

ISSN: 0067-2904

On a Class of Meromorphic Multi valent Functiions Convoluted with Higher Derivat ives of Fractional Calculus Operator

Sattar Kamil Hussein*, Kassim Abdulhameed Jassim
Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq

Abstract

The main goal of this paper is to study and discuss a new class of meromorphic "func ions[which are multivalent defined by [fractional calculus operators. Coefficients estimates, radiis of satarlikeness, convexity and closed-to- convexity are studied. Also distortion and closure theorems for the class $\sum_{b}^{+}(\lambda, \mu, v, \eta, \gamma, \alpha, \beta)$ are considered.

Keywords: "Meromorphic Functions, Fractional calculus, Radius of convexity, starlikeness", convexity and c losed-to- convexity, distortion and closure theorems .

الهدف الرئيسي من هذا البحث هو دراسة ومناقثة لصنف جديد من الدوال الميرومورفية متعددة التكافؤ
المعرفة بواسطة مؤثر التقاضل الكسري, تم دراسة المعاملات التخمينية,انصاف اقطار النجمية, التحدبية و
القريبة من التحدبية. ايضا تم دراسة نظرية التشوه ونظرية الانغلاق لهذا الصنف.

1.Introduction

Let \sum_{b} "denotes the c lass of meromophic funct ion s defined by:

$$
\begin{equation*}
f(w)=w^{-b}+\sum_{i=b}^{\infty} a_{i} w^{i},(b \in \mathbb{N}) \tag{1}
\end{equation*}
$$

which are anal ytic and p -valent in the punctured unit d isk
$U^{*}=\{\mathrm{w} \in \mathbb{C}:(0<|\mathrm{w}|<1)\}$.
A function $f \in \sum_{b}$ is "said to be in the cl ass $\sum_{b}^{*}(\alpha)$ of meromorphic p-valenty starlike function(see Duren[1]) of order α if":

$$
\begin{equation*}
-\operatorname{Re}\left\{\frac{w f \prime(w)}{f(w)}\right\}>\alpha,\left(w \in U^{*},(0 \leq \alpha<b), b \in \mathbb{N}\right) . \tag{2}
\end{equation*}
$$

A function $f \in \sum_{b}$ is "sa id to be in the c lass $\sum_{b}^{k}(\alpha)$ of meromorphic b -valently convex funct ion of order α if" :

$$
\begin{equation*}
-\operatorname{Re}\left\{1+\frac{w\left(f^{\prime \prime}(w)\right)}{f^{\prime}(w)}\right\}>\alpha,\left(w \in U^{*},(0 \leq \alpha<b), b \in \mathbb{N}\right) \tag{3}
\end{equation*}
$$

In this paper, we discuss and st udy a new cl ass of meromorphic multivalent functions" b- valently conv ex functions by using of the fractional" calculus oper ators contained in

[^0]\[

$$
\begin{aligned}
& \text { الكسري } \\
& \text { ستار كامل حسين "، قاسم عبدالحميد جاسم } \\
& \text { قسم الرياضيات، كلية العلوم، جامعة بغداد، بغداد، العراق }
\end{aligned}
$$
\]

Definition (1):

$$
M_{0, w}^{\lambda, \mu, v, \eta} f(w)=\left\{\begin{array}{l}
\frac{\Gamma(\mu+v+\mathfrak{y}-\lambda) \Gamma(\mathrm{y})}{\Gamma(\mu+\mathfrak{y}) \Gamma(v+\mathfrak{y})} w^{-b+\eta+1} J_{0, w}^{\lambda, \mu, v, \eta}\left[w^{\mu+b} f(w)\right](0 \leq \lambda<1), \tag{4}\\
\frac{\Gamma(\mu+v+\mathfrak{y}-\lambda) \Gamma(\mathfrak{y})}{\Gamma(\mu+\mathfrak{y}) \Gamma(v+\mathfrak{y})} w^{-b-\eta+1} I_{0, w}^{-\lambda, \mu, \mu, \eta}\left[w^{\mu+b} f(w)\right](-\infty \leq \lambda<0)
\end{array}\right.
$$

where $J_{0, W}^{\lambda, \mu, v, \eta}$ "is the generalized fractional derivative operator of order α normalized by"

$$
\begin{equation*}
J_{0, w}^{\lambda, \mu, v, \eta} f(\mathrm{w})=\frac{1}{\Gamma(1-\lambda)} \frac{d}{d w}\left\{w^{\lambda-\mu} \int_{0}^{w} t^{\mathrm{\eta}-1}(w-t)^{-\lambda}{ }_{2} F_{1}\left(\mu-\lambda, 1-v ; 1-\lambda ; 1-\frac{t}{2}\right) f(t) d t\right\} \tag{5}
\end{equation*}
$$

