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Abstract

Let R be a commutative ring with identity and let M be a unital left R-
module.Goodearl introduced the following concept :A submodule 4 of an R —

module M is an y — closed submodule of M if I is nonsingular.In this paper we

introduced an y — closed injective modules andchain condition on y — closed

submodules.
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1.Introduction.

Following C.Gomes[1] .Let M; and M, be an
R — modules M, is called M, — C — injective if
every homomorphisme : K —M; , where K
is a closed submodule of M,, there exists a
homomorphism f: M, —» M; such that foi
= @2.Where i is the inclusion map .

This concept lead us to introduced the
following: Let M and N be R — modules . The
module M is called N — y — closed injective if
every homomorphism f: K — M, where K is

an y — closed submodule of N, there exists a
homomorphism g: N — M such that goi = f.

Where i is the inclusion map.
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Following Goodearl [2] . An R — module M is
called a module with ascending (respectively,
descending) chain condition (briefly ACC,
respectively, DCC ) on closed submodules, if
every ascending (respectively , descending )
chain of closed submodules of M is finite.

This concept lead us to introduced the
following : an R — module M is called a module
with ascending (respectively, descending) chain
condition (briefly ACC, respectively, DCC ) on
y — closed submodules, if every ascending
(respectively , descending ) chain of y — closed
submodules of M is finite.
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In this paper, we give properties of y — closed
injective module and chain condition on y —
closed submodules.

In section one, we introduced the concept of
y— closed injective modules with some examples
and basic properties,We prove that for an R —
module M and an y — closed submoduled of
M. If A is M -y — closed injective module ,
then 4 is a direct summand of M .

In section two, we introduced the concept of
chain condition on y — closed submodules with
some examples and basic properties,We prove
that a ring R satisfies ascending chain condition

H
on y — closed ideals if and only if A satisfies

ascending chain condition on y — closed ideals
for every y—closedideal 4 of R.

1-Injectivity on y-closed submodules.
Definitions (1.1) :

1- Let M and N be R — modules . the
module M is called N — y — closed injective if
for every homomorphism f: K ->M,

where K is an y — closed submodule of N, there
exists a homomorphism g : N—M such that
goi=f.whereiis the inclusion map .

2- M; and M, are said to be relatively y —
closed injective modules if M;is M;
— injective, for every i,j={1,2},i#j

3- An R — module M is called self — y —
closed injective module if for every
homomorphism f: K— M ,where K isan y —
closed submodule of M, there exists a
homomorphism g : M— M such that f=goj
. Where i is the inclusion map .

4- An R — module M is called y — closed
injective module if M is N — y — closed injective
, for every Rmodule N .

Proposition (1.2) :

Let M be an R — module , then M is N—y —
closed injective , for every singular R — module
N .

Proof :

Let K be an y — closed submodule of N and
let /: K— M be any R-homomorphism.Since N
is singular , then N is the only y — closed
submodule of AN, by (2.1.3) .One can easily
show that M is N —y — closed injective .

It is clear that every injective R — module is
y— closed injective . The converse is not true .
For example,

ey
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Consider the module Z, as Z —module . Since Z,
as Z—module is singular, then Z, is the only y
— closed submodule of Z, and hence Z, is y-
closed injective. But Z, as Z —module is not
divisible where 0 = n Z, # Z, . Hence Z, is not
injective.

Now we give some basic properties of y —closed
injective modules.

Proposition (1.3):

Let M be an N — y — closed injective
module. If A4 is an y — closed submodule of N,
then M is A — y — closed injective module .

Proof :
Let X be an y — closed submodule of 4 and

let f:X—M beany R —homomorphism. Now
consider the following diagram .

i i

0 X 5 A —»N

4
9
v l e
X

Where 1i,j are the inclusion maps. Since X is an
y — closed submodule of A4 and 4 is an y —
closed submodule of AN, then X 1isan y —
closed submodule of N, by (2.1.10) . But M is
N — y — closed injective, therefore there exists a
homomorphismg : N—>M such that f=gojoi.
Take h = g |A:A —>M . Clearly that hoi= f

Thus Mis A —yc— injective .
Proposition (1.4):

Let M and N be R — modules and A4 is a
submodule of N . If M is N — y — closed

N
injective module then M is E — y — closed

injective module .

