

Injectivity and chain conditions on y-closed submodules

Lmyaa H. Sahib & Bahar H. AL-Bahraany

Department of mathematics, college of Science, University of Baghdad, Baghdad, Iraq

Abstract

Let R be a commutative ring with identity and let M be a unital left R-module.Goodearl introduced the following concept : A submodule A of an R – module M is an y – closed submodule of M if $\frac{M}{A}$ is nonsingular.In this paper we introduced an y – closed injective modules and chain condition on y – closed submodules.

Key words: y-closed submodules, y-closed injective, chain conditions on y-closed submodules

الاغماريه وشروط السلسلة على المقاسات الجزئية المغلقة من النمط -y

قسم الرياضيات، كلية العلوم، جامعة بغداد، بغداد، العراق

الخلاصة

1.Introduction.

Following C.Gomes[1].Let M_1 and M_2 be an R – modules M_1 is called $M_2 - C$ – injective if every homomorphism $\alpha : K \rightarrow M_1$, where K is a closed submodule of M_2 , there exists a homomorphism $\beta : M_2 \rightarrow M_1$ such that $\beta \circ i = \alpha$.Where *i* is the inclusion map.

This concept lead us to introduced the following: Let M and N be R – modules. The module M is called N - y - closed injective if every homomorphism $f: K \rightarrow M$, where K is an y – closed submodule of N, there exists a homomorphism $g: N \rightarrow M$ such that $g \circ i = f$. Where i is the inclusion map.

Following Goodearl [2] . An R – module M is called a module with ascending (respectively, descending) chain condition (briefly ACC, respectively, DCC) on closed submodules, if every ascending (respectively, descending) chain of closed submodules of M is finite.

This concept lead us to introduced the following : an R – module M is called a module with ascending (respectively, descending) chain condition (briefly ACC, respectively, DCC) on y – closed submodules, if every ascending (respectively, descending) chain of y – closed submodules of M is finite.

In this paper, we give properties of y – closed injective module and chain condition on y – closed submodules.

In section one, we introduced the concept of y- closed injective modules with some examples and basic properties, We prove that for an R - module M and an y - closed submodule A of M. If A is M - y - closed injective module , then A is a direct summand of M.

In section two, we introduced the concept of chain condition on y – closed submodules with some examples and basic properties, We prove that a ring *R* satisfies ascending chain condition on y – closed ideals if and only if $\frac{R}{A}$ satisfies ascending chain condition on y – closed ideals if and only if $\frac{R}{A}$ satisfies ascending chain condition on y – closed ideals for every y – closed ideal A of R.

1-Injectivity on *y*-closed submodules. *Definitions (1.1)*:

1- Let *M* and *N* be *R* – modules . the module *M* is called N - y - closed injective if for every homomorphism $f: K \to M$, where *K* is an *y* – closed submodule of *N*, there exists a homomorphism $g: N \to M$ such that $g \circ i = f$. where *i* is the inclusion map.

2- M_1 and M_2 are said to be relatively y - closed injective modules if M_i is M_j – injective, for every $i, j = \{1,2\}, i \neq j$

3- An R – module M is called *self* – y – *closed injective* module if for every homomorphism $f: K \rightarrow M$, where K is an y – closed submodule of M, there exists a homomorphism $g: M \rightarrow M$ such that $f = g \circ i$. Where i is the inclusion map.

4- An R – module M is called y – *closed injective* module if M is N - y – closed injective , for every R module N .

Proposition (1.2):

Let *M* be an *R* – module , then *M* is N - y - closed injective , for every singular *R* – module *N* .

Proof:

Let K be an y-closed submodule of N and let $f: K \rightarrow M$ be any R-homomorphism.Since N is singular, then N is the only y-closed submodule of N, by (2.1.3).One can easily show that M is N-y-closed injective.

It is clear that every injective R – module is y- closed injective. The converse is not true. For example, Consider the module Z_n as Z -module. Since Z_n as Z -module is singular, then Z_n is the only y - closed submodule of Z_n and hence Z_n is yclosed injective. But Z_n as Z -module is not divisible where $0 = n Z_n \neq Z_n$. Hence Z_n is not injective.

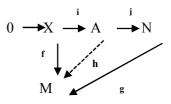
Now we give some basic properties of *y* –*closed injective* modules.

Proposition (1.3):

Let M be an N - y - closed injective module. If A is an y - closed submodule of N, then M is A - y - closed injective module.

Proof:

Let X be an y – closed submodule of A and let $f: X \rightarrow M$ be any R – homomorphism. Now consider the following diagram.



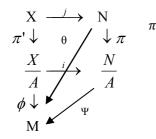
Where i, j are the inclusion maps. Since X is an y - closed submodule of A and A is an y - closed submodule of N, then X is an y - closed submodule of N, by (2.1.10) . But M is N - y - closed injective, therefore there exists a homomorphismg : $N \rightarrow M$ such that $f = g \circ j \circ i$. Take $h = g \mid_A : A \rightarrow M$. Clearly that $h \circ i = f$. Thus M is A - yc - injective.