($\mathrm{r} \in \mathrm{R}^{+}, \mathrm{r}>(\max \{\mathrm{o}, \mu\}-\mathrm{y})$ and $\left.(0 \leq \lambda<1), \mu, \eta \in \mathrm{R}\right)$,
where f is analytic function in a simply- connected region of the w-plane containing the origin
and the multiplicity of $(w-t)^{-\lambda}$ is removed by requiring $\log (w-t)$ to be real when $(w-t)>0$, provided
further that : $\quad(" f(\mathrm{w}))=0\left(|w|^{r}\right) \quad(\mathrm{w} \rightarrow 0)$,
and $\mathrm{I}_{0, w}^{-\lambda, \mu, v, \eta}$ is the generalized fractional integral operator of order $-\lambda(-\infty<\lambda<0)$ normalized by

$$
\begin{equation*}
\mathrm{I}_{0, w}^{\lambda, \mu, v, \eta} f(w)=\frac{w^{-\lambda-\mu}}{\Gamma(\lambda)} \int_{0}^{w} t^{\eta-1}(w-\mathrm{t})^{-(\lambda+1)}{ }_{2} F_{1}\left(\lambda+\mu,-v ; \lambda ; 1-\frac{t}{2}\right) f(t) d t \tag{7}
\end{equation*}
$$

$\left(\lambda>0, \mu, \eta \in R, i r \in R^{+}\right.$and $\left.r>(\max \{0, \mu\}-\eta)\right)$,
Where f is constrained and the multiplicity of (w-t $)^{\lambda-1}$ is removed as above and r [is given by the order estimates (6).
by using (5) and (7) it follows from

$$
\begin{equation*}
\mathrm{J}_{0, w}^{\lambda_{, j}, v, 1}(f(w))=\mathrm{J}_{0, w}^{\lambda_{, j}, \mu, v}(f(w)) \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{I}_{0, w}^{\lambda, \mu, v, 1}(f(w))=\mathrm{I}_{0, w}^{\lambda, \mu, v}(f(w)) \tag{9}
\end{equation*}
$$

where $J_{0, w}^{\lambda, \mu, v}$ and $I_{0, w}^{\lambda, \mu, v}$ are the familiar Owa -Saigo -Srivastava generalized fractional derivative and integral operators(see, e.g. ,[2] and[3] see also [4]).
Also

$$
\begin{equation*}
\mathrm{J}_{0, w}^{\lambda, \lambda, v, 1}(f(w))=\mathrm{D}_{w}^{\lambda}(f(w)), \quad(0 \leq \lambda<1) \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{I}_{0, w}^{\lambda,-\lambda, v, 1}(f(w))=\mathrm{D}_{w}^{-\lambda}(f(w)), \quad(\lambda>0) \tag{11}
\end{equation*}
$$

where D_{w}^{λ} and $\mathrm{D}_{w}^{-\lambda}$ are the familiar Owa-Saigo-Srivastana fractional derivative and integral of order λ (cf.Owa[5]; see also Srivastava and Owa [6]).
in the terms of Gamma function, we have

$$
\begin{equation*}
J_{0, w}^{\lambda, \mu, v, \eta} w^{k}=\frac{\Gamma(k+\mathfrak{\eta}) \Gamma(k+\eta-\mu+v)}{\Gamma(k+\eta-\mu) \Gamma(k+\eta-\lambda+v)} w^{k+\eta-\mu-1} \tag{12}
\end{equation*}
$$

$0 \leq \lambda<1), \mu, \eta \in R, v \in R^{+}$and $\left.k>(\max \{0, \mu\}-\eta)\right),(($
and

$$
\begin{equation*}
\mathrm{I}_{0, w}^{\lambda, \mu, v, \eta} w^{k}=\frac{\Gamma(k+\mathfrak{y}) \Gamma(k+\mathfrak{y}-\mu+v)}{\Gamma(k+\eta-\mu) \Gamma(k+\mathfrak{y}+\lambda+v)} w^{k+\mathfrak{y}-\mu-1} \tag{13}
\end{equation*}
$$

$(\lambda>0), \mu, \eta \in R, v \in R^{+}$and $\left.k>(\max \{0, \mu\}-\eta)\right) .($
By using (1),(12) and (13) in (4), we find

$$
\begin{equation*}
M_{o, W}^{\lambda, \mu, v, \eta} f(w)=w^{-b}+\sum_{i=b}^{\infty} \Gamma_{i}^{\lambda, \mu, v, \eta} a_{i} w^{i} \tag{14}
\end{equation*}
$$

Provided that

$$
(\mu+v+\eta>\lambda),(-\infty<\lambda<1)(\mu>-\eta),(\eta>0),(b \in \mathbb{N}), f \in \sum_{b}
$$

and

$$
\begin{equation*}
\Gamma_{i}^{\lambda, \mu, v, \eta}=\frac{(\mu+\eta)_{i+b}(v+\eta)_{i+b}}{(\mu+v+\eta-\lambda)_{i+b}(\mathrm{~g})_{i+b}} . \tag{15}
\end{equation*}
$$

The operator $M_{0, w}^{\lambda, \mu, v, \eta} f(w)$ reduces to the well -known Ruscheweyh derivative $D^{\lambda} f(w)$ for meromorphich univalent functions [3]
We are study a subclass of (1)def ine below

