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Abstract 

Let R be a commutative ring with identity and let M be a unital left R-
module.Goodearl introduced the following concept :A submodule A of an R – 

module  M is an y – closed submodule of M  if    is nonsingular.In this paper we 

introduced an  y – closed injective modules andchain condition on y – closed 
submodules. 
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1.Introduction.

    Following C.Gomes[1] .Let M1 and M2 be an 
R – modules M1 is called M2 – C – injective if 

every  homomorphism  : K    →M1 , where K 

is a closed submodule of  M2, there exists  a 

homomorphism  β : M2  →     M1  such that βo i  

= .Where i is the inclusion map . 

    This concept lead us to introduced the 
following:  Let M and  N be  R – modules . The 
module  M is called N – y – closed injective if 

every  homomorphism  : K   →  M , where K is 

an  y – closed submodule of  N , there exists  a 
homomorphism  g : N  →M such that go i = . 

Where i is the inclusion map. 

Following  Goodearl [2] . An R – module M is 
called a module with ascending (respectively, 
descending) chain condition (briefly ACC, 
respectively, DCC ) on closed submodules, if 
every ascending (respectively , descending ) 
chain of closed submodules of M is finite.  
     This concept lead us to introduced the 
following : an R – module M is called a module 
with ascending  (respectively, descending) chain 
condition (briefly ACC, respectively, DCC ) on  
y – closed  submodules, if every ascending 
(respectively , descending ) chain of   y – closed 
submodules of M is finite. 
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    In this paper, we give properties of  y – closed 
injective module  and chain condition on y – 
closed submodules. 
    In section one, we introduced the concept of  
y– closed injective modules with some examples 
and basic properties,We prove that for an  R – 
module M  and  an  y – closed submoduleA  of  
M.  If  A is M – y – closed injective module , 
then A is a direct summand of M . 
     In section two, we introduced the concept of 
chain condition on y – closed submodules with 
some examples and basic properties,We prove  
that a  ring R satisfies ascending chain condition 

on y – closed ideals if and only if    satisfies 

ascending chain condition on y – closed ideals 
for every   y – closed ideal  A  of  R . 
 

1-Injectivity on y-closed submodules. 

Definitions (1.1) : 
1- Let M and  N be  R – modules . the 
module  M is called N – y – closed injective if 
for every  homomorphism       : K  →M , 

where K is an  y – closed submodule of N , there 
exists a homomorphism  g : N→M such that   

go i =  . wherei is the  inclusion map . 

2- M1 and M2 are said to be relatively  y – 
closed injective modules if Mi is                      Mj 
– injective, for every  i , j ={1,2}, i ≠ j 
3- An R – module M is called self – y – 
closed injective module  if for every 
homomorphism     f : K→M ,where K  is an y – 

closed submodule of M, there exists a 
homomorphism  g : M→M such that      f = go i 

. Where i is the inclusion map . 
4- An R – module  M is called  y – closed  
injective module if M is N – y – closed injective 
, for every Rmodule N  . 
 
Proposition  (1.2) :  
 Let M be an R – module , then  M  is  N – y – 
closed injective , for every singular R – module 
N  . 
 

Proof : 
    Let K  be an   y – closed submodule of  N and 

let  f : K→M be any R-homomorphism.Since N 

is singular , then N is the only y – closed 
submodule of  N, by (2.1.3) .One can easily 
show that M  is  N – y – closed injective . 
     It is clear that every injective  R – module is 
y– closed injective . The converse is not true . 
For example,  

Consider the module Zn as Z –module . Since Zn 
as Z –module  is  singular, then Zn is the only    y 
– closed submodule of Zn  and hence Zn  is  y– 
closed injective. But Zn as Z –module is not 
divisible where 0 = n Zn ≠ Zn . Hence Zn is not 
injective. 
Now we give some basic properties of y –closed 
injective modules. 
 
Proposition  (1.3): 
     Let M  be an  N – y – closed injective 
module. If  A is an  y – closed submodule of N, 
then M is A – y – closed injective module .  
 

