

Theorem3.1:

Let X be uniformly convex Banach space, C is a closed convex subset of X, and $T: C \to X$ be α -strongly pseudocontractive mapping. Then the mapping f = I - T is demiclosed on C. That is, for any sequence $\{x_n\}$ in X, if $x_n \to x$ and $(x_n - Tx_n) \to y$ then (I - T)x = y.

To proof the above theorem we need the following two propositions.

Proposition 3.2:

Suppose C is a bounded, convex subset of a uniformly convex space X and suppose $T: C \to X$ be α -strongly pseudocontractive mapping. Then for $\{u_n\}, \{v_n\}$ in C and

 $z_n = \frac{1}{2}(u_n + v_n) \text{iflim}_{n \to \infty} ||u_n - Tu_n|| = 0 \text{ and}$ $\lim_{n \to \infty} ||v_n - Tv_n|| = 0 \text{ then}$ $\lim_{n \to \infty} ||z_n - Tz_n|| = 0.$

Proof:

Let $\epsilon > 0$ and there are two sequences $\{u_n\}, \{v_n\}$ belongs to С such that $\lim_{n \to \infty} ||u_n - Tu_n|| = 0 \text{ and }$ $\lim_{n \to \infty} ||v_n - Tv_n|| = 0$, suppose $z_n = \frac{1}{2}(u_n + v_n)$ such that $\lim_{n\to\infty} ||z_n - Tz_n|| \ge \epsilon, \epsilon > 0$ Suppose d = diam C and for some r > 0, we have $\lim_{n \to \infty} ||u_n - z_n|| = \lim_{n \to \infty} ||v_n - z_n|| = r.$ Choose $t < \epsilon/d$ where t > 0. Therefore $t < \epsilon / [2||u_n - z_n|| - \alpha (||u_n - z_n||)]$ Also if $n \rightarrow \infty$. $t < \epsilon / [||u_n - Tu_n|| + 2||u_n - z_n|| - \alpha (||u_n - z_n||)]$ And $||u_n - Tz_n|| \le ||u_n - Tu_n|| + ||Tu_n - Tz_n||$ mar II e IIa in S en

$$\leq ||u_n - Tu_n|| + ||u_n - z_n|| - \alpha(||u_n - z_n||)$$
(3.1)

If u_m is replaced by v_m in (3.1) we have the same result.

Now, by using the inequality (2.2) and when $n \rightarrow \infty$ then

$$\begin{split} \|u_n - v_n\| &\leq \left\|u_n - \frac{1}{2}(z_n + Tz_n)\right\| + \left\|v_n - \frac{1}{2}(z_n + Tz_n)\right\| \\ &\leq \left[1 - \delta(t) \Big(\|u_n - Tu_n\| + \|u_n - z_n\| - \alpha(\|u_n - z_n\|)\Big) \Big] \end{split}$$

$$\frac{\left[1 - \delta(t) \left(||v_n - Tv_n|| + ||v_n - z_n|| - \alpha(||v_n - z_n||)\right)\right]}{\alpha(||v_n - z_n||)$$

$$\leq ([||u_{n} - Tu_{n}|| + ||u_{n} - z_{n}|| - \alpha(||u_{n} - z_{n}||)] + [||v_{n} - Tv_{n}|| + ||v_{n} - z_{n}|| - \alpha(||v_{n} - z_{n}||)])(1 - \delta(t))$$

If $n \to \infty$ we obtain the contradiction
 $2r \leq [r(-\alpha(||u_{n} - z_{n}||) - \alpha(||v_{n} - z_{n}||))](1 - \delta(t))$

The next proposition shows that T has a fixed point in C if T is α -strongly pseudocontractive which satisfies $inf\{||x - Tx||: x \in C\} = 0$.

Proposition 3.3:

Suppose C is a bounded, closed and convex subset of uniformly convex space X and suppose $T: C \to X$ is α -strongly pseudocontractive mapping which satisfies $inf\{||x - Tx||: x \in C\} = 0$. Then T has a fixed point in C.