Definition (2): A function $f \in \sum_{b}$ is in the class $\sum_{b}(\lambda, \mu, v, \eta, \gamma, \alpha, \beta)$ if it satisfies the condition :

$$
\begin{equation*}
\left|\frac{\gamma\left(\frac{w\left(M_{0, w}^{\lambda, \mu, v, \eta} f(w)\right)^{q+1}}{\left(M_{0, w}^{\lambda, \mu, v, \eta} f(w)\right)^{q}}+(b+q)\right)}{\frac{w\left(M_{0, w}^{\lambda, \mu, v, \eta} f(w)\right)^{q+1}}{\left(M_{0, w}^{\lambda, \mu, v, \eta} f(w)\right)^{q}}+(2 \alpha-\gamma)}\right|<\beta, \tag{16}
\end{equation*}
$$

for som $\alpha(\mathrm{o} \leq \alpha<1), \beta(0 \leq \beta<1), \gamma(0 \leq \gamma \leq 1), q \in \mathbb{N U}\{0\}, q<b, b \in \mathbb{N},(-\infty<\lambda$
1), $(\mu+v+\eta>\lambda),(\mu>-\eta),(\eta>0)$ and $(v>-\eta)$.

The class $\sum_{b}(\lambda, \mu, v, \eta, \gamma, \alpha, \beta)$ reduces to the cl ass studied rece ntly by Darus [7].
Definition(3): Let \sum_{b}^{+}denote the subclass \sum_{b} normalized by

$$
\left(M_{0, w}^{\lambda, \mu, v, \eta} f(w)\right)^{q}=\left(\frac{(b+q-1)!}{(b-1)!}\right)(-1)^{q} w^{-b-q}+\sum_{i=b}^{\infty} \Gamma_{i}^{\lambda, \mu, v, \eta} \frac{i!}{(i-q)!} a_{i} w^{i-q},\left(a_{i} \geq 0 ;(b \in \mathbb{N})\right)
$$

and

$$
\begin{equation*}
\left(M_{0, w}^{\lambda, \mu, v, \eta} f(w)\right)^{q+1}=\frac{(b+q)!}{(b-1)!}(-1)^{q+1} w^{-b-q-1}+\sum_{i=b}^{\infty} \Gamma_{i}^{\lambda, \mu, v, \eta} \frac{i!}{(i-q-1)!} a_{i} w^{i-q-1} \tag{17}
\end{equation*}
$$

we define a new subclass $\sum_{b}^{+}(\lambda, \mu, v, \eta, \gamma, \alpha, \beta)$ by

$$
\sum_{b}^{+}(\lambda, \mu, v, \eta, \gamma, \alpha, \beta)=\sum_{b}^{+} \cap \sum_{b}(\lambda, \mu, v, \mathfrak{\eta}, \gamma, \alpha, \beta)
$$

2. Coefficient Estimates:

Theorem (1): Suppose that $f \in \sum_{p}$ and

$$
\begin{equation*}
\sum_{i=b}^{\infty} \frac{i(\gamma+\beta)+\gamma(b-\beta)+\beta(2 \alpha-q)}{i-q} \Gamma_{i}^{\lambda, \mu, v, \eta} \frac{i!}{(i-q-1)!} a_{i} \tag{18}
\end{equation*}
$$

$\leq \beta(b+\mathrm{q}+\gamma-2 \alpha)) \frac{(b+q-1)!}{(b-1)!}$,
Where $\Gamma_{i}^{\lambda, \mu, v, \eta}$ is normalized by (15) and the cond itions with (16) hold.
Th en $f \in \sum_{b}(\lambda, \mu, v, \mathrm{y}, \gamma, \alpha, \beta)$.
Proof: "Let use suppose that inequality (18) is true.
Further assume that"

$$
\begin{aligned}
\Omega(f)=\left|\gamma\left(w\left(M_{0, w}^{\lambda, \mu, v, \eta} f(w)\right)^{q+1}\right)+\gamma(b+q)\left(M_{0, w}^{\lambda, \mu, v, \mathrm{\eta}} f(w)\right)^{q}\right| \\
-\beta\left|w\left(M_{0, w}^{\lambda, \mu, v, \eta} f(w)\right)^{q+1}+(2 \alpha-\gamma)\left(M_{0, w}^{\lambda, \mu, v, \eta} f(w)\right)^{q}\right| \leq 0
\end{aligned}
$$