Proof : 
     Let X  be an  y – closed submodule of  A and 

let  f : X→M be any R – homomorphism. Now 

consider the following diagram . 
 

                  0        X          A           N 

 

                           M 

 
Where i,j are the inclusion maps. Since  X  is an  
y – closed submodule  of    A and A is an y – 
closed submodule  of  N, then X   is an  y – 
closed submodule of N, by (2.1.10)  . But M  is 
N – y – closed injective, therefore there exists a 
homomorphismg  : N→M  such that f = go jo i . 

Take h = g A:A→M . Clearly that ho i=  f. 

Thus  M is   A – yc – injective . 
 

Proposition (1.4): 
    Let M  and N  be R – modules and A is a  
submodule of N . If  M is N – y – closed 

injective module then M is
 A

N
 – y – closed 

injective module  .  
 
Proof : 

    Let   
A

X
  be an  y – closed submodule of   

A

N
and letφ  :

A

X
→  M be an R – 

homomorphism. We want to show that there 

exists a homomorphism Ψ :
A

N
→  M such that 

Ψo  i =  Φ ,where i is the inclusion map.Now 
consider the following digram. 

i  j  

h  
f  

g  
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           X  → j
   N 

'π ↓                 π↓  

     
A

X
→i    

A

N
 

        ↓φ  

           M  

 
Where j is the inclusion map and  are the 

natural epimorphism . Since  
A

X
is an y – closed 

submodule of 
A

N
, then X  is an  y – closed 

submodule of  N, by (2.1.5-2)  . Since  M be an  
N – y – closed injective , then there exists a 

homomorphism θ : N→M such that Φo  = 

θ o j . θ(A) = Φo (A) = Φ (0) = 0 .So 

kerπ ⊆ kerθ . Now let Ψ : 
A

N
 →M  be a map 

define as follows Ψ(n + A) = θ(n) n∈N. One 
can easily  show that  Ψ is well define. Now  
Ψo i (x+A) = Ψ(x+A) = Ψo π (x) = θ(x) = 

Φo (x) = Φ(x+A) . Thus M  is
A

N
  – y – closed 

injective module. 
 
Proposition  (1.5) :  

    Let M = A⊕ B be an R – module and N be an 

R – module .If  M is N – y – closed injective , 
then A is N – y – closed injective . 
Proof : 

    Let M = A⊕ B  beN – y – closed injective . To 

show that  A  is N – y – closed injective, let K  be 

an  y – closed submodule  of   and let                  

f  : K→A be an R – homomorphism  . Now 

consider the following diagram . 
 
 
 
 
 
 
Where i , j are the inclusion maps and P is the 
projection map . Since M is N – y – closed 
injective, then there exists an R – 

homomorphism  Φ : →M   such that jo f = 

Φo i. Let g = P oΦ ,  go  i = Po  Φo i = Po jo f = 
f . Thus A  is N – y – closed injective  module . 

Recall that a submodule N of R-module M is 
called a fully invarientsubmodule of M ,if for 

evey endomorphis f:M→M, f(N)⊆N, see[1]. 

     The following proposition gives a condition 
under which an y – closed  submodule of an  y – 
closed injective module is y – closed injective . 
 
Proposition(1.6) : 

    Let M be a self – y – closed injective module, 
then every fully invariant  y – closed submodule 
N of  M  is self – y – closed injective. 

Proof : 
Suppose that  M is self – y – closed injective Let 
K be an  y – closed submodule of  N  and let       

 : K→N be a homomorphism . Since K is an  

y – closed submodule of  N and N is an  y – 
closed submodule  of  M, then K  is an y-
closedsubmodule of  M , by (2.1.10). 
 

 
              0         K            N            M 

 
                        N                           M 

 
 

Since M is self – y – closed injective module , 
then there exists a homomorphism β : M→M 

such that  jo  = βo jo i .  Since N is fully 

invariant, then β(N)⊆N. And β N :N→N is   a 

homomorphism  and    is the restriction  of  

this  homomorphism . 
 