Proof :
Let — be an y — closed submodule of
X
Eand let¢ :——> M be an R -
A A

homomorphism. We want to show that there
. . N
exists a homomorphism ¥ :— — M such that

Yo i = @ ,where i is the inclusion map.Now
consider the following digram.
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Where j is the inclusion map and 7, 7" are the

X
natural epimorphism . Since < is an y — closed

submodule of %, then X is an y — closed

submodule of N, by (2.1.5-2) . Since M be an
N — y — closed injective , then there exists a
homomorphism 6 : N— M such that ®omw'

Ooj . 0(4) = Bom'(4) = & (0) = 0 .So

N
ker m Ckerf . Now let ¥ : E — M be a map

define as follows ¥(n + A) = 6(n)¥neN. One

can easily show that ¥ is well define. Now
Poi (x+t4) = VY(xtA) = VYorm(x) = Ox) =

N
®om'(x) = P(x+A4) . Thus M ng —y —closed

injective module.

Proposition (1.5) :

Let M= A® B be an R — module and N be an
R — module .If M is N — y — closed injective ,
then 4 is N — y — closed injective .

Proof :

Let M=A® B beN —y — closed injective . To
show that A4 is N—y — closed injective, let K be
an y — closed submodule of N and let
f 1 K—A4 be an R — homomorphism
consider the following diagram .

. Now

0

—K——N

\ |
\_\ Jw fp /,:”I,af
\MiAEBB _//

Where i , j are the inclusion maps and P is the
projection map . Since M is N — y — closed
injective, then there exists an R
homomorphism @ : N—>M such that jof =
@oj. Letg=Pod, goi=Po Poj=Pojof=
f.Thus 4 is N—y — closed injective module .

1¢¢
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Recall that a submodule N of R-module M is
called a fully invarientsubmodule of M ,if for
evey endomorphis M —>M, fiN) N, see[1].
The following proposition gives a condition
under which an y — closed submodule of an y —
closed injective module is y — closed injective .

Proposition(1.6) :

Let M be a self — y — closed injective module,
then every fully invariant y — closed submodule
Nof M isself—y— closed injective.

Proof :

Suppose that M is self — y — closed injective Let
Kbe an y — closed submodule of N and let

@ : K—> N be a homomorphism . Since K is an

y — closed submodule of N and N is an y —
closed submodule of M, then K is an y-
closedsubmodule of M, by (2.1.10).

Since M is self — y — closed injective module ,
then there exists a homomorphism f : M—>M
such that jom = fojoj . Since N is fully

invariant, then S(N)c N. And f | N N—>Nis a

homomorphism and & is the restriction of
this homomorphism .

Proposition (1.7):

Let M; .M, and N be R —modules . If M; and
M, are N — y — closed injectivemodules , then
M;® M,is N—y— closed injective .

Proof :

Suppose that M; and M, are N —y — closed
injective modules . Let K be an y — closed
submodule of N and let f: K—M,;@® M:be an
R homomorphism. Now consider the
following diagram .

&L

Where i, ,i, are the inclusion maps , P; ,P, are
the projection map . Since M; and M; are N—y
— closed injective modules , then there exists
homomorphismsi; : N—M; and h, :N—>M,

M1
~
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such that P;o f= hjo i and Prof = hjo i .
Define h: N>M, @M, as follows h(n) =
(h(n),hy(m)), ne N . To show that f'= hoi . Let
ke K ,thenflk) = (m;,m;) , where m;eM; and
mye M. hoi(k) = h(i(k)) = (hi(i(k)),h:(i(k))) =
(P;oflk), Pyoflk)) = (m;,m;) .Thus M; @ Msis N
—y —closed injective module .

Proposition (1.8) :

Let M be an R — module, and let 4 be an y —
closed submodule of M. If 4 is M —y — closed
injective module , then 4 is a direct summand of
M.