By using (14), we find that

$$
\begin{aligned}
& \Omega(f)=\left\lvert\, \frac{\gamma(b+q)!}{(b-1)!}(-1)^{q+1} w^{-b-q}+\sum_{i=b}^{\infty} \gamma \Gamma_{i}^{\lambda, \mu, v, \eta} \frac{i!}{(i-q-1)!} a_{i} w^{i-q}\right. \\
& \left.+\gamma(b+q) \frac{(b+q-1)!}{(b-1)!}(-1)^{q} w^{-b-q}+\sum_{i=b}^{\infty} \gamma(b+q) \Gamma_{i}^{\lambda, \mu, v, \eta} \frac{i!}{(i-q)!} a_{i} w^{i-q} \right\rvert\, \\
& -\beta \left\lvert\, \frac{(b+q)!}{(b-1)!}(-1)^{q+1} w^{-b-q}+\sum_{i=b}^{\infty} \Gamma_{i}^{\lambda, \mu, v, \eta} \frac{i!}{(i-q-1)!} a_{i} w^{i-q}\right. \\
& \left.+(2 \alpha-\gamma) \frac{(b+q-1)!}{(b-1)!}(-1)^{q} w^{-b-q}+\sum_{i=b}^{\infty}(2 \alpha-\gamma) \Gamma_{i}^{\lambda, \mu, v, \eta} \frac{i!}{(i-q)!} a_{i} w^{i-q} \right\rvert\, \leq 0 \\
& =\left\lvert\, \frac{\gamma(b+q)(b+q-1)!}{(b-1)!}(-1)^{q}(-1)^{1} w^{-b-q}+\sum_{i=b}^{\infty} \gamma \Gamma_{i}^{\lambda, \mu, v, \mathrm{\eta}} \frac{i!}{(i-q-1)!} a_{i} w^{i-q}\right. \\
& \left.+\gamma(b+q) \frac{(b+q-1)!}{(b-1)!}(-1)^{q} w^{-b-q}+\sum_{i=b}^{\infty} \gamma(b+q) \Gamma_{i}^{\lambda, \mu, v, \eta} \frac{i!}{(i-q)(i-q-1)!} a_{i} w^{i-q} \right\rvert\, \\
& -\beta \left\lvert\, \frac{(b+q)(b+q-1)!}{(b-1)!}(-1)^{q}(-1)^{1} w^{-b-q}+\sum_{i=b}^{\infty} \Gamma_{i}^{\lambda, \mu, v, \eta} \frac{i!}{(i-q-1)!} a_{i} w^{i-q}\right. \\
& \left.+(2 \alpha-\gamma) \frac{(b+q-1)!}{(b-1)!}(-1)^{q} w^{-b-q}+\sum_{i=b}^{\infty}(2 \alpha-\gamma) \Gamma_{i}^{\lambda, \mu, v, \eta} \frac{i!}{(i-q)(i-q-1)!} a_{i} w^{i-q} \right\rvert\, \leq 0
\end{aligned}
$$

$$
\begin{align*}
& =\left[\left|\sum_{\mathrm{i}=\mathrm{b}}^{\infty}\left(\gamma+\frac{\gamma(b+q)}{(i-q)}\right) \Gamma_{i}^{\lambda, \mu, v, \eta} \frac{i!}{(i-q-1)!} a_{i} w^{i-q}\right|\right. \\
& -\beta\left(\left\lvert\,-(b+q+\gamma-2 \alpha) \frac{(b+q-1)!}{(b-1)!} w^{-b-q}\right.\right. \\
& \left.\left.\left.+\sum_{i=b}^{\infty}\left(1+\frac{2 \alpha-\gamma}{i-q}\right) \Gamma_{i}^{\lambda, \mu, v, \eta} \frac{i!}{(i-q-1)!} a_{i} w^{i-q} \right\rvert\,\right)\right] \leq 0 \\
& \sum_{\mathrm{i}=\mathrm{b}}^{\infty}\left(\gamma+\frac{\gamma(b+q)}{(i-q)}\right) \Gamma_{i}^{\lambda, \mu, \nu, \eta} \frac{\substack{i=b \\
i!}}{(i-q-1)!}\left|a_{i}\right| r^{i} \\
& -\beta\left(\left|-(b+q+\gamma-2 \alpha) \frac{(b+q-1)!}{(b-1)!} w^{-b}\right|\right. \\
& \left.-\left|\sum_{i=b}^{\infty}\left(\frac{i-q+2 \alpha-\gamma}{i-q}\right) \Gamma_{i}^{\lambda, \mu, v, \eta} \frac{i!}{(i-q-1)!} a_{i} w^{i}\right|\right) \\
& \sum_{\mathrm{i}=\mathrm{b}}^{\infty}\left(\gamma+\frac{\gamma(b+q)}{(i-q)}\right) \Gamma_{i}^{\lambda, \mu, v, \eta} \frac{i!}{(i-q-1)!}\left|a_{i}\right| r^{i}-\beta(b+q+\gamma-2 \alpha) \frac{(b+q-1)!}{(b-1)!} r^{-b} \\
& +\sum_{i=b}^{\infty} \beta\left(\frac{i-q+2 \alpha-\gamma}{i-q}\right) \Gamma_{i}^{\lambda, \mu, \nu, \eta} \frac{i!}{(i-q-1)!}\left|a_{i}\right| \mathrm{r}^{\mathrm{i}} \leq 0 \\
& \sum_{\mathrm{i}=\mathrm{b}}^{\infty} \frac{\gamma(\mathrm{i}-\mathrm{q})+\gamma(\mathrm{b}+\mathrm{q})}{\mathrm{i}-\mathrm{q}} \Gamma_{i}^{\lambda, \mu, v, \mathrm{r}} \frac{i!}{(i-q-1)!} a_{i}-\beta(b+q+\gamma-2 \alpha) \frac{(b+q-1)!}{(b-1)!}+ \\
& \sum_{i=b}^{\infty} \beta\left(\frac{i-q+2 \alpha-\gamma}{i-q}\right) \Gamma_{i}^{\lambda, \mu, v, \eta} \frac{i!}{(i-q-1)!} a_{i} \leq 0 \\
& \sum_{i=b}^{\infty}\left(\frac{i(\gamma+\beta)+\gamma(b-\beta)+\beta(2 \alpha-q)}{i-q}\right) \Gamma_{i}^{\lambda, \mu, v, \eta} \frac{i!}{(i-q-1)!} a_{i} \\
& \leq(\beta(b+q+\gamma-2 \alpha)) \frac{(b+q-1)!}{(b-1)!} \text {. } \tag{19}
\end{align*}
$$