Proposition (1.4):

Let M and N be R – modules and A is a submodule of N. If M is N - y – closed injective module then M is $\frac{N}{A} - y$ – closed injective module .

Proof:

Let $\frac{X}{A}$ be an y - closed submodule of $\frac{N}{A}$ and let ϕ : $\frac{X}{A} \rightarrow M$ be an R - homomorphism. We want to show that there exists a homomorphism $\Psi : \frac{N}{A} \rightarrow M$ such that $\Psi \circ i = \Phi$, where *i* is the inclusion map.Now consider the following digram.



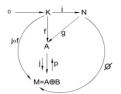
Where *j* is the inclusion map and π, π' are the natural epimorphism. Since $\frac{X}{A}$ is an *y* – closed submodule of $\frac{N}{A}$, then *X* is an *y* – closed submodule of *N*, by (2.1.5-2). Since *M* be an N - y - closed injective, then there exists a homomorphism $\theta : N \rightarrow M$ such that $\Phi \circ \pi' = \theta \circ j$. $\theta(A) = \Phi \circ \pi'(A) = \Phi$ (0) = 0. So $ker \pi \subseteq ker\theta$. Now let $\Psi : \frac{N}{A} \rightarrow M$ be a map define as follows $\Psi(n + A) = \theta(n) \forall n \in N$. One can easily show that Ψ is well define. Now $\Psi \circ i (x+A) = \Psi(x+A) = \Psi \circ \pi(x) = \theta(x) = \Phi \circ \pi'(x) = \Phi(x+A)$. Thus *M* is $\frac{N}{A} - y - closed$ injective module

injective module.

Proposition (1.5):

Let $M = A \oplus B$ be an R - module and N be an R - module . If M is N - y - closed injective , then A is N - y - closed injective . **Proof :**

Let $M = A \oplus B$ be N - y - closed injective. To show that A is N - y - closed injective, let K be an y - closed submodule of N and let $f : K \rightarrow A$ be an R - homomorphism . Now consider the following diagram.



Where *i*, *j* are the inclusion maps and *P* is the projection map. Since *M* is N - y - closed *injective*, then there exists an R - homomorphism $\Phi : \mathbb{N} \to M$ such that $j \circ f = \Phi \circ i$. Let $g = P \circ \Phi$, $g \circ i = P \circ \Phi \circ i = P \circ j \circ f = f$. Thus *A* is N - y - closed *injective* module.

Recall that a submodule N of R-module M is called a fully invarient submodule of M ,if for every endomorphis $f: M \rightarrow M$, $f(N) \subseteq N$, see[1].

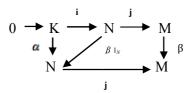
The following proposition gives a condition under which an y – closed submodule of an y – closed injective module is y – closed injective.

Proposition(1.6):

Let *M* be a self -y - closed injective module, then every fully invariant y - closed submodule *N* of *M* is self -y - closed injective.

Proof:

Suppose that *M* is self - y - closed injective Let *K* be an y - closed submodule of *N* and let $\alpha : K \rightarrow N$ be a homomorphism. Since *K* is an y - closed submodule of *N* and *N* is an y - closed submodule of *M*, then *K* is an *y*-closed submodule of *M*, then *K* is an *y*-closed submodule of *M*, by (2.1.10).

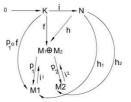


Since *M* is *self* – *y* – *closed injective* module, then there exists a homomorphism $\beta : M \rightarrow M$ such that $j \circ \alpha = \beta \circ j \circ i$. Since *N* is fully invariant, then $\beta(N) \subseteq N$. And $\beta \mid_N : N \rightarrow N$ is a homomorphism and α is the restriction of this homomorphism.

Proposition (1.7):

Let M_1 , M_2 and N be R – modules . If M_1 and M_2 are N - y – *closed injective* modules , then $M_1 \oplus M_2$ is N - y – *closed injective* . **Proof :**

Suppose that M_1 and M_2 are N - y - closedinjective modules. Let K be an y - closedsubmodule of N and let $f: K \rightarrow M_1 \oplus M_2$ be an R - homomorphism. Now consider the following diagram.



Where i_1 , i_2 are the inclusion maps, P_1 , P_2 are the projection map. Since M_1 and M_2 are N-y – *closed injective* modules, then there exists homomorphisms $h_1: N \rightarrow M_1$ and $h_2: N \rightarrow M_2$

such that $P_1 \circ f = h_1 \circ i$ and $P_2 \circ f = h_2 \circ i$. Define $h: \mathbb{N} \to M_1 \oplus M_2$ as follows $h(\mathbf{n}) = (h_1(\mathbf{n}), h_2(\mathbf{n})), \mathbf{n} \in \mathbb{N}$. To show that $f = h \circ i$. Let $k \in K$, then $f(k) = (m_1, m_2)$, where $m_1 \in M_1$ and $m_2 \in M_2$. $h \circ i(k) = h(i(k)) = (h_1(i(k)), h_2(i(k))) = (P_1 \circ f(k), P_2 \circ f(k)) = (m_1, m_2)$. Thus $M_1 \oplus M_2$ is N - y - closed injective module.