Proposition (1.7): 
    Let M1 ,M2 and N  be R – modules  . If M1 and 
M2 are N – y – closed injectivemodules  , then  

M1⊕M2is  N – y – closed injective . 

Proof : 
    Suppose that  M1 and M2  are  N – y – closed 
injective modules . Let K be an  y – closed 

submodule of  N and let  f : K→M1⊕M2be an 

R – homomorphism. Now consider the 
following diagram . 
 
 
 
 
 
 
Where i1 ,i2 are the inclusion maps , P1 ,P2 are 
the projection map .  Since M1 and M2 are  N – y 
– closed injective modules , then there exists 

homomorphismsh1 : N→M1  and  h2 : →M2 

�  

Ψ  

θ  

i  j  

 β  

j  

β⃓N  
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such that  P1o  f = h1o  i and P2o f = h2o  i . 

Define  h : →M1⊕M2  as follows  h( ) = 

(h1( ),h2( )), ∈  . To show that f = ho i . Let 

k∈K ,thenf(k) = (m1,m2) , where m1∈M1 and 
m2∈M2. ho i(k) = h(i(k)) = (h1(i(k)),h2(i(k))) = 

(P1o f(k), P2o f(k)) = (m1,m2) .Thus M1⊕M2is  N 

– y – closed injective  module . 
 

Proposition  (1.8) :   
    Let M  be an R – module, and let A  be an y – 
closed submodule of  M. If  A is M – y – closed 
injective module , then A is a direct summand of 
M . 
Proof : 
    Assume that  A is M – y – closed injective  
and let  I : A→A be the identity map Since A is 

M – y – closed injective module , then there 

exists a homomorphism f : M→A  such that        

I = fo i . Claim that  M = ker f⊕ A. To show that 

, let x∈M, then  one can easily show that x – 
f(x)∈ker f . Thus  x = f(x) + (x – f(x)) ∈A + ker f 
. 

To show that A ker f = 0, let x∈A ker f, so 

f(x) = 0. But f(x) = x, therefore  x = 0 .Thus A is 
a direct summand  of M . 
     Recall that a module M is called a CLS-
module if every  y-closed submodule is a direct 
summand. 
    The following proposition gives a 
characterization of CLS – module in terms of  y 
– closed injective modules . 
 
Proposition  (1.9) :  

     Let M be an R – module, then the following 
statements are equivalent . 
1- M is a CLS – module . 
2-  Every module is M – y – closed 
injective module . 
3-  Every y – closed submodule of M is M 
– y – closed  injective  module . 

Proof : 

(1) ⇒  (2) 

Let M1 be an  R – module , let A be an  y – 
closed submodule ofM and let                             

 : A→M1  be an R – homomorphism.Since A 

is an  y – closed submodule of  M and M is CLS, 
then A is a direct summand of M . So  M = 

A⊕ , for some submodule  of M . Define   

 β : M→M1 as follows . 

    (x)        if y = 0 

β(x+y)=                
 

                         0             otherwise 

Where x∈A and y∈  .Hence β extends to   . 

(2) ⇒  (3) It is clear . 

(3) ⇒  (1) It is follow by proposition(1.8) . 

 
Before we give the next proposition we need the 
following definitions.  
    Recall that  an R – module M is called directly 
finite if   fo  g = IM, implies that go f = IM  for all  
f , g∈End (M) , see [2] . 
    Recall that an   R – module   M   is said to be 

co – hopfian if every monomorphism f :M→M 
is an isomorphism , see [6] . 
 
Proposition  (1.10) : 

An  y – closed injectiveR – module M is directly 
finite if and only if it is co – hopfian . 
Proof : 

⇒ ) Let f : M→M  be  a monomorphism and  

let   I : M→M  be the identity map . Since M is 

an y – closed submoduleof  M and M is y – 
closed injective, then there exists a 

homomorphism g : M→M  such that go f = IM. 
But M is directly finite, therefore fo g = IM  and 
hence  f  is an isomorphism .Thus M is co – 
hopfian . 