Since the above ineguality holdy for every $\mathrm{r},(0<\mathrm{r}<1)$. Letting $\mathrm{r} \rightarrow 1^{-}$in the(19) we obtain that $\Omega(f) \leq 0$, hence $f \in \sum_{b}(\lambda, \mu, v, \eta, \gamma, \alpha, \beta)$.
Theorem (2): If $f \in \sum_{b}^{+}$, then $f \in \sum_{p}^{+}(\lambda, \mu, v, \mathfrak{\jmath}, \gamma, \alpha, \beta)$ if and only

$$
\begin{align*}
& \sum_{i=b}^{\infty}\left(\frac{i(\gamma+\beta)+\gamma(b-\beta)+\beta(2 \alpha-q)}{i-q}\right) \Gamma_{i}^{\lambda, \mu, v, \eta} \frac{i!}{(i-q-1)!} a_{i} \\
& \quad \leq(\beta(b+q+\gamma-2 \alpha)) \frac{(b+q-1)!}{(b-1)!} \tag{20}
\end{align*}
$$

where $\Gamma_{i}^{\lambda, \mu, v, \eta}$ is normalized by (15) and every the parameters are constrained as in (1) Theorem : "In the Theorem (1), it is sufficient to prove" the "on ly if " part. proof Let us suppose that $f \in \sum_{b}^{+}(\lambda, \mu, v, \eta, \gamma, \alpha, \beta)$.
Then

$$
\begin{aligned}
& \quad\left|\frac{\gamma\left(\frac{w\left(M_{0, w}^{\lambda, \mu, v, \eta} f(w)\right)^{q+1}}{\left(M_{0, w}^{\lambda, \mu, v, \eta} f(w)\right)^{q}}+(b+q)\right)}{\frac{w\left(M_{0, w}^{\lambda, \mu, v, \eta} f(w)\right)^{q+1}}{\left(M_{0, w}^{\lambda, \mu, v, \eta} f(w)\right)^{q}}+(2 \alpha-\gamma)}\right|<\beta, \\
& =\left|\frac{\left.\sum_{i=b}^{\infty} \frac{\gamma(i+b)}{i-q}\right) \Gamma_{i}^{\lambda, \mu, v, \eta} \frac{i!}{(i-q-1)!} a_{i} w^{i+b}}{\left.(2 \alpha-\gamma-b-q) \frac{(b+q-1)!}{(b-1)!}+\sum_{i=b}^{\infty} \frac{i-q+2 \alpha-\gamma}{i-q}\right) \Gamma_{i}^{\lambda, \mu, v, \eta} \frac{i!}{(i-q-1)!} a_{i} w^{i+b}}\right|<\beta .
\end{aligned}
$$

Since $\operatorname{Re}(w) \leq|w|$ for every w, it follows that

$$
\operatorname{Re}\left\{\frac{\sum_{i=b}^{\infty}\left(\frac{\gamma(i+b)}{i-q}\right) \Gamma_{i}^{\lambda, \mu, \nu, \eta} \frac{i!}{(i-q-1)!} a_{i} w^{i+b}}{(b+q+\gamma-2 \alpha) \frac{(b+q-1)!}{(b-1)!}-\sum_{i=b}^{\infty}\left(\frac{i-q+2 \alpha-\gamma}{i-q}\right) \Gamma_{i}^{\lambda, \mu, \nu, \eta} \frac{i!}{(i-q-1)!} a_{i} w^{i+b}}\right\}<\beta .
$$

letting $\mathrm{r} \rightarrow 1^{-}$, through real values, we get the result (20).

3. Distortion Theorems

"The distortion property for the functions in the class $\sum_{b}^{+}(\lambda, \mu, v, \eta, \gamma, \alpha, \beta)$ is contained in Theorem (3): Let $f \in \sum_{b}^{+}(\lambda, \mu, v, \eta, \gamma, \alpha \beta$,).Then

$$
\begin{gathered}
\frac{1}{|w|^{b}}-\frac{(\beta(b+q+\gamma-2 \alpha)) \frac{(b+q-1)!}{(b-1)!}}{\frac{b(\gamma+\beta)+\gamma(b-\beta)+\beta(2 \alpha-q)}{b-q}\left(\frac{b!}{(b-q-1)!}\right)}|w|^{b} \leq\left|M_{0, w}^{\lambda, \mu, v, \eta}(f(w))\right| \\
\quad \leq \frac{1}{|w|^{b}}+\frac{(\beta(b+q+\gamma-2 \alpha)) \frac{(b+q-1)!}{(b-1)!}}{\frac{b(\gamma+\beta)+\gamma(b-\beta)+\beta(2 \alpha-q)}{b-q}\left(\frac{b!}{(b-q-1)!}\right)}|w|^{b}
\end{gathered}
$$