Proof :

Assume that A4 is M — y — closed injective
and let /: A—> A4 be the identity map Since A4 is
M — y — closed injective module , then there
exists a homomorphism f : M—>A4 such that
I=foi.Claimthat M = ker f® A. To show that
, let xe M, then one can easily show that x —
fix)eker f. Thus x =f{x) + (x —fix)) €4 + kerf

To show that 4 Nker f= 0, let xe ANker f, so
f(x) = 0. But f(x) = x, therefore x =0 .Thus 4 is
a direct summand of M .

Recall that a module M is called a CLS-
module if every y-closed submodule is a direct
summand.

The following proposition gives a
characterization of CLS — module in terms of y
— closed injective modules .

Proposition (1.9) :

Let M be an R — module, then the following
statements are equivalent .
1- M is a CLS — module .
2- Every module is M — y — closed
injective module .
3- Every y — closed submodule of M is M
—y—closed injective module .
Proof :
O =0
Let M; be an R — module , let 4 be an y —
closed submodule ofM and let
o : A—>M; be an R — homomorphism.Since 4
is an y — closed submodule of M and M is CLS,
then 4 is a direct summand of M . So M =

A® A’ for some submodule A'of M . Define
B M— M, as follows .
a(x) ify=0

Blx+y)=

0 otherwise

¢o
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Where xe 4 and ye A' Hence j extends to @ .
(2) > (3) Itisclear.
(3) = (1) It is follow by proposition(1.8) .

Before we give the next proposition we need the
following definitions.

Recall that an R — module M is called directly
finite if fo g = Iy, implies that gof'= 1y, for all
f,g€End (M), see[2].

Recall that an R — module M is said to be
co — hopfian if every monomorphism f:M — M
is an isomorphism , see [6] .

Proposition (1.10) :

An y — closed injectiveR — module M is directly
finite if and only if it is co — hopfian .

Proof :

=) Let f: M—M be a monomorphism and
let 1:M—>M be the identity map . Since M is
an y — closed submoduleof M and M is y —
closed injective, then there exists a
homomorphism g : M — M such that gof= I.
But M is directly finite, therefore fog = I}, and
hence f is an isomorphism .Thus M is co —
hopfian .

&) Let f, g M—>M be an R -
homomorphism such that gof'= I, , we want to
show that fog =1, . Since gof= Iy, then f is
one to one. But M is co — hopfian, therefore f'is
an isomorphism . Claim that g is one to one, to
show that . Let g(m;) = g(m;) , m;, mye M. Since
fis on — to, then m; = f{(x1), my = f(x>) X1, X2 M.
So g(f(x1)) = g(f(x»)) and hence m; = m, One can
easily show that f og = [}, .Thus M is directly
finite.

Theorem (1.11) :

Let M =M, @® M, be an R — module such that
M; is nonsingular and every submodule of M
isomorphic to an y — closed submodule of M is
itself y — closed in M . If for every y — closed
submoduleN of M such that NIMM; = 0, there
exists a submodule4 of M such that M =M, ® A4
and Nc A4 , then M;is M, — y — closed injective .
Proof :

Let K be an y —closed submodule of M,
and let f: K— M, be an R — homomrphism. Let
H={-flky+k ke K}andlet g: K—>Hbea
map defined by g (k) = - (k) + k ,¥ke K . One
can casily show that g is an isomorphism . By
the first isomorphism theorem % =M, . Since

2
M, is nonsingular , then M, is any — closed
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submodule of M. But K is any — closed
submoduleof M,, therefore K is an y — closed
submodule of M. But K=H, therefore H is an

y — closed submoduleof M . Claim that HNM,
=0 . To show this, let xe HNM;, so x=-flk) +
k, where keM,.So x+ flk)=keM,NM,
and hence x = 0. Now by hypothesis there
exists a submodule 4 of M such that HZ A4 and

M=M,®A. Let™: M;® AM, . It is clear that
ker m=A . Let h = 7r|M2:M2_>M1.Now
hoi(k) = h (k) = m(k) = n(fik) — k) +h),
=7(f(k)) = fk) . Thus ho i=f .