⇐ ) Let  f, g : M→M  be an R – 

homomorphism such that go f = IM , we want to 
show that fo g = IM  . Since  go f = IM, then f  is  
one to one. But M is  co – hopfian, therefore f is 
an isomorphism . Claim that g is one to one, to 
show that . Let g(m1) = g(m2) , m1, m2∈M. Since 
f is on – to, then m1 = f(x1), m2 = f(x2) ,x1, x2∈M. 
So g(f(x1)) = g(f(x2)) and hence m1 = m2 One can 
easily show that f o g = IM  .Thus M is directly 
finite. 
 
Theorem (1.11) : 

    Let M =M1⊕M2 be an R – module such that 

M1 is nonsingular and every submodule  of M  
isomorphic to an  y – closed submodule of M is 
itself  y – closed in M . If for every   y – closed 

submoduleN of M such that  N M1 = 0, there 

exists a submoduleA  of M such that M = M1⊕ A 

and N⊆A , then M1 is M2 – y – closed injective .   

Proof : 

      Let K  be  an  y – closed  submodule of  M2 
and let f : K→M1 be an R – homomrphism. Let  

H = { - f(k) + k, k ∈  K } and let  g : K→H be a 

map  defined by g (k) = - f(k) + k , k∈ K . One 

can easily show that   g is an isomorphism . By 

the first isomorphism theorem  M1 . Since 

M1 is nonsingular  , then   M2  is any – closed 
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submodule of  M. But K is any – closed 
submoduleof  M2, therefore  K is an y – closed 

submodule of  M. But   K H,   therefore H is an 

y – closed submoduleof  M . Claim that    H M1 

= 0 . To show this , let x∈H M1, so  x = - f(k) + 

k ,  where   k∈M2 . So   x + f(k) = k∈M1 M2 

and hence   x = 0.   Now by hypothesis there 
exists a submodule A of M such that H⊆A and 
M = M1⊕ A .  Let  :  M1⊕ AM1 . It is clear that  

ker  = A . Let h = π M2 :M2→  M1 . Now 

ho i(k)  =  h (k)  =  (k)  =  ( f(k)  –  f(k) + k) ,  

= (f(k)) = f(k) . Thus ho  i = f  . 

 
We end this section by the following 
proposition. 
 
Proposition(1.12) : 
    Let M  be a self – y – closed injective module  
and let K be an y – closed submodule of M. If  K  
is isomorphic to a direct summand of  M, then K 
is a direct summand of M .  
Proof : 
Suppose thatM  is a self – y – closed injective 
module  and  K  be an y – closed submodule of 
Msuch that K is isomorphic to a direct summand  
B of M   . Then there exists an isomorphism    

: K→Bbe.Since M is self – y – closed 

injective module and  B is a direct summand of  
M, then B is M – y – closed injective .So there 

exists a homomorphism  β : M→B  such that  

= βo i . Claim that M = K⊕ kerf .To verify that. 

For every x∈M, there exists y∈K such that β(x) 
= (y) = β(y). Since  x – y∈ker β, then x = y + (x 
– y) ∈K + ker β .Thus M = K + kerf .To show 
K ker β = 0 , let x∈K ker β, so β(x) = 0. But 

β(x) = (x). Hence x = 0 . Thus M = K⊕ kerf. 

 
2. Chain condition on y-closed submodules. 

Definition (2.1) 
An  R – module M is said to have the  ascending  
chain condition (briefly ACC) on y – closed 

submodules if every ascending chain A1⊆A2⊆  

… of  y – closed  submodules of  M is  finite. 
That is, there exists  k∈Z + such that An = Ak , 
for all n ≥ k . 
 
Definition (2.2)   
     An R – module M is said to have the 
descending chain condition (briefly DCC) on y – 
closed  submodules if every descending chain 
A1⊇A2⊇  … of  y – closed  submodule of  M is  

finite. That is, there exists  k∈Z + such that   An= 
Ak,for all n ≥ k . 
 