For every the parameters are constrianed in the Theorem (1).
Proof: Since $f \in \sum_{b}^{+}(\lambda, \mu, v, \mathrm{y}, \gamma, \alpha, \beta)$.
In the of Theorem (2), we have

$$
\begin{equation*}
\sum_{i=b}^{\infty} a_{i} \Gamma_{i}^{\lambda, \mu, v, \eta} \leq \frac{(\beta(b+q+\gamma-2 \alpha)) \frac{(b+q-1)!}{(b-1)!}}{\frac{b(\gamma+\beta)+\gamma(b-\beta)+\beta(2 \alpha-q)}{b-q}\left(\frac{b!}{(b-q-1)!}\right)} \tag{21}
\end{equation*}
$$

Now
$\left|M_{0, w}^{\lambda, \mu, v, \eta} f(w)\right| \leq \frac{1}{|w|^{b}}+\sum_{i=b}^{\infty} a_{i} \Gamma_{i}^{\lambda, \mu, v, \eta}|w|^{i} \leq \frac{1}{|w|^{b}}+|w|^{b} \sum_{i=b}^{\infty} a_{i} \Gamma_{i}^{\lambda, \mu, v, \eta}$.
By using (21), we get

$$
\left|M_{0, w}^{\lambda, \mu, v, \eta} f(w)\right| \leq \frac{1}{|w|^{b}}+\frac{(\beta(b+q+\gamma-2 \alpha)) \frac{(b+q-1)!}{(b-1)!}}{\frac{b(\gamma+\beta)+\gamma(b-\beta)+\beta(2 \alpha-q)}{b-q}\left(\frac{b!}{(b-q-1)!}\right)}|w|^{b}
$$

Also
$\left|M_{0, w}^{\lambda, \mu, v, \eta} f(w)\right| \geq \frac{1}{|w|^{b}}-\sum_{i=b}^{\infty} a_{i} \Gamma_{i}^{\lambda, \mu, v, \eta}|w|^{i} \geq \frac{1}{|w|^{b}}-|w|^{b} \sum_{i=b}^{\infty} a_{i} \Gamma_{i}^{\lambda, \mu, v, \eta}$.
Also use of (21), we obtain

$$
\left|M_{0, w}^{\lambda, \mu, v, \mathrm{\eta}} f(w)\right| \geq \frac{1}{|w|^{b}}-\frac{(\beta(b+q+\gamma-2 \alpha)) \frac{(b+q-1)!}{(b-1)!}}{\frac{b(\gamma+\beta)+\gamma(b-\beta)+\beta(2 \alpha-q)}{b-q}\left(\frac{b!}{(b-q-1)!}\right)}|w|^{b}
$$

The proof is complete.
4. Radii of Starlikeness, Convexity,close -to-convex for the class $\sum_{\mathbf{b}}^{+}(\boldsymbol{\lambda}, \mu, \boldsymbol{v}, \eta, \gamma, \boldsymbol{\alpha}, \boldsymbol{\beta})$:

Theorem (4):If $f \in \sum_{b}^{+}(\lambda, \mu, v, \mathfrak{\eta}, \gamma, \alpha, \beta)$, then f is meromorphically
p-valent starlike of order $\psi(0 \leq \psi<b)$ in $|w|<\mathrm{R}_{1}$, where

$$
\begin{equation*}
\mathrm{R}_{1}=\inf f_{i}\left\{\frac{(b-\psi)\left(\frac{i(\gamma+\beta)+\gamma(b-\beta)+\beta(2 \alpha-q)}{i-q}\right) \Gamma_{i}^{\lambda, \mu, v, \eta} \frac{i!}{(i-q-1)!)}}{(i+2 b-\psi)(\beta(b+q+\gamma-2 \alpha)) \frac{(b+q-1)!}{(b-1)!}}\right\} \frac{1}{i+b}, \tag{22}
\end{equation*}
$$

For every the parameters are constrained in the Theorem (1)
Proof: It is sufficient to show that, For $(0 \leq \psi<b)$:

$$
\begin{equation*}
\left|\frac{w\left(f^{\prime}(w)\right)}{f(w)}+b\right| \leq(b-\psi) \tag{23}
\end{equation*}
$$

That is

$$
\left|\frac{w\left(f^{\prime}(w)\right)+b f(w)}{f(w)}\right|
$$

$$
\begin{gathered}
=\left|\frac{-b w^{-b}+\sum_{i=b}^{\infty} i a_{i} w^{i}+b w^{-b}+\sum_{i=b}^{\infty} b a_{i} w^{i}}{w^{-b}+\sum_{i=b}^{\infty} a_{i} w^{i}}\right|=\left|\frac{\sum_{i=b}^{\infty}(i+b) a_{i} w^{i+b}}{1+\sum_{i=b}^{\infty} a_{i} w^{i+b}}\right| \\
\leq \frac{\sum_{i=b}^{\infty}(i+b) a_{i}|w|^{i+b}}{1-\sum_{i=b}^{\infty} a_{i}|w|^{i+b}} \leq(b-\psi)
\end{gathered}
$$

or equivalently

$$
\sum_{i=b}^{\infty}\left(\frac{i+2 b-\psi}{b-\psi}\right) a_{i}|w|^{b+i} \leq 1
$$