We end
proposition.

this section by the following

Proposition(1.12) :

Let M be a self — y — closed injective module
and let K be an y — closed submodule of M. If K
is isomorphic to a direct summand of M, then K
is a direct summand of M .

Proof :

Suppose thatM is a self — y — closed injective
module and K be an y — closed submodule of
Msuch that K is isomorphic to a direct summand
B of M . Then there exists an isomorphism
o: K—>Bbe.Since M is self — y — closed
injective module and B is a direct summand of
M, then B is M — y — closed injective .So there
exists a homomorphism f : M— B such that a

= Boi . Claim that M = K® kerf .To verify that.
For every x € M, there exists y € K such that £(x)
=a(y) = (). Since x —ye€ker ff,thenx=y+ (x
—y) €K+ ker f . Thus M = K + kerf .To show
Knker p =0, let xe KNker f3, so p(x) = 0. But

S(x) = a(x). Hence x = 0 . Thus M = K@ kerf.

2. Chain condition on y-closed submodules.
Definition (2.1)
An R —module M is said to have the ascending
chain condition (briefly ACC) on y — closed
submodules if every ascending chain 4, c A4, c
.. of y — closed submodules of M is finite.
That is, there exists ke Z . such that 4, = A4, ,
foralln>rk.

Definition (2.2)

An R — module M is said to have the
descending chain condition (briefly DCC) on y —
closed submodules if every descending chain
A;oA;> ... of y—closed submodule of M is

e
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finite. That is, there exists k€ Z . such that A4,=
Apforalln>k.

Remarks and examples (2.3)

1- Every noetherain (respectively ,artinian )
module satisfies (respectively DCC) on y —
closed submoduls . For example , consider the
module Zs as Z — module has ACC (respectively
DCC) on y — closed submodules .

2- Every uniform module satisfies ACC
(respectively DCC) on y — closed submoduls.
For example ,the module Z as Z — module has

ACC (respectively DCC) on y — closed
submodules .
3- Every singular module satisfiesACC

(respectively DCC) on y — closed submoduls.For
example ,Z,as a Z — module .
4- Consider the module @;cxZsas Z, — module

. One can easily show that Bien Zoas Z,

—module does not satisfies ACC and DCC on y
— closed submodule .
5- If M satisfies ACC (respectively DCC) on

closed submoduls, then M satisfies ACC
(respectively DCC) on y — closed
submoduls.The converse is true M is
nonsingular .

The following example show that the converse
is not true in general.

Consider the module @;exZ, as Z — module .
Clearly that @;epnZ; is singular and hence

satisfies ACC and DCC ony — closed submodule
by (3) . But one can easily show that &;cxZ,

not satisfies ACC (DCC) on closed submodule.

Proposition (2.4)

Let M = M,EM,be an R — module . If M
satisfies ACC on y — closed submodules, then M,
satisfies ACC on y — closed submodules .

Proof :

Let A, A>c .., be ascending chain of y—closed
M,@M; My M
A4; DM, A MY
by [7], then 4;@® M, is an y—closed submodule
of Mi@M,= M, by (2.1.20) for each ie Z, .
So we have an ascending chain
AeM,cA®M,c... , of y closed
submodules of M and hence there exists ke Z,
such that A4,®M, = A,® M,%n > k .Thus
A,=4; .

submodules of M. Since
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Proposition (2.5)

Let M be an R- module and let 4 be an y —
closed submodule of M. If M satisfies ACC
(respectively DCC) on y — closed submodule,
then 4 satisfies ACC (respectively DCC) on y —
closed submodule .

Proof :
Let M satisfies ACC on y — closed submodule
and let 4, A,c ... , be ascending chain of y —

closed submodule of A4 . Since 4 is an y — closed
submodule of M, then 4; is an y — closed
submodule of M and hence
A;cA;c ..., be ascending chain of y — closed
submodule of M .So there exists £k €Z. such
that An: Ak , Wn>k.

By the same way we can prove the theorem for
DCC on y — closed submodule .