Remarks and examples (2.3) 
1- Every noetherain (respectively ,artinian ) 
module satisfies (respectively DCC) on y – 
closed submoduls . For example , consider the 
module Z6 as Z – module has ACC (respectively 
DCC) on y – closed submodules . 
2- Every uniform module satisfies ACC 
(respectively DCC) on y – closed submoduls. 
For example ,the module Z as Z – module has 
ACC (respectively DCC) on y – closed 
submodules . 
3- Every singular module  satisfiesACC 
(respectively DCC) on y – closed submoduls.For 
example ,Z4as a Z – module .  
4- Consider the module  Z2as Z2 – module 

. One can easily show that            Z2 as Z2 

– module  does not satisfies ACC and DCC  on y 
– closed submodule . 
5- If M satisfies ACC (respectively DCC) on 
closed submoduls, then M satisfies ACC 
(respectively DCC) on y – closed 
submoduls.The converse is true M is 
nonsingular . 
 
The following example show that the converse 
is not true in general. 

Consider the module Z2 as Z – module . 

Clearly that Z2 is singular and hence 

satisfies ACC and DCC  ony – closed submodule 

by (3)  . But one can easily show that  Z2 

not satisfies ACC (DCC) on closed submodule.  
 

Proposition (2.4)  

    Let M = M1 M2be an R – module . If M 

satisfies ACC on y – closed submodules, then M1 
satisfies ACC on y – closed submodules . 
Proof : 

Let A1⊆A2⊆ .., be ascending chain of y–closed 

submodules of  M1. Since ⊕ , 

by [7], then Ai⊕M2 is an y–closed submodule 

of  M1⊕M2 = M , by (2.1.20) for each i∈Z+  . 
So we have an ascending chain 

Ai⊕M2⊆Ai⊕M2⊆… , of  y – closed 

submodules of  M and hence there exists  k∈Z+ 
such that   An⊕M2 = Ak⊕M2 n ≥ k .Thus         

An =Ak . 
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Proposition (2.5)   
      Let M be an R- module and  let A be an y – 
closed submodule of  M. If  M satisfies ACC 
(respectively DCC)  on y – closed submodule, 
then A satisfies ACC (respectively DCC)  on y – 
closed submodule .  
Proof : 

    Let M satisfies ACC on y – closed submodule 
and let A1⊆A2⊆… , be ascending chain of  y – 

closed submodule of  A . Since A is an y – closed 
submodule of  M, then Ai  is an y – closed 
submodule of M  and hence                        
A1⊆A2⊆  … , be ascending chain of  y – closed 

submodule of  M .So there exists k ∈Z+  such 
that  An= Ak ,  n ≥ k . 

 
By the same way we can prove the theorem for 
DCC on y – closed submodule . 
 
Proposition (2.6)   

    Let M be an R- module and. If  M satisfies 
ACC (respectively DCC)  on y – closed 

submodules, then
A

M
satisfiesACC (respectively 

DCC)  on    y – closed submodules. 
Proof : 

Suppose that M satisfies ACC on y – closed 

submodule and let  ⊆ ⊆  …, be ascending 

chain of  y – closed submodules  of   , then Bi 

is an y – closed submodule of  M for each i∈Z+ , 
by (2.1.5-2) . Hence B1⊆B2⊆… , be ascending 

chain of  y – closed submodule of  M. So there 

exists k∈Z+ such that Bn = Bk , n ≥ k .  Thus  

 = n ≥ k . 

Using the same argument one can prove the 
theorem for DCC on y – closed submodules . 
 

Proposition (2.7)  
    Let M be an R – module, then M satisfies 
ACCon  y – closed submodules if and only if  

A

M
 satisfies ACC on y – closed submodules, for 

every y – closed submoduleA of  M . 
Proof : 

⇒ ) It is clear by proposition (2.6). 

⇐ )suppose that 
A

M
 satisfies ACC of  y – 

closed submodules, for every y – closed 
submoduleA of  M  and let A1⊆A2⊆  … , be 

ascending chain of    y – closed submodules of  
M . Since A1⊆Ai  and  Ai  is an  y – closed 

submodule  in M for each i∈Z+ , then   is an  

y – closed submodule  of   ,for each  i ∈Z+ . 