Proof:

For any numbers r > 0, we can define $RasR := \{r: B(0, r) \cap C \neq \emptyset\}$, suppose $c_0 = \inf R$. Therefore $c_0 < \infty$, clearly $c_0 > 0$ or $c_0 = 0$. So we done $c_0 = 0$ implies that $0 \in C$ and T0 = 0. Now, if $c_0 > 0$. Choose for each n, $x_n \in B(c_0, \frac{1}{n}) \cap C$ satisfying $\lim_{n \to \infty} ||x_n - Tx_n|| = 0$. Suppose $\{x_{nk}\}$ be strongly convergent subsequence of $\{x_n\}$ such that $||x_{nk} - x_{nk+1}|| \ge \epsilon$, k = 1, 2, ..., and it have a limit point as it's a fixed point of T. Let $m_k = 1/2(x_{nk} + x_{nk+2})$ for all k. By using inequality (2.2) and take t > 0 is any number smaller than ϵ/c_0 , $t \le \epsilon/||x_k||$ as $k \to \infty$ we have

$$||m_k|| \le (c_0 + (1/n_k))(1 - \delta(t)).$$
 (3.2)

From inequality (3.2) we get $\lim_{k \to \infty} \sup ||m_k|| \le c_0 (1 - \delta(t)) < c_0.$

Therefore Proposition (3.2) yields $\lim_{k\to\infty} ||m_k - Tm_k|| = 0$, but this contradiction with the definition of c_0 .

Now, we will give the proof of theorem (3.1)

Proof of theorem(3.1):

Let $K_n = \overline{conv}\{u_n, u_{n+1}, ...\}$, where $\{u_n\}$ be a weakly convergent sequence to u in C

such that $\lim_{n\to\infty} ||u_n - Tu_n|| = 0$. Note that these limits are preserved under the weakly translation. Now, we use propositions (3.3) to K_n and there are $y_n \in K_n$ satisfy $y_n = Ty_n$ and it have weak subsequential limit belong to $\bigcap_{n=1}^{\infty} K_n = \{u\}$. Therefore $\lim_{n\to\infty} y_n = u$. Then u lies in the weak closure of the fixed point set, F(T) of T. Then F(T) is closed and convex, hence weakly closed since Xis uniformly convex which implies X is strictly convex and reflexive. So $u \in F(T)$, completing the proof.

Before starting the main theorems of this paper, we will give the definition of the mapping S_e^f as follows:

Definition 3.4[10]

Let T be α -strongly pseudocontractive mappings from a nonempty closed convex subset C of a real Banach space X to X. Define $f: C \rightarrow C$ is any given Banach space contraction mapping with a contractive constant $\alpha \in (0,1)$ and a mapping $S_{\tau}^{f}: C \rightarrow X$ by

$$S_t^f(x) = tf(x) + (1-t)T(x) \ x \in C \ . \ (3.3)$$

Clearly from (3.3) that $S_t^f: C \to X$ is a Banach contraction mapping. \mathbb{Z}_t is the unique solution in *C* for the following

$$z_t = tf(z_t) + (1-t)T(z_t)$$
(3.4)
for any given $t \in (0,1)$.

Theorem 3.5:

Let X be a reflexive Banach space which admits a weakly sequentially continuous normalize duality mapping J from X to X^* , and C be a nonempty closed convex subset of X. Assume that $f: C \to C$ is a given Banach contraction with a contractive constant $a \in (0,1)$, and $\{z_t: t \in (0,1)\}$ is the net defined by (3.4). Suppose $T: C \to X$ is a α stronglypseudocontractive mapping, then as $t \to 0$, $\{z_t\}$ converges strongly to a common fixed point $q \in F(T)$ such that q is the unique solution in F(T) for the following variational inequality

$\langle (I-f)q, j(q-u) \rangle \leq 0$, for all $u \in F(T)_{(3.5)}$ Proof:

Now, we will prove that $\{z_t: t \in (0,1)\}$ is bounded.By use (3.4) and let $u \in F(T)$ we have

$$\begin{aligned} \|z_t - [tf(z_t) + (1-t)u]\| &= (1-t)\|T(z_t) - \\ u\| \le (1-t)\|z_t - u\| \end{aligned}$$
(3.6)

By applying lemma (2.11) we have $||z_t - [tf(z_t) + (1-t)u]||^2 = ||(1-t)(z_t - u) + t(z_t - f(z_t))||^2$ $\geq (1-t)^2 ||z_t - u||^2 + 2t(1-t)\langle z_t - f(z_t), j(z_t - u)\rangle_{(3,7)}$ We can deduce by (3.6) and (3.7) that $2t(1-t)(z_t - f(z_t), j(z_t - u))$ $\leq ||z_t - [tf(z_t) + (1-t)u||^2 - (1-t)^2||z_t - t|^2 + ||z_t - t|^2||z_t - t|^2 + ||z_t - t|^$ $|u||^2] \le 0$.. (3.8) From (3.8) we get for all $u \in F(T)$ there is $j(z_t - u) \in J(z_t - u)$ such that $(z_t - f(z_t), f(z_t - u)) \le 0.$ (3.9) It follows by a Banach's contraction principle, and for each $u \in F(T)$ $\langle f(z_t) - f(u), j(z_t - u) \rangle \le a ||z_t - u||^2 (3.10)$ Also $(z_t - f(z_t), j(z_t - u))$ $(z_t - u + u - f(u) + f(u) - f(z_t), f(z_t - u))$ $= ||z_t - u||^2 + \langle u - f(u), j(z_t - u) \rangle$ $+(f(u) - f(z_t), j(z_t - u))$ $\geq ||z_t - u||^2 + (u - f(u), j(z_t - u)) - ||f(u) - f(z_t)||$ $\cdot \|z_t - u\|$ $\geq (1-a) \|z_t - u\|^2 + \langle u - f(u), j(z_t - u) \rangle \dots (3.11)$ By (3.9) and (3.10) we get that $(1-a)||z_t-u||^2 + \langle u - \tilde{f}(u), j(z_t-u) \rangle \le 0$ (3.12) It follows from (3.12) $(1-a)\|z_t-u\|^2 \leq \langle u-f(u), j(z_t-u) \rangle$ $\leq \|u - f(u)\| \cdot \|u - z_t\|.$ (3.13)Then $||u - z_t|| \le \frac{||u - f(u)||}{1 - a}$ (3.14)This prove that $\{z_t: t \in (0,1)\}$ is bounded. Also $\{T(z_t): t \in (0,1)\}$ and $\{f(z_t): t \in (0,1)\}$ are bounded. Now, we get by (3.4) that $||z_t - T(z_t)|| \le t ||f(z_t) - T(z_t)|| \to 0$ as $t \rightarrow 0$. Therefore $\lim_{t \to 0} ||z_t - T(z_t)|| = 0.$ (3.15) To see that $\{z_t: t \in (0,1)\}$ is relatively compact, note that X is reflexive and $\{z_t: t \in (0,1)\}$ is bounded. Let $\{z_{r_n}\}$ be a subsequence of $\{z_r\}$ with $\{t_n\} \in (0,1)$, also there is a subsequence of

 $\{z_{t_n}\}$ (we denote it by $\{z_{t_n}\}$) satisfy

 $\begin{aligned} z_{t_n} &\rightharpoonup q \text{when} t_n \rightarrow \mathbf{0}(3.16) \\ \text{We can deduce by } (3.15) \\ \| z_{t_n} - T(z_{t_n}) \| \rightarrow \mathbf{0} \text{when} t_n \rightarrow \mathbf{0} \\ \text{It follows by } (3.16) \text{ and theorem } (3.1) \\ \text{yields} I - T \text{ satisfy the demiclosed principle.} \\ \text{Hence} \\ q \in F(T)(3.17) \\ \text{Replace } u \text{ by } q \text{ and } t \text{ by } t_n, \text{ then} \\ \| z_{t_n} - q \|^2 \leq \frac{(q - f(q) j(q - z_{t_n}))}{1 - a} \end{aligned}$ (3.18)