Proposition (1.8):

Let *M* be an *R* – module, and let *A* be an *y* – closed submodule of *M*. If *A* is M - y - closed *injective* module , then *A* is a direct summand of *M*.

Proof:

Assume that A is M - y - closed injective and let $I: A \rightarrow A$ be the identity map Since A is M - y - closed injective module, then there exists a homomorphism $f: M \rightarrow A$ such that $I = f \circ i$. Claim that $M = ker f \oplus A$. To show that , let $x \in M$, then one can easily show that $x - f(x) \in ker f$. Thus $x = f(x) + (x - f(x)) \in A + ker f$

To show that $A \cap ker f = 0$, let $x \in A \cap ker f$, so f(x) = 0. But f(x) = x, therefore x = 0. Thus A is a direct summand of M.

Recall that a module M is called a CLSmodule if every y-closed submodule is a direct summand.

The following proposition gives a characterization of CLS – module in terms of y – *closed injective* modules .

Proposition (1.9):

Let M be an R – module, then the following statements are equivalent.

1- M is a CLS – module .

2- Every module is M - y - closed *injective* module .

3- Every y – closed submodule of M is M – y – closed injective module .

Proof :

$$(1) \qquad \Rightarrow (2)$$

Let M_I be an R – module, let A be an y – closed submodule of M and let $\alpha : A \rightarrow M_I$ be an R – homomorphism.Since Ais an y – closed submodule of M and M is CLS, then A is a direct summand of M. So M = $A \oplus A'$, for some submodule A' of M. Define $\beta : M \rightarrow M_I$ as follows

$$\beta(x+y) = \begin{bmatrix} \alpha(x) & \text{if } y = 0 \\ 0 & \text{otherwise} \end{bmatrix}$$

- Where $x \in A$ and $y \in \mathbf{A}'$. Hence β extends to $\boldsymbol{\alpha}$.
- $(2) \Rightarrow (3)$ It is clear.
- $(3) \Rightarrow (1)$ It is follow by proposition(1.8).

Before we give the next proposition we need the following definitions.

Recall that an R – module M is called directly finite if $f \circ g = I_M$, implies that $g \circ f = I_M$ for all $f, g \in End(M)$, see [2].

Recall that an R – module M is said to be co – hopfian if every monomorphism $f: M \rightarrow M$ is an isomorphism, see [6].

Proposition (1.10):

An y - closed injective R – module M is directly finite if and only if it is co – hopfian . **Proof :**

 $\Rightarrow) \text{ Let } f: M \rightarrow M \text{ be a monomorphism and} \\ \text{let } I: M \rightarrow M \text{ be the identity map . Since } M \text{ is} \\ \text{an } y - \text{closed submoduleof } M \text{ and } M \text{ is } y - \\ \text{closed injective, then there exists a} \\ \text{homomorphism } g: M \rightarrow M \text{ such that } g \circ f = I_M. \\ \text{But } M \text{ is directly finite, therefore } f \circ g = I_M \text{ and} \\ \text{hence } f \text{ is an isomorphism .Thus } M \text{ is co-hopfian .} \\ \end{cases}$

 \Leftarrow) Let $f, g : M \rightarrow M$ be an R – homomorphism such that $g \circ f = I_M$, we want to show that $f \circ g = I_M$. Since $g \circ f = I_M$, then f is one to one. But M is co – hopfian, therefore f is an isomorphism. Claim that g is one to one, to show that . Let $g(m_1) = g(m_2)$, $m_1, m_2 \in M$. Since f is on – to, then $m_1 = f(x_1)$, $m_2 = f(x_2)$, $x_1, x_2 \in M$. So $g(f(x_1)) = g(f(x_2))$ and hence $m_1 = m_2$ One can easily show that $f \circ g = I_M$. Thus M is directly finite.