Thus we have the following ascending chain 

⊆ ⊆…  of y – closed submodules of  . 

Since  satisfies ACC on y – closed 

submodules, then there exists  k∈Z+ such that 

 =  , for each n ≥ k. It is follow that An = Ak 

for each n ≥ k . 
 
Proposition (2.8) 
    Let M  be an R – module such that the sum of 
any two y – closed submodules of M is again an  
y – closed submodule  . If  A is an y – closed 

submodule of M such that A and   satisfies 

ACC (respectively, DCC ) on y – closed 
submodules, then  M  satisfies ACC 
(respectively, DCC ) on y – closed submodules. 

Proof : 

     Assume  that  B1⊆B2⊆  … , is an  ascending 

chain of  y – closed submodules of  M , then 

Bi A  is  an y – closed submodule of  A , i∈Z+. 
Since Bi  and A are   y – closed submodules of M 
, then by our assumption     Bi+ A  is an y – 

closed submodule of M and hence    is an y 

– closed submodule of  . 

 Now consider the following two ascending 

chains of  y – closed submodules of  A and   

respectively :  B1 A⊆B2 A⊆  … , and  

⊆ ⊆  …   . But A and   satisfies 

ACC on y – closed submodules .Therefore  there 

exists  k1, k2∈Z+ such that  Bn A = Bk1 A, n ≥ 

k1 and  = n ≥ k2and hence Bn + 

A = Bk2 + A n ≥ k2. 

Let  k = max { k1, k2} , so  Bn A = Bk A n 

≥ k and  Bn + A = Bk + A n ≥ k  . Now, n ≥ 

kBn = Bn (Bn +A) = Bn (Bk +A) =Bk + (Bn A) = 
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Bk +( Bk A) = Bk .   Thus M satisfies ACC on y – 

closed submodules . 
By the same way we can prove the proposition 
for DCC on y – closed submodules . 
 
Proposition (2.10)  

    Let M  be an R – module and let A1,A2,…An  

be  y – closed submodules of  M, if  is satisfies 

DCC on y – closed submodules, for each i = 

1,2,…,n , then    satisfies DCC 

on  y – closed submodules . 

Proof : 

    Let   is satisfies DCC on y – closed 

submodules . Since  Ai  is  an y – closed 

submodules of M ,then    is nonsingular for 

each i = 1,2,…,n .so   satisfies DCC on y – 

closed submodules. Thus   satisfies DCC on 

closed submodules. Thus     

satisfies DCC on closed submodules, by 

theorem (3.2.9) . Hence  satisfies 

DCC on   y – closed submodules . 
 

Proposition (2.11)  
    Let M = Rm1+Rm2+…+Rmn be an R – module 
such that Rmi is an y – closed  submodule of  M , 
for each i = 1,2,…,n . If M satisfies DCC on   y – 

closed submodule, then  satisfies DCC 

on y – closed submodule. 
Proof : 
     Let M = Rm1+Rm2+…+Rmn , where m1 
,m2,…,mn∈M. For each i = 1,2,…,n . Let Φi 

:R→Rmi    be a map define  as follows 

Φi(r)=rmi, r∈R . It is clear that Φi is an 

epimorphism. By the first isomorphism 

Rmi, i = 1,2,…,n . 

But kerΦi ={ r∈R :Φi(r) = 0} = ann (mi) , So 

 Rmi . Since   M   satisfies   DCC on 

y –closed submodule, then Rmi  satisfiesDCC on 

y – closed submodules, i = 1,2,…,n, by (2.5). 

Since by [9],proposition(2.3-4), p.38 ]ann( M) = 

ann(m1) ann(m2)  … ann(mn) , then 

 satisfies DCC on y–closed submodule, 

by proposition (2.10) . 
    The following proposition gives a 
characterization of rings with chain condition on 
y – closed ideals. 
 
Proposition (2.12)  

    Let R be a ring, then the following statements 
are equivalent. 
(1) R satisfies ACC on y – closed ideals . 