Since *I* is weakly sequentially continuous, we have

$$\lim_{z_n \to 0} \left\| z_{z_n} - q \right\|^2 \le \lim_{z_n \to 0} \frac{(q - f(q), j(q - z_{z_n}))}{1 - a} = 0$$
(3.19)

The end step of the prove in this theorem that the entire net $\{z_t: t \in (0,1)\}$ converges strongly to q.

Suppose there is another subsequence $\{z_{t_i}\}$ of $\{z_t\}$ such that $z_{t_i} \rightarrow \dot{q}$ as $t_i \rightarrow 0$. And use the same argument as given above, then $\dot{q} \in F(T)$ Now, we will prove that

 $\langle (I - f)\dot{q}, j(\dot{q} - u) \rangle \leq 0$, for all $u \in F(T)$ It follows that $\{z_t - u\}$ and $\{z_t - f(z_t)\}$ are bounded for all $u \in F(T)$.

Since I be normalized duality mapping and $\lim_{t \to 0} z_{t_i} = \mathbf{i}$ that

$$\begin{split} |\langle (l-f) z_{t_{i}} j(z_{t_{i}} - u) \rangle - \langle (l-f) \dot{q}_{i} j(\dot{q} - u) \rangle | \\ &= |\langle (l-f) z_{t_{i}} - (l-f) \dot{q}_{i} j(z_{t_{i}} - u) \rangle + \langle (l-f) \dot{q}_{i} j(z_{t_{i}} - u) - j(\dot{q} - u) \rangle | \\ \leq \left\| (l-f) z_{t_{i}} - (l-f) \dot{q} \right\| \cdot \left\| z_{t_{i}} - u \right\| + \left| \langle (l-f) \dot{q}_{i} j(z_{t_{i}} - u) - j(\dot{q} - u) \rangle \right| \\ &\to 0 \text{as } t_{i} \to 0. \end{split}$$
Thus, by (3.9) we have

Thus, by (3.9) we have

$$((I - f)\dot{q}, j(\dot{q} - u)) = \lim_{t_i \to 0} ((I - f)z_{t_i}, j(z_{t_i} - u)) \le 0$$
And we may also prove that

$$((I - f)q, j(q - u)) \le 0$$
.....(3.20)
At is clear that

$$((I - f)q - (I - f)\dot{q}, j(q - \dot{q})) \le 0.$$
Then

$$||q - \dot{q}||^2 \le (f(q) - f(\dot{q}), j(q - \dot{q})) \le \alpha ||q - \dot{q}||^2.$$

From the above inequality we have $q = \dot{q}$, hence the theorem has been proved. **Theorem 3.6**:

Let X be a reflexive Banach space which admits a weakly sequentially continuous normalized duality mapping *J* from X to X^* , and *C* be a nonempty closed subset of *X*. Assume $f: C \to C$ is a given Banach contraction with a contractive constant $a \in (0,1)$. Let $\{z_t: t \in (0,1)\}$ be the net defined by (3.4) and $T: C \to X$ be non-self of α -strongly pseudocontractive mapping.