Theorem (1.11) :

Let $M = M_1 \oplus M_2$ be an R – module such that M_1 is nonsingular and every submodule of M isomorphic to an y – closed submodule of M is itself y – closed in M. If for every y – closed submoduleN of M such that $N \cap M_1 = 0$, there exists a submoduleA of M such that $M = M_1 \oplus A$ and $N \subseteq A$, then M_1 is $M_2 - y$ – closed injective. **Proof :**

Let K be an y - closed submodule of M_2 and let $f: K \rightarrow M_1$ be an R - homomrphism. Let $H = \{ -f(k) + k, k \in K \}$ and let $g: K \rightarrow H$ be a map defined by $g(k) = -f(k) + k, \forall k \in K$. One can easily show that g is an isomorphism. By the first isomorphism theorem $\frac{M}{M_2} \cong M_1$. Since M_1 is nonsingular , then M_2 is any - closed submodule of M. But K is any - closed submodule of M_2 , therefore K is an y - closed submodule of M. But $K \cong H$, therefore H is an y - closed submodule of M. Claim that $H \cap M_1$ = 0. To show this, let $x \in H \cap M_1$, so x = -f(k) + k, where $k \in M_2$. So $x + f(k) = k \in M_1 \cap M_2$ and hence x = 0. Now by hypothesis there exists a submodule A of M such that $H \subseteq A$ and $M = M_1 \oplus A$. Let $\pi : M_1 \oplus AM_1$. It is clear that ker $\pi = A$. Let $h = \pi \mid_{M_2} : M_2 \to M_1$. Now $h \circ i(k) = h(k) = \pi(k) = \pi(f(k) - f(k) + k)$, $= \pi(f(k)) = f(k)$. Thus $h \circ i = f$.

We end this section by the following proposition.

Proposition(1.12) :

Let *M* be a self - y - closed injective module and let *K* be an y - closed submodule of *M*. If *K* is isomorphic to a direct summand of *M*, then *K* is a direct summand of *M*.

Proof:

Suppose that *M* is a self – *y* – closed injective module and *K* be an *y* – closed submodule of *M*such that *K* is isomorphic to a direct summand *B* of *M* . Then there exists an isomorphism $\alpha : K \rightarrow B$ be.Since *M* is self – *y* – closed injective module and *B* is a direct summand of *M*, then *B* is M - y - closed injective. So there exists a homomorphism $\beta : M \rightarrow B$ such that α = $\beta \circ i$. Claim that $M = K \oplus kerf$. To verify that. For every $x \in M$, there exists $y \in K$ such that $\beta(x)$ = $\alpha(y) = \beta(y)$. Since $x - y \in ker \beta$, then $x = y + (x - y) \in K + ker \beta$. Thus M = K + kerf. To show $K \cap ker \beta = 0$, let $x \in K \cap ker \beta$, so $\beta(x) = 0$. But $\beta(x) = \alpha(x)$. Hence x = 0. Thus $M = K \oplus kerf$.

2. Chain condition on *y*-closed submodules. *Definition (2.1)*

An R – module M is said to have the ascending chain condition (briefly ACC) on y – closed submodules if every ascending chain $A_1 \subseteq A_2 \subseteq$... of y – closed submodules of M is finite. That is, there exists $k \in Z_+$ such that $A_n = A_k$, for all $n \ge k$.

Definition (2.2)

An R – module M is said to have the descending chain condition (briefly DCC) on y – closed submodules if every descending chain $A_1 \supseteq A_2 \supseteq \dots$ of y – closed submodule of M is

finite. That is, there exists $k \in Z_+$ such that $A_n = A_k$ for all $n \ge k$.

Remarks and examples (2.3)

1- Every noetherain (respectively ,artinian) module satisfies (respectively DCC) on y – closed submoduls . For example , consider the module Z_6 as Z – module has ACC (respectively DCC) on y – closed submodules .

2- Every uniform module satisfies ACC (respectively DCC) on y – closed submoduls. For example ,the module Z as Z – module has ACC (respectively DCC) on y – closed submodules .

3- Every singular module satisfies *ACC* (respectively DCC) on y – closed submoduls.For example, Z_4 as a Z – module .

4- Consider the module $\bigoplus_{i \in \mathbb{N}} Z_2$ as Z_2 – module . One can easily show that $\bigoplus_{i \in \mathbb{N}} Z_2$ as Z_2 – module does not satisfies *ACC* and *DCC* on *y* – closed submodule.

5- If M satisfies ACC (respectively DCC) on closed submoduls, then M satisfies ACC (respectively DCC) on y – closed submoduls.The converse is true M is nonsingular.

The following example show that the converse is not true in general.

Consider the module $\bigoplus_{i \in \mathbb{N}} Z_2$ as Z – module. Clearly that $\bigoplus_{i \in \mathbb{N}} Z_2$ is singular and hence satisfies ACC and DCC ony – closed submodule by (3). But one can easily show that $\bigoplus_{i \in \mathbb{N}} Z_2$ not satisfies ACC (DCC) on closed submodule.