(2)  Satisfies ACC on y – closed ideals, for  

every y – closed ideal   A  of  R . 

Proof : 

(1) ⇒ (2) It is clear by proposition (3.2.6) . 

(2) ⇐ (1)  

     Let A1⊆A2⊆… , be ascending chain of  

 y–closed ideals of  R . Since A1⊆Aiand  Ai  is 
an   y – closed ideals  in R for each i∈Z+ , then 

  is an y – closed in   for each i∈Z+,.[8]. 

Thus we have the following ascending chain of 

y – closed ideals  of  : 

⊆ ⊆… . Since  satisfies ACC ony – 

closed ideals (by our assumption) , then there 

exists  k∈Z+ such that   =  , for each        n 

≥ k. It is follow that An = Ak  for each n ≥ k . 
The following proposition gives  a condition 
under which a direct sum of two modules 
satisfies ACC is again satisfies ACC.  
 
Proposition (2.13) 
    Let M1 and M2 be  R – modules such that   ann 
M1 +ann M2 = R, if M1 and M2 satisfies ACC on 

y – closed submodule, then M1⊕M2 satisfies 

ACC on y – closed submodules . 
Proof : 

    Let A1⊆A2⊆… , be ascending chain of y – 

closed submodules of M1⊕M2. Since 

annM1+annM2 = R, then by the same way of the 

prove [1,prop.4.2,CH.1],  Ai=Ci⊕Di, where Ci  
is a submodule of  M1 and Diis a submodule  of  

M2 . Since  Ai=Ci⊕Di  be an y – closed 

submodule of  M1⊕M2, then  Ci and Di are                     

y – closed  submodule in  M1 and M2  
respectively, by [3]. So we have two ascending 
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chain of  y – closed submodule of  M1 and  M2 
respectively :C1⊆C2⊆  … , be ascending chain 

of  y – closed submodules of  M1and D1⊆D2⊆  

… , be ascending chain of   y – closed 
submodules of  M2.Thus there exists k1, k2∈Z+ 
such that Cn = Ck1 n ≥ k1 and          Dn = Dk2 n 

≥ k2 .  Let k = max{ k1 , k2} . To show An= Ak, let 

An = Cn + Dn = Ck1+Dk2 . But                 n ≥ 

kCk1=Ck and  n ≥ kDk=Dk2 , Therefore  An = Ck 

+ Dk = Ak n ≥ k . 

 

Proposition (2.14)  

Let M = Mi be an R – module where I  is a 

finite index set.If M satisfies ACC(respectively 
DCC)  on y – closed submodule, then Mi 
satisfies ACC(respectively DCC)  on y – closed 
submodules, for each i∈I. The converse is true 
if every y – closed submodule of M  is fully 
invariant . 
Proof : 

⇒ ) Clear by the  proposition (3.2.4) . 

⇐ )  suppose that  A1⊆A2⊆  … , is an  

ascending chain of  y – closed submodules of  M 
and  letπ  i : M→Mi be the projection maps, for 

each j J  claim that Aj = (Aj Mi) , to verify 

this , let x Aj, then x = ,   mi Mi. Since 

Aj is  any – closed  submodule of M , then by our 
assumption , Aj is fully invarient and hence 

π i(x) = mi∈Aj Mi. So  x (Aj Mi). Thus 

Aj⊆ (Aj Mi) . But (Aj Mi)⊆Aj, 
therefore                           Aj= (Aj Mi) . 

Since  is nonsingular and   =   

( ), then Aj Mi 

is an y – closed submodule of Mi , for each i I  . 

For each i I we have the following ascending 

chain of y – closed submodule of Mi:(A1 Mi)⊆  

(A2 Mi) ⊆  … , .  But Mi satisfies ACC on y – 

closed submodules. So for each i I,  there exists 

ki∈Z+ such that An Mi = Aki Mi , n ≥ ki .Letk 

= max{ki : i ∈  I } . So  An= (An Mi) = 

(Ak Mi) = Ak , n ≥ k . Thus M satisfies 

ACC on  y – closed submodules . 
 