Let $x_0 \in C$ be any given point, and $\{x_n\}$ be generated by the iteration (1.1) and $x_0 \in C$. If, in addition, the following conditions hold:

- (a) $\lim_{n \to \infty} \alpha_n = 0$
- (b) $\sum_{n=0}^{\infty} \alpha_n = \infty$
- (c) $||x_n Tx_n|| \to 0$, as $n \to \infty$

then $\{x_n\}$ generated by $x_0 \in C$ and iteration (1.1) converges strongly to $q = \lim_{t \to 0} \mathbb{Z}_t$ such that q is the unique solution in F(T) for the following variational inequality

 $\langle (I - f)q, j(q - u) \rangle \leq 0$, for all $u \in F(T)$ Proof:

On the one hand, $\lim_{t\to 0} z_t = q \in F(T)$ from theorem (3.5). We want to prove $\{x_n\}$ generated by iteration (1.1) is bounded sequence. So

$$\begin{aligned} & \propto_{n+1} \left(f(q)q, j(x_{n+1}-q) \right) \\ & \leq \propto_{n+1} a(||x_n-q||^2 + ||x_{n+1}-q||^2) + 2 \propto_{n+1} (f(q)-q, j(x_{n+1}-q)) \\ & \leq \propto_{n+1} a(||x_n-q||^2 + ||x_{n+1}-q||^2) \\ & + 2 \propto_{n+1} \gamma_{n+1}(3.24) \end{aligned}$$
Such that

$$\begin{aligned} & \gamma_n = max\{0, (f(q) - q, j(x_n - q))\} \text{for} \quad \text{each} \\ & n \geq 0(3.25) \end{aligned}$$
By (3.23) and (3.24) we have

$$\begin{aligned} & ||x_{n+1}-q||^2 \\ & \leq (1 - \alpha_{n+1})^2 [||x_n - q|| - \infty (||x_n - q||)]^2 \\ & + \infty_{n+1} a(||x_n - q||^2 + ||x_{n+1} - q||^2) \\ & + 2 \propto_{n+1} \gamma_{n+1}. \end{aligned}$$
Hence,

$$\begin{aligned} & ||x_{n+1} - q||^2 \leq 2(1 - \alpha_{n+1})^2 ||x_n - q||^2 - 2(1 - \alpha_{n+1})^2 \\ & (\propto (||x_n - q||))^2 \\ & + \alpha_{n+1} a(||x_n - q||^2 + \alpha_{n+1} a||x_{n+1} - q||^2) \\ & + 2 \propto_{n+1} \gamma_{n+1}. \end{aligned}$$
Therefore,

$$\begin{aligned} & (1 - \alpha_{n+1})^2 |+ \alpha_{n+1} a||x_n - q||^2 \\ & \leq ((1 - \alpha_{n+1})^2 + \alpha_{n+1} a) + ||x_n - q||^2 \\ & \leq ((1 - \alpha_{n+1})^2 + \alpha_{n+1} a) + ||x_n - q||^2 \end{aligned}$$

Now, by use the condition (a) that there is a nonnegative n_1 such that

$$\begin{aligned} \|x_{n+1} - q\| &\leq \alpha_{n+1} \||f(x_n) - q\| + (1 - \alpha_{n+1})\|T_{n+1}(x_{n-1} - g_n)\| &\leq \alpha_{n+1}^{2} \left[(f_n(x_n) - f_n(q))\| + \frac{1}{2} \int_{q} f_n(q) - q\| \right] \\ &+ (1 - \alpha_{n+1})[\|x_n - q\|| - \alpha(\|x_n - q\|)] \\ &\leq \alpha_{n+1} \|f(q) - q\| + (\alpha_{n+1} a)\|x_n - q\| + (1 - \alpha_{n+1})\|T_n a\| \| e^{-1} \| e^$$