Proposition (2.6)
Let M be an R- module and. If M satisfies
ACC (respectively DCC) on y — closed

M
submodules, then; satisfiesACC (respectively

DCC) on y-—closed submodules.
Proof :
Suppose that M satisfies ACC on y — closed

By B; )
submodule and let Ig Ig ..., be ascending

M
chain of y — closed submodules of I , then B;

is an y — closed submodule of M for each ie Z.,
by (2.1.5-2) . Hence B, B:c ... , be ascending
chain of y — closed submodule of M. So there
exists k€ Z. such that B, = B, ,%n > k. Thus

E By
T=—= wn>k.
A

i
Using the same argument one can prove the
theorem for DCC on y — closed submodules .

Proposition (2.7)
Let M be an R — module, then M satisfies
ACCon y — closed submodules if and only if

M
7 satisfies ACC on y — closed submodules, for

every y — closed submoduled of M .
Proof :
=) It is clear by proposition (2.6).

M
<& )suppose that 7 satisfies ACC of y —

for every y — closed
... , be

closed submodules,
submoduled of M and let 4,c4.c

¢V
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ascending chain of y — closed submodules of
M . Since 4;,cA; and 4; is an y — closed

A.
submodule in M for each i€ Z, , then ﬂ—l is an
1

y — closed submodule of n Jforeach i €Z, .
1

Thus we have the following ascending chain
A 4z
—Cc—cC...

M
- of y — closed submodules of —.
Ay Ay

Ay
1

submodules, then there exists k€ Z, such that

An  Ag .
— = — for each n > k. It is follow that 4, = 4,
Ay Ay

foreachn>k.

Since satisfies ACC on y closed

Proposition (2.8)

Let M be an R — module such that the sum of
any two y — closed submodules of M is again an
y — closed submodule . If 4 is an y — closed

M
submodule of M such that 4 and 1 satisfies

ACC (respectively, DCC ) on y — closed
submodules, then M satisfies ACC
(respectively, DCC') on y — closed submodules.
Proof :

Assume that B, B,c ..., 1s an ascending
chain of y — closed submodules of M , then
BiNA is an y — closed submodule of 4, %ie Z.,.
Since B; and 4 are y — closed submodules of M
, then by our assumption B+ A isany —

B, +4

i

closed submodule of M and hence isany

— closed submodule of 1

Now consider the following two ascending

M
chains of y — closed submodules of A4 and "

respectively BnAcB,nN4Ac ... , and
B, +A B,+A _
a1 - a c ... .ButA4and satisfies

ACC on y — closed submodules Therefore there
exists k;, ke Z. such that B,N A= By, NA, ¥n>

BptA BistA
k] and =

,%n > kyand hence B, +

A=B,+A4.,.%n>k,.

Let k=max { k;, k;} ,so B,NA=BNA, Wn
>kand B,+A4=B;,+ A,%n>k . Now,¥n>
kB, = B,M\(B, +A4) = B,M(B, +A4) =B; + (B,NA4) =
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By +( BiNA) =B, . Thus M satisfies ACC on y —

closed submodules .
By the same way we can prove the proposition
for DCC on y — closed submodules .

Proposition (2.10)
Let M be an R — module and let 4,,4,,...4,

be y— closed submodules of M, if ;_ is satisfies
L

DCC on y — closed submodules, for each i =

1,2,...,n , then satisfies DCC

Ay NAzN...NAL
on y — closed submodules .

Proof :
M . .
Let s satisfies DCC on y — closed
i
submodules . Since 4; is an y — closed

M
submodules of M ,then y is nonsingular for
i

M
each i = 12,...,n .so A_ satisfies DCC on y —
i

M
closed submodules. Thus — satisfies DCC on
i

M
closed submodules. Thus —_—
Ay NAzN..NAY
satisfies DCC on closed submodules, by
theorem (3.2.9) . Hence satisfies

A3 NAxN...NAp
DCCon y - closed submodules .

Proposition (2.11)

Let M = Rm;+Rms+...+Rm, be an R — module
such that Rm; is an y — closed submodule of M,
foreachi=1,2,...,n. If M satisfies DCCon y—

closed submodule, then satisfies DCC

R
nn (M)
on y — closed submodule.