Proposition (2.4)

Let $M = M_1 \bigoplus M_2$ be an R – module . If M satisfies ACC on y – closed submodules, then M_1 satisfies ACC on y – closed submodules . **Proof :**

Let $A_1 \subseteq A_2 \subseteq ...$, be ascending chain of y-closed submodules of M_1 . Since $\frac{M_1 \oplus M_2}{A_i \oplus M_2} \cong \frac{M_1}{A_i} \oplus \frac{M_2}{M_2}$ by [7], then $A_i \oplus M_2$ is an y-closed submodule of $M_1 \oplus M_2 = M$, by (2.1.20) for each $i \in \mathbb{Z}_+$. we have an ascending chain So $A_i \oplus M_2 \subseteq A_i \oplus M_2 \subseteq \dots$, of y – closed submodules of *M* and hence there exists $k \in Z_+$ such that $A_n \oplus M_2 = A_k \oplus M_2 \forall n \ge k$. Thus $A_n = A_k$.

ascending chain of y – closed submodules of

M. Since $A_{I} \subseteq A_{i}$ and A_{i} is an y - closed

submodule in *M* for each $i \in Z_+$, then $\frac{A_i}{A_*}$ is an

Proposition (2.5)

Let *M* be an *R*- module and let *A* be an y – closed submodule of *M*. If *M* satisfies *ACC* (respectively *DCC*) on y – closed submodule, then *A* satisfies *ACC* (respectively *DCC*) on y – closed submodule .

Proof:

Let *M* satisfies *ACC* on *y* – closed submodule and let $A_1 \subseteq A_2 \subseteq ...$, be ascending chain of *y* – closed submodule of *A*. Since *A* is an *y* – closed submodule of *M*, then A_i is an *y* – closed submodule of *M* and hence $A_1 \subseteq A_2 \subseteq ...$, be ascending chain of *y* – closed submodule of *M*. So there exists $k \in Z_+$ such that $A_n = A_k$, $\forall n \ge k$.

By the same way we can prove the theorem for DCC on y – closed submodule .

Proposition (2.6)

Let *M* be an *R*- module and. If *M* satisfies *ACC* (respectively *DCC*) on y – closed submodules, then $\frac{M}{A}$ satisfies *ACC* (respectively *DCC*) on y – closed submodules. *Proof*: Suppose that *M* satisfies *ACC* on y – closed

submodule and let $\frac{B_1}{A} \subseteq \frac{B_2}{A} \subseteq \dots$, be ascending chain of y – closed submodules of $\frac{M}{A}$, then B_i is an y – closed submodule of M for each $i \in Z_+$, by (2.1.5-2). Hence $B_1 \subseteq B_2 \subseteq \dots$, be ascending chain of y – closed submodule of M. So there exists $k \in Z_+$ such that $B_n = B_k$, $\forall n \ge k$. Thus

$\frac{B_n}{A} = \frac{B_k}{A} \quad \forall n \ge k \; .$

Using the same argument one can prove the theorem for DCC on y – closed submodules .

Proposition (2.7)

Let *M* be an *R* – module, then *M* satisfies $ACCon \ y$ – closed submodules if and only if $\frac{M}{A}$ satisfies ACC on *y* – closed submodules, for every *y* – closed submodule*A* of *M*. **Proof:** \Rightarrow) It is clear by proposition (2.6). \Leftarrow)suppose that $\frac{M}{A}$ satisfies ACC of *y* – closed submodules, for every *y* – closed

y - closed submodule of $\frac{M}{A_1}$, for each $i \in Z_+$. Thus we have the following ascending chain $A_1 = \frac{A_1}{A_1} \subseteq \frac{A_2}{A_1} \subseteq \dots$ of y - closed submodules of $\frac{M}{A_1}$. Since $\frac{M}{A_1}$ satisfies ACC on y - closed submodules, then there exists $k \in Z_+$ such that $\frac{A_n}{A_1} = \frac{A_k}{A_1}$, for each $n \ge k$. It is follow that $A_n = A_k$ for each $n \ge k$.

Proposition (2.8)

Let *M* be an *R* – module such that the sum of any two *y* – closed submodules of *M* is again an *y* – closed submodule . If *A* is an *y* – closed submodule of *M* such that *A* and $\frac{M}{A}$ satisfies *ACC* (respectively, *DCC*) on *y* – closed submodules, then *M* satisfies *ACC* (respectively, *DCC*) on *y* – closed submodules. *Proof*:

Assume that $B_1 \subseteq B_2 \subseteq ...$, is an ascending chain of y – closed submodules of M, then $B_i \cap A$ is an y – closed submodule of A, $\forall i \in Z_+$. Since B_i and A are y – closed submodules of M, then by our assumption $B_i + A$ is an y – closed submodule of M and hence $\frac{B_i + A}{A}$ is an y– closed submodule of $\frac{M}{A}$.

Now consider the following two ascending chains of y - closed submodules of A and $\frac{M}{A}$ respectively : $B_1 \cap A \subseteq B_2 \cap A \subseteq \dots$, and $\frac{B_1 + A}{A} \subseteq \frac{B_2 + A}{A} \subseteq \dots$. But A and satisfies ACC on y - closed submodules. Therefore there exists $k_1, k_2 \in Z_+$ such that $B_n \cap A = B_{k1} \cap A, \forall n \ge$ k_1 and $\frac{B_n + A}{A} = \frac{B_{k2} + A}{A}, \forall n \ge k_2$ and hence $B_n +$ $A = B_{k2} + A, \forall n \ge k_2$. Let $k = max \{k_1, k_2\}$, so $B_n \cap A = B_k \cap A, \forall n \ge$ $\ge k$ and $B_n + A = B_k + A, \forall n \ge k$. Now, $\forall n \ge$

 $kB_n = B_n \cap (B_n + A) = B_n \cap (B_k + A) = B_k + (B_n \cap A) =$

 $B_k + (B_k \cap A) = B_k$. Thus *M* satisfies *ACC* on *y* – closed submodules.