Also, there is a subsequence $\{x_{n_i}\} \subset \{x_{n_k}\}$ such that $x_{n_i} \rightarrow x_0$ as $i \rightarrow \infty$. Hence we conclude that by using (3.27) $\limsup_{n\to\infty}\sup(q-f(q),j(q-x_n))$ $= \lim \langle q - f(q), j(q - x_{n_i}) \rangle.$ By condition (c), we obtain $||x_{n_i} - T(x_{n_i})|| \to 0 \text{ as } i \to \infty.$ Now, we show by the theorem (3.1) that $x_0 \in F(T)$. Then, we have by (3.5) $\limsup(q-f(q),j(q-x_n))$ $= \lim_{i \to \infty} \langle q - f(q), j(q - x_{n_i}) \rangle$ $= \langle q - f(q), j(q - x_0) \rangle \le 0.$ It follows that for all given $\epsilon > 0$ there correspondingly exists a positive integer $n_2 > n_1$ satisfy $\langle q - f(q), j(q - x_n) \rangle < \epsilon$, for all $n > n_2$. This is yields $0 \leq Y_n < \epsilon$, and then $Y_n \to 0$. We $\operatorname{set}\lambda_n = 2(1-a) \propto_{n+1}$ $a_m = \|x_m - a\|^2$ $b_n = 4 \propto_{n+1} (M \propto_{n+1} + \gamma_{n+1})$ and $c_n = 0$ for all $n > n_2$. It follows from (3.26) and lemma (2.10) that $\lim_{n\to\infty} \|x_n - q\| = 0,$ i.e., $x_n \to q = \lim_{t \to 0} z_t$ and $q \in F(T)$. This completes the proof of theorem (3.6). **References:**

- 1. Wittann R., Approximation fixed points of nonexpansive mappings [J], Arch. Math., 1992, 85(5): 486-491.
- 2. Halpern B., 1967 Fixed points of nonexpanding maps. *Journal of Bull. Amer. Math. Soc.*, 73, pp:957-961.
- **3.** Jung J S. Iterative approaches to common fixed points of nonexpansive mappings in Banach spaces [J] J Math. Anal. Appl., 2005, 302(2): 509-520.
- 4. Bauschke H H., **1996** The approximation of fixed points of compositions of nonexpansivemappings in Hilbertspace[J]. *Journal of Math. Anal. Appl.*, 202(1), pp:150-159.
- 5. Moudafi A., 2000, Viscosity approximation methods for fixed-points problems [J]. *Journal of Math. Anal. Appl.*,241(1), pp:46-55.
- 6. Hongkun XU., 2004 Viscosity approximation methods for nonexpansive mappings[J]. *Journal of Math. Anal. Appl.*,298(1), pp:279-291.

- 7. Chang Shih-sen., 2006 Viscosity approximation methods for a finite family of nonexpansive mappings in Banachspaces[J]. *Journal of Math. Anal. Appl.*, 323(2), pp:1402-1416.
- Inchan I., Plubtieeng S., 2007 Approximating solutions for the systems of strongly accretive opeartor equations, Comp. *Math. App.*53, pp:1317-1324, MR:2008c-65144.
- **9.** Inchan I., Plubtieng S., **2008** *Approximating solutions for the systems of strongly accretive operator equations on weakly continuous duality maps*, Int. J. Math. Anal. 2, pp:133-142, MR:2009i-47130.
- Niyati Gurudwan, Sharma, B.K. 2010, Approximating solutions for the systems of *a*-strongly accretive operator equations on RevlexiveBanach space, *BuLL. Math.Anal. App.* 3, pp:32-39.
- 11. Muhmmad Arif Rafiq, 2003, Fixed point theorems in generalized metric and *Banachspaces*, Ph. D theses DdinZakriya University, Multan.
- 12. RouFeng R., 2009 Iteration $x_{n+1} = \propto_{n+1} f(x_n) + (1 - \alpha_{n+1})T_{n+1}x_n$ for infinite Family of nonexpansive Maps $\{T_t\}_{t=1}^{\infty}$, Journal of Mathematical Research & Exposition, 29(4), pp:639-648.
- **13.** Goebel K, Kirk W A., **1990**, *Topics in Metric Fixed Point Theory* [M]. Cambridge University Press, Cambridge. pp:30-100.
- Ravi P. Agarwal, Donal O'Regan and Sahu D.R., 2009, Fixed Point Theory for Lipschitzian-type Mappings with Applications, Springer. pp:50-210.