Proof :

Let M = Rm;+Rmy+...+Rm, , where m
Mo,....m,eM. For each i = 1,2,....n . Let @,
:R—> Rm; be a map define as follows
@, (r)=rm;, YreR . It is clear that &; is an
epimorphism. By the first isomorphism

R

SRm;Wi=12,...n.

HET‘P{
But ker®; ={ reR :@(r) = 0} = ann (m;) , So

R
—— = Rm; . Since M satisfies DCC on
ann (m,)

y —closed submodule, then Rm; satisfiesDCC on
y — closed submodules, ¥i = 1,2,....n, by (2.5).

TEA
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Since by [9],proposition(2.3-4), p.38 lann( M) =
ann(m)Nann(mz) N Nann(m,) , then

satisfies DCC on y—closed submodule,
anr (M)
by proposition (2.10) .
The following proposition gives a
characterization of rings with chain condition on
y —closed ideals.

Proposition (2.12)
Let R be a ring, then the following statements
are equivalent.

@) R satisfies ACC on y — closed ideals .

I
2) " Satisfies ACC on y — closed ideals, for
every y —closed ideal A4 of R.
Proof :
(D) =>(2) It is clear by proposition (3.2.6) .
@ <=0

Let4,cA>c ..., be ascending chain of
y—closed ideals of R . Since 4,cAand A4; is

an y — closed ideals in R for each i€ Z, , then
A; R
—L isan y — closed in — for each ie Z. .[8].
Al Al

Thus we have the following ascending chain of

I
y —closed ideals of —:
Ay

R
C... . Since o satisfies ACC ony —
1

closed ideals (by our assumption) , then there

. An  Ap
exists ke Z, such that — = —, for each n

Ay Ay
> k. It is follow that A, = A, foreachn>k.
The following proposition gives a condition
under which a direct sum of two modules
satisfies ACC is again satisfies ACC.

Proposition (2.13)

Let M; and M,;be R — modules such that ann
M; +ann M, = R, if M; and M, satisfies ACC on
y — closed submodule, then M;@® M, satisfies
ACC on y — closed submodules .

Proof :
Let 4,cA>c ... , be ascending chain of y —
closed submodules of M,® M,  Since

annM +annM, = R, then by the same way of the
prove [1,prop.4.2,CH.1], A~=C;® D;, where C;
is a submodule of M; and D;is a submodule of
M; . Since A=C,®D; be an y — closed
submodule of M;@® M,, then C; and D; are
y — closed submodule in M; and M,
respectively, by [3]. So we have two ascending
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chain of y — closed submodule of M; and M,
respectively :C;cC.c ..., be ascending chain
of y — closed submodules of M;and D;,cD;c
... , be ascending chain of y — closed
submodules of M,.Thus there exists k;, k;e Z-
such that C, = Cy,%n > k; and D, = D;,%n
>k;. Letk=max{ k;, k,} . To show 4,= A4, let
A,=C,+D,=C,ytD,, . But Vn >
kCy=Cyand ¥n > kD,=D,, , Therefore A4, = C;
+ D= Ak":-“n >k.

Proposition (2.14)
Let M =@;/M; be an R — module where I is a
finite index set.If M satisfies 4CC(respectively
DCC) on y — closed submodule, then M;
satisfies ACC(respectively DCC) on y — closed
submodules, for each i€ /. The converse is true
if every y — closed submodule of M is fully
invariant .
Proof :
=) Clear by the proposition (3.2.4) .
<) suppose that 4,c4,c ... , is an
ascending chain of y — closed submodules of M
and letz ;: M— M, be the projection maps, for
each j€J claim that 4; =0; g1(4,NM;) , to verify
this , let x €4;, then x =X; eymi, m; EM,. Since
A;is any — closed submodule of M , then by our
assumption , 4; is fully invarient and hence
7T {x) = mie ANM,. So xEB;e(4; NM;). Thus
A Bierd; M) . But®;er(4, M) C 4,
therefore Aj= @ e1(4;,NM) .
M

J
'E-'EEIM1
D efl4;NM;)
is an y — closed submodule of M; , for each i€/ .
For each i€/ we have the following ascending
chain of y — closed submodule of M;:(4,NM,;) =
4,NM)) < ..., . But M; satisfies ACC on y —
closed submodules. So for each iE/, there exists
k;e Z, such that 4,NM; = A,; NM; , ¥n > k; Letk
=maxtk; :i € 1} .So A= B;ei(4,NM) =
®; (4, NM) = A, ¥n > k . Thus M satisfies
ACC on y — closed submodules .