By the same way we can prove the proposition for DCC on y – closed submodules .

Proposition (2.10)

Let *M* be an *R* – module and let $A_1, A_2, ..., A_n$ be *y* – closed submodules of *M*, if $\frac{M}{A_i}$ is satisfies *DCC* on *y* – closed submodules, for each *i* = 1, 2, ..., n, then $\frac{M}{A_1 \cap A_2 \cap ... \cap A_n}$ satisfies *DCC* on *y* – closed submodules.

Proof :

Let $\frac{M}{A_i}$ is satisfies *DCC* on y – closed submodules . Since A_i is an y – closed submodules of *M* , then $\frac{M}{A_i}$ is nonsingular for each i = 1, 2, ..., n .so $\frac{M}{A_i}$ satisfies *DCC* on y – closed submodules. Thus $\frac{M}{A_i}$ satisfies *DCC* on closed submodules. Thus $\frac{M}{A_1 \cap A_2 \cap ... \cap A_n}$ satisfies *DCC* on closed submodules, by theorem (3.2.9) . Hence $\frac{M}{A_1 \cap A_2 \cap ... \cap A_n}$ satisfies *DCC* on y – closed submodules .

Proposition (2.11)

Let $M = Rm_1 + Rm_2 + ... + Rm_n$ be an R – module such that Rm_i is an y – closed submodule of M, for each i = 1, 2, ..., n. If M satisfies DCC on y – closed submodule, then $\frac{R}{Ann(M)}$ satisfies DCC on y – closed submodule.

Proof :

Let $M = Rm_1 + Rm_2 + ... + Rm_n$, where m_1 , $m_2,...,m_n \in M$. For each i = 1,2,...,n. Let Φ_i $:R \to Rm_i$ be a map define as follows $\Phi_i(r) = rm_i$, $\forall r \in R$. It is clear that Φ_i is an epimorphism. By the first isomorphism $\frac{R}{ker\Phi_1} \cong Rm_i, \forall i = 1,2,...,n$.

But $ker\Phi_i = \{ r \in R : \Phi_i(r) = 0 \} = ann (m_i)$, So $\frac{R}{ann(m_i)} \cong Rm_i$. Since M satisfies DCC on

y-closed submodule, then Rm_i satisfies *DCC* on *y* - closed submodules, $\forall i = 1, 2, ..., n$, by (2.5).

Since by [9], proposition (2.3-4), p.38] $ann(M) = ann(m_1) \cap ann(m_2) \cap \dots \cap ann(m_n)$, then **R** participate DCC on u along a submodule

 $\frac{R}{ann(M)}$ satisfies *DCC* on *y*-closed submodule,

by proposition (2.10).

The following proposition gives a characterization of rings with chain condition on y – closed ideals.

Proposition (2.12)

Let R be a ring, then the following statements are equivalent.

(1) R satisfies ACC on y – closed ideals.

(2) $\frac{R}{A}$ Satisfies *ACC* on *y* – closed ideals, for

every y – closed ideal A of R.

Proof :

(1) \Rightarrow (2) It is clear by proposition (3.2.6). (2) \Leftarrow (1)

Let $A_1 \subseteq A_2 \subseteq ...$, be ascending chain of y-closed ideals of R. Since $A_1 \subseteq A_i$ and A_i is an y-closed ideals in R for each $i \in Z_+$, then $\frac{A_i}{A_1}$ is an y-closed in $\frac{R}{A_1}$ for each $i \in Z_+$.[8]. Thus we have the following ascending chain of y-closed ideals of $\frac{R}{A_1}$: $\frac{A_1}{A_1} \subseteq \frac{A_2}{A_1} \subseteq ...$ Since $\frac{R}{A_1}$ satisfies ACC on yclosed ideals (by our assumption), then there

exists $k \in Z_+$ such that $\frac{A_n}{A_1} = \frac{A_k}{A_1}$, for each n

 $\geq k$. It is follow that $A_n = A_k$ for each $n \geq k$. The following proposition gives a condition under which a direct sum of two modules satisfies *ACC* is again satisfies *ACC*.

Proposition (2.13)

Let M_1 and M_2 be R – modules such that ann $M_1 + ann M_2 = R$, if M_1 and M_2 satisfies ACC on y – closed submodule, then $M_1 \oplus M_2$ satisfies ACC on y – closed submodules.