It is enough to consider

$$
\begin{align*}
& |w|^{b+i} \leq\left\{\frac{(b-\psi) \frac{i(\gamma+\beta)+\gamma(b-\beta)+\beta(2 \alpha-q)}{i-q} \Gamma_{i}^{\lambda, \mu, v, \eta} \frac{i!}{(i-q-1)!}}{(i+2 b-\psi)(\beta(b+q+\gamma-2 \alpha)) \frac{(b+q-1)!}{(b-1)!}}\right\} . \\
& \text { Therefore, }
\end{align*}
$$

Setting $|\mathrm{w}|=\mathrm{R}_{1}(\lambda, \mu, v, \mathrm{y}, \gamma, \alpha, \beta)$ in (24), we obtain the radius of starlikeness."
Theorem (5): Let $f \in \sum_{b}^{+}(\lambda, \mu, v, \mathrm{n}, \gamma, \alpha, \beta)$.Then f is meromrphically
p-valently convex of order $\psi(0 \leq \psi<b)$, in $|\mathrm{w}|<\mathrm{R}_{2}$, where

$$
\begin{equation*}
\mathrm{R}_{2}=\inf _{i}\left\{\frac{b(b-\psi)^{\frac{i(\gamma+\beta)+\gamma(b-\beta)+\beta(2 \alpha-q)}{i-q}} \Gamma_{i}^{\lambda \mu \mu, \nu, \eta} \frac{i!}{(i-q-1)!}}{i(i+2 b-\psi)(\beta(b+q+\gamma-2 \alpha))^{\frac{(b+q-1)!}{(b-1)!}}}\right\} \frac{1}{i+b} . \tag{25}
\end{equation*}
$$

proof: Let $f \in \sum_{b}^{+}(\lambda, \mu, v, \eta, \gamma, \alpha, \beta)$. Then by Theorem (1)

$$
\begin{aligned}
& \sum_{i=b}^{\infty} \frac{\left(\frac{i(\gamma+\beta)+\gamma(b-\beta)+\beta(2 \alpha-q)}{i-q}\right) \Gamma_{i}^{\lambda, \mu, v, \eta} \frac{i!}{(i-q-1)!} a_{i}}{(\beta(b+q+\gamma-2 \alpha)) \frac{(b+q-1)!}{(b-1)!}} \leq 1 \\
& \left|\frac{w\left(f^{\prime \prime}(w)\right)}{f^{\prime}(w)}+(1+b)\right| \leq(b-\psi)
\end{aligned}
$$

That is

$$
\left\lvert\, \begin{gathered}
\left|\frac{-b(-b-1) w^{-(b+1)}+\sum_{i=b}^{\infty} i(i-1) a_{i} w^{i-1}-b(1+b) w^{-(b+1)}+\sum_{i=b}^{\infty} i(1+b) a_{i} w^{i-1}}{-b w^{-(b+1)}+\sum_{i=b}^{\infty} i a_{i} w^{i-1}}\right| \\
=\left|\frac{\sum_{i=b}^{\infty} i(i+b) a_{i} w^{i-1}}{-b w^{-(b+1)}+\sum_{i=b}^{\infty} i a_{i} w^{i-1}}\right| \leq \frac{\sum_{i=b}^{\infty} i(i+b) a_{i}|w|^{i+b}}{b-\sum_{i=b}^{\infty} i a_{i}|w|^{i+b}} \leq(b-\psi)
\end{gathered}\right.
$$

or equivalently

$$
\sum_{i=b}^{\infty} \frac{i(i+2 b-\psi)}{b(b-\psi)} a_{i}|w|^{i+b} \leq 1
$$

It is enough to consider

$$
|\mathrm{W}|^{i+b} \leq\left\{\frac{b(b-\psi)\left(\frac{i(\gamma+\beta)+\gamma(b-\beta)+\beta(2 \alpha-q)}{i-q} \Gamma_{i}^{\lambda \mu, v, \eta} \frac{i!}{(i-q-1)!}\right)}{i(i+2 b-\psi)(\beta(b+q+\gamma-2 \alpha)) \frac{(b+q-1)!}{(b-1)!}}\right\} .
$$

Therefore,

$$
\begin{equation*}
|\mathrm{w}| \leq\left\{\frac{b(b-\psi)\left(\frac{i(\gamma+\beta)+\gamma(b-\beta)+\beta(2 \alpha-q)}{i-q} \Gamma_{i}^{\lambda, \mu, v, \eta} \frac{i!}{(i-q-1)!}\right.}{i(i+2 b-\psi)\left(\beta(b+q+\gamma-2 \alpha) \frac{(b+q-1)!}{(b-1)!}\right.}\right\}^{\frac{1}{i+b}} \tag{26}
\end{equation*}
$$