A;

)) then A;NM;

Since is nonsingular and

-\{_BLE[( {A I,-.IM

By the same way we can prove the proposition
for DCC on y — closed submodules .

Proposition (2.15)

¢4
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Let M be an R - module such that
M=A;+A;+... tA,, where 4; is an y — closed
submodule of M , Wi = 1,2,....n if A; satisfies
ACC (respectively, DCC) on y — closed
submodules%i = 1,2,...,n , then M satisfies ACC

(respectively , DCC) on y — closed submodules.
Proof :

By induction .
hence M satisfies
submodules .

Now, assume that is true when &k < n — /. Now
let k=n andlet B=X1A4;. SoB satisfies
ACC ony —closed subrnodules . By the second

M  B+4p B

isomorphism theorem . P TV
n n n

Since B satisfies ACC on y — closed submodules
and Bnrd, be an y — closed submodule of B,

If k=1, then M = A4; and
ACC on y closed

then satisfies ACC on y — closed

Mg
submodules, by (2.6). Thus M as R — module
satisfies ACC on y — closed submodule
Before we give our next result. We give the
following lemma.

Lemma (2.16)

Let M be an R — module and R==—— . If
an (M)

A is an y — closed submodule of M as R —
module, then A4 is an y — closed submodule of M
as R — module .
Proof :

Assume that 4 be an y — closed submodule

of M as R — module and hence " is nonsingular
M _
as R — module . Now consider I as B — module.

M _
Let m +4€Z (; ), then ann z (m+A) C.R.

Claim that anng (m+A) <. R To verify this ,
let 0 #7r € R, we want to show that there exists
r; e R suchthat O0#rr;canng (mtA4).

if reann(M ),then 0 #r=r .l € anng (m+A)
Now assume that r¢& ann( M ), then r + ann(M)
# ann(M) But anng (m+4) & R , therefore
there exists », + ann(M)eR  such that
ann (M) # r r; + ann(M) € ann g (mtA4) and

M
hence 0 # r r;eanng (m+A4) . But " is
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nonsingular as R — module , then me A4 . Thus

M _
" is nonsingular as R —module .

Proposition (2.17)
Let M be an R — module. If M satisfies ACC
( respectively , DCC ) on y —closed submodule
_ R

as R = , then M satisfies ACC (

ann(M)
respectively , DCC ) on y — closed submodule as
R —module .

Proof :

Assume that M as R — module satisfies ACC
on y — closed submodule . We want to prove that
M asR — module satisfies ACC on y — closed
submodule . Let 4;,c4,c... , be ascending
chain of y — closed submodules of M as an R —
module, so by previous lemma 4; is an y —
closed submodule as anR — module . Since M as
R — module satisfies ACC on y — closed
submodule, then there exists k€ Z, such that 4,
= A, for each n > k .Thus M as R — module
satisfies ACC on y — closed submodule.

Proposition (2.18)

Let M be a faitfull and multiplication R —
module, if R satisfies ACC(respectively DCC)
on y — closed ideals, then M satisfies ACC
(respectively, DCC) on y — closed submodules.
Proof :

Let4,cA;c ..., be descending chain of y —
closed submodules.Since M is multiplication
module , then 4= (4;: MM, ¥i = 1,2,...,n.
Clearly (4; : M) < (4, : M) < ... Since 4; is
an y — closed in M, then (4, : M) is an y — closed
in R, for each i€ Z,, by (2.1.21) But R satisfies
ACC on y — closed ideals, therefore there exist
keZ, such that (4, : M) = (4, : M) for each n >
k.Thus 4,=A4, ¥n>k.

By the same way we can prove the theorem
for ACCon y — closed submodule .
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