Let $A_1 \subseteq A_2 \subseteq ...$, be ascending chain of y closed submodules of $M_1 \oplus M_2$. Since $annM_1+annM_2 = R$, then by the same way of the prove [1,prop.4.2,CH.1], $A_i=C_i \oplus D_i$, where C_i is a submodule of M_1 and D_i is a submodule of M_2 . Since $A_i=C_i \oplus D_i$ be an y – closed submodule of $M_1 \oplus M_2$, then C_i and D_i are y – closed submodule in M_1 and M_2 respectively, by [3]. So we have two ascending chain of y – closed submodule of M_1 and M_2 respectively : $C_1 \subseteq C_2 \subseteq \ldots$, be ascending chain of y – closed submodules of M_1 and $D_1 \subseteq D_2 \subseteq$ \ldots , be ascending chain of y – closed submodules of M_2 . Thus there exists $k_1, k_2 \in Z_+$ such that $C_n = C_{k1} \forall n \ge k_1$ and $D_n = D_{k2} \forall n$ $\ge k_2$. Let $k = max\{k_1, k_2\}$. To show $A_n = A_k$, let $A_n = C_n + D_n = C_{k1} + D_{k2}$. But $\forall n \ge$ $kC_{k1} = C_k$ and $\forall n \ge kD_k = D_{k2}$, Therefore $A_n = C_k$ $+ D_k = A_k \forall n \ge k$.

Proposition (2.14)

Let $M = \bigoplus_{i \in I} M_i$ be an R – module where I is a finite index set. If M satisfies ACC (respectively DCC) on y – closed submodule, then M_i satisfies ACC (respectively DCC) on y – closed submodules, for each $i \in I$. The converse is true if every y – closed submodule of M is fully invariant.

Proof:

 \Rightarrow) Clear by the proposition (3.2.4).

 $(=) \quad \text{suppose that} \quad A_{1} \subseteq A_{2} \subseteq \dots, \text{ is an}$ ascending chain of y - closed submodules of Mand let $\pi_{i} : M \to M_{i}$ be the projection maps, for each $j \in J$ claim that $A_{j} = \bigoplus_{i \in I} (A_{j} \cap M_{i})$, to verify this, let $x \in A_{j}$, then $x = \sum_{i \in I} mi$, $m_{i} \in M_{i}$. Since A_{j} is any – closed submodule of M, then by our assumption, A_{j} is fully invarient and hence $\pi_{i}(x) = m_{i} \in A_{j} \cap M_{i}$. So $x \in \bigoplus_{i \in I} (A_{j} \cap M_{i})$. Thus $A_{j} \subseteq \bigoplus_{i \in I} (A_{j} \cap M_{i})$. But $\bigoplus_{i \in I} (A_{j} \cap M_{i}) \subseteq A_{j}$, therefore $A_{j} = \bigoplus_{i \in I} (A_{j} \cap M_{i})$.

Since $\frac{M}{A_j}$ is nonsingular and $\frac{M}{A_j}$ =

 $\frac{\bigoplus_{i \in I} M_i}{\bigoplus_{i \in I} (A_j \cap M_i)} \cong \bigoplus_{i \in I} (\frac{M_i}{(A_j \cap M_i)}), \text{ then } A_j \cap M_i$

is an *y* – closed submodule of M_i , for each $i \in I$. For each $i \in I$ we have the following ascending chain of *y* – closed submodule of $M_i:(A_1 \cap M_i) \subseteq (A_2 \cap M_i) \subseteq \ldots$, But M_i satisfies ACC on *y* – closed submodules. So for each $i \in I$, there exists $k_i \in Z_+$ such that $A_n \cap M_i = A_{ki} \cap M_i$, $\forall n \ge k_i$. Let $k = max\{k_i : i \in I\}$. So $A_n = \bigoplus_{i \in I} (A_n \cap M_i) = \bigoplus_{i \in I} (A_k \cap M_i) = A_k$, $\forall n \ge k$. Thus *M* satisfies ACC on *y* – closed submodules.

By the same way we can prove the proposition for DCC on y – closed submodules .

Proposition (2.15)

Let M be an R-module such that $M = A_1 + A_2 + ... + A_n$, where A_i is an y-closed submodule of M, $\forall i = 1, 2, ..., n$ if A_i satisfies ACC (respectively, DCC) on y - closed submodules $\forall i = 1, 2, ..., n$, then M satisfies ACC (respectively, DCC) on y - closed submodules. (respectively, DCC) on y - closed submodules. **Proof :**

By induction . If k = 1, then $M = A_1$ and hence M satisfies ACC on y – closed submodules. Now, assume that is true when $k \le n - 1$. Now let k = n and let $B = \sum_{i=1}^{k-1} A_i$. So B satisfies ACC on y – closed submodules . By the second isomorphism theorem $\frac{M}{A_n} = \frac{B + A_n}{A_n} \cong \frac{B}{B \cap A_n}$. Since B satisfies ACC on y – closed submodules and $B \cap A_n$ be an y – closed submodule of B, then $\frac{B}{B \cap A_n}$ satisfies ACC on y – closed submodules, by (2.6). Thus M as R – module satisfies ACC on y – closed submodule

Before we give our next result. We give the following lemma.