By the same way we can prove the proposition 
for DCC on y – closed submodules . 
 
Proposition (2.15) 

    Let    M    be   an   R – module    such   that   
M = A1 +A2 +… +An, where Ai  is an  y – closed 

submodule  of  M , i = 1,2,…,n if Ai satisfies 

ACC (respectively, DCC) on y – closed 

submodules i = 1,2,…,n , then M satisfies ACC 

( respectively , DCC ) on y – closed submodules. 
Proof : 

    By induction . If k = 1 , then M = A1 and 
hence M satisfies ACC on y – closed 
submodules . 
Now, assume that is true when k ≤ n – 1. Now 

let k = n  and let   B =  . So B  satisfies 

ACC  on y – closed submodules . By the second 

isomorphism theorem  =   . 

Since B satisfies ACC on y – closed submodules 

and  B An be an y – closed submodule of B, 

then  satisfies ACC on y – closed 

submodules, by (2.6). Thus M  as  R – module 
satisfies ACC on  y – closed submodule 
Before we give our next result. We give the 
following lemma.  
 
Lemma (2.16) 

    Let M be an R – module and  =  . If  

A is  an  y – closed submodule of M as R – 
module, then A is an  y – closed submodule of M  

as  – module . 

Proof : 
     Assume that  A be  an y – closed submodule 

of M as R – module and hence   is nonsingular 

as R – module . Now consider  as  – module. 

Let m +A∈  (  ), then   (m+A) ⊆ e . 

Claim that  (m+A) ⊆ e  R To verify this , 

let  0 ≠ r ∈R , we want to show that there exists 
r1 ∈  R    such that   0≠ rr1∈  (m+A) .  

if  r∈ann( M ),then 0 ≠ r = r .1∈  (m+A)  

Now assume that r∉ann( M ), then r + ann(M) 

≠ ann(M) .But   (m+A) ⊄ e  , therefore 

there exists r1 + ann(M)∈   such that             

ann (M) ≠ r r1 + ann(M) ∈  (m+A)  and 

hence  0 ≠ r r1∈  (m+A) . But  is 
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nonsingular as  R – module , then m∈A . Thus 

 is nonsingular as   – module . 

 
Proposition (2.17)  
    Let M  be an R – module. If  M satisfies ACC 
( respectively , DCC ) on y –closed submodule 

as   =  , then M satisfies ACC ( 

respectively , DCC ) on y – closed submodule as  
R – module . 
Proof : 

    Assume that  M as  – module  satisfies ACC 

on y – closed submodule . We want to prove that 
M  asR – module satisfies ACC on   y – closed 
submodule . Let A1⊆A2⊆… , be ascending 

chain of  y – closed submodules of M as  an R – 
module, so by previous lemma Ai is an  y – 

closed submodule as an  – module . Since M as 

 – module satisfies ACC on y – closed 

submodule, then there exists k∈Z+ such that An 
= Ak  for each n ≥ k .Thus  M  as R – module 
satisfies ACC on  y – closed submodule. 
 

Proposition (2.18) 
    Let M be a faitfull and multiplication R – 
module, if  R satisfies ACC(respectively DCC ) 
on y – closed ideals, then M satisfies ACC 
(respectively, DCC )  on y – closed submodules. 
Proof : 

    Let A1⊆A2⊆… , be descending chain of  y – 

closed submodules.Since M is multiplication 

module , then Ai= (Ai: M)M, i = 1,2,…,n. 

Clearly (A1 : M) ⊆  (A2 : M) ⊆  …  Since Ai is 

an y – closed in M, then (Ai : M) is an  y – closed 
in R, for each i∈Z+, by (2.1.21)  But R satisfies 
ACC on y – closed ideals, therefore there exist 
k∈Z+  such that (An : M) = (Ak : M) for each n ≥ 

k . Thus An = Ak , n ≥ k . 

   By the same way we can prove the theorem 
for ACCon  y – closed submodule . 
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