Lemma (2.16)

Let *M* be an *R* – module and $\overline{R} = \frac{R}{ann(M)}$. If

A is an y - closed submodule of M as R - module, then A is an y - closed submodule of M as \overline{R} - module.

Proof:

Assume that A be an y – closed submodule of M as R – module and hence $\frac{M}{A}$ is nonsingular as R – module. Now consider $\frac{M}{A}$ as \overline{R} – module. Let $m + A \in \mathbb{Z}$ ($\frac{M}{A}$), then $ann_{\overline{R}} (m+A) \subseteq_{e} \overline{R}$. Claim that $ann_{\overline{R}} (m+A) \subseteq_{e} R$ To verify this, let $0 \neq r \in R$, we want to show that there exists $r_{l} \in R$ such that $0 \neq rr_{l} \in ann_{\overline{R}} (m+A)$. if $r \in ann(M)$, then $0 \neq r = r$. $l \in ann_{\overline{R}} (m+A)$ Now assume that $r \notin ann(M)$, then r + ann(M) $\neq ann(M)$. But $ann_{\overline{R}} (m+A) \not\subset_{e} \overline{R}$, therefore there exists $r_{l} + ann(M) \in \overline{R}$ such that $ann (M) \neq r r_{l} + ann(M) \in ann_{\overline{R}} (m+A)$ and hence $0 \neq r r_{l} \in ann_{\overline{R}} (m+A)$. But $\frac{M}{A}$ is nonsingular as R – module, then $m \in A$. Thus $\frac{M}{A}$ is nonsingular as \overline{R} – module.

Proposition (2.17)

Let *M* be an \overline{R} - module. If *M* satisfies *ACC* (respectively, *DCC*) on *y* -closed submodule as $\overline{R} = \frac{R}{ann(M)}$, then *M* satisfies *ACC* (respectively, *DCC*) on *y* - closed submodule as R - module.

Proof :

Assume that M as $\overline{\mathbf{R}}$ – module satisfies ACCon y – closed submodule. We want to prove that M asR – module satisfies ACC on y – closed submodule . Let $A_1 \subseteq A_2 \subseteq ...$, be ascending chain of y – closed submodules of M as an R – module, so by previous lemma A_i is an y – closed submodule as an $\overline{\mathbf{R}}$ – module . Since M as $\overline{\mathbf{R}}$ – module satisfies ACC on y – closed submodule, then there exists $k \in Z_+$ such that A_n = A_k for each $n \ge k$. Thus M as R – module satisfies ACC on y – closed submodule.

Proposition (2.18)

Let *M* be a faitfull and multiplication R - module, if *R* satisfies *ACC*(respectively *DCC*) on y - closed ideals, then *M* satisfies *ACC* (respectively, *DCC*) on y - closed submodules. *Proof*:

Let $A_1 \subseteq A_2 \subseteq ...$, be descending chain of yclosed submodules. Since M is multiplication module, then $A_i = (A_i: M)M$, $\forall i = 1, 2, ..., n$. Clearly $(A_1: M) \subseteq (A_2: M) \subseteq ...$ Since A_i is an y-closed in M, then $(A_i: M)$ is an y-closed in R, for each $i \in Z_+$, by (2.1.21) But R satisfies ACC on y-closed ideals, therefore there exist $k \in Z_+$ such that $(A_n: M) = (A_k: M)$ for each $n \ge k$.

By the same way we can prove the theorem for ACC on y – closed submodule .

Reference

- 1. Gomes C., 1998, Some generalizations on injectivity , Ph.D. Thesis, University of Glasgow.
- 2. Goodearl, K.R., 1976, Ring Theory, Non Singular Rings and Modules, Marcel Dekker, New York.
- **3.** LmyaaH.sahib and Bahar H. AL-Bahraany, On CLS – modules,Iraqi *Journal of Sci.* to appear.

- 4. Abass, M.S., 1991,On Fully Stable Modules, Ph.D. Thesis, University of Baghdad.
- 5. Tercan, A., 1995, On CLS-Modules, Rocky Mountain Journal of Math.25m, pp:1557-1564.
- 6. Hiremath V.A., **1986**, Hopfian rings and Hopfianmodules. *Indian Journal of.Pureappl.Math.*17 (7), pp:895-900.
- 7. Than J., Golan S. and Tom head, Modules and Structure of Rings, Binghamton University, Binghamton, New York, USA.
- 8. Yousif R. AL-azawiay, 2006, on some generalizations on Modules with chain Condition, M.Sc. Thesis, College of science, University of Baghdad.
- **9.** Larsen M.D., McCarthy P.J., **1971**, Multiplicative Theory of ideals, Academic Press, New York .