Setting $|\mathrm{w}|=\mathrm{R}_{2}(\lambda, \mu, v, \eta, \gamma, \alpha, \beta)$ in (26), we obtian the radius of convexity.
Theorem (6): Let $f \in \sum_{b}^{+}(\lambda, \mu, v, \eta, \gamma, \alpha, \beta)$.Then f is meromorphically p-valently close-to-convex of order $\psi(0 \leq \psi<b)$, in $|\mathrm{w}|<\mathrm{R}_{3}$, where

$$
\begin{equation*}
\mathrm{R}_{3}=\mathrm{inf}_{i}\left\{\frac{(b-\psi) \frac{i(\gamma+\beta)+\gamma(b-\beta)+\beta(2 \alpha-q)}{i-q} \Gamma_{i}^{\lambda, \mu, v, \eta} \frac{i!}{(i-q-1)!}}{i\left(\beta(b+q+\gamma-2 \alpha) \frac{1}{(b+q-1)!}\right.}\right\}^{(b-1)!} . \tag{27}
\end{equation*}
$$

Proof: Let $f \in \sum_{b}^{+}(\lambda, \mu, v, \eta, \gamma, \alpha, \beta)$. Then by Theorem (1)

$$
\sum_{i=b}^{\infty} \frac{\left(\frac{i(\gamma+\beta)+\gamma(b-\beta)+\beta(2 \alpha-q)}{i-q}\right) \Gamma_{i}^{\lambda, \mu, v, \eta} \frac{i!}{(i-q-1)!} a_{n}}{(\beta(b+q+\gamma-2 \alpha)) \frac{(b+q-1)!}{(b-1)!}} \leq 1
$$

For $(0 \leq \psi<b)$ ", we see that"

$$
\left|\frac{f^{\prime}(w)}{w^{-b-1}}+b\right| \leq(b-\psi)
$$

That is

$$
\left|\frac{-b w^{-b-1}+\sum_{i=b}^{\infty} i a_{i} w^{i-1}+b w^{-b-1}}{w^{-b-1}}\right| \leq(b-\psi)
$$

or equivalently
$\sum_{i=b}^{\infty}\left(\frac{i}{b-\psi}\right) a_{i}|w|^{i+b} \leq 1$.
It is enough to consider
$|\mathrm{w}|^{i+b} \leq\left\{\frac{(b-\psi)\left(\frac{i(\gamma+\beta)+\gamma(b-\beta)+\beta(2 \alpha-q)}{i-q} \Gamma_{i}^{\lambda \mu, \nu, \eta} \frac{i!}{(i-q-1)!}\right)}{i\left(\beta(b+\gamma+q-2 \alpha) \frac{(b+q-1)!}{(b-1)!}\right.}\right\}$.
Therefore,

$$
\begin{equation*}
|\mathrm{w}| \leq\left\{\frac{(b-\psi)\left(\frac{i(\gamma+\beta)+\gamma(b-\beta)+\beta(2 \alpha-q)}{i-q} \Gamma_{i}^{\lambda, \mu, v, \eta} \frac{i!}{(i-q-1)!}\right)}{i\left(\beta(b+q+\gamma-2 \alpha) \frac{(b+q-1)!}{(b-1)!}\right.}\right\}^{\frac{1}{i+b}} . \tag{28}
\end{equation*}
$$

Setting $|\mathrm{w}|=\mathrm{R}_{3}(\lambda, \mu, v, \mathrm{y}, \gamma, \alpha, \beta)$ in (28), we obtain the radius of close-to- convexity.

5. Closure Theorems

Let the functions $f_{k}(w),(k=1,2, \ldots, s)$, is defined by:

$$
\begin{equation*}
f_{k}(w)=w^{-(b)}+\sum_{i=b}^{\infty} a_{i, k} w^{i},\left(w \in U^{*}, a_{i, k} \geq 0\right) \tag{29}
\end{equation*}
$$

"We shall prove the following closure theorems
Theorem (7): If the function $f_{k}(w),(k=1,2, \ldots, s)$, in the form (29), by in the class

$$
\sum_{b}^{+}(\lambda, \mu, v, \mathrm{y}, \gamma, \alpha, \beta) \text {.Then the function }
$$

$F \in \sum_{b}^{+}(\lambda, \mu, v, \mathrm{y}, \gamma, \alpha, \beta)$,where

$$
\begin{equation*}
F(\mathrm{w})=\sum_{k=1}^{S} c_{k} f_{k}(\mathrm{w}) ;\left(c_{k} \geq 0 \text { and } \sum_{k=1}^{S} c_{k}=1\right) \tag{30}
\end{equation*}
$$

Proof: By using (30), we can write

$$
\begin{equation*}
F(w)=w^{-(b)}+\sum_{i=b}^{\infty}\left(\sum_{k=1}^{s} c_{k} a_{i, k}\right) w^{i} \tag{31}
\end{equation*}
$$

Since $f_{k} \in \sum_{b}^{+}(\lambda, \mu, v, \eta, \gamma, \alpha, \beta)(k=1,2, \ldots, s)$, therefore
$\sum_{i=b}^{\infty} \frac{i(\gamma+\beta)+\gamma(b-\beta)+\beta(2 \alpha-q)}{i-q} \Gamma_{i}^{\lambda, \mu, v, \eta} \frac{i!}{(i-q-1)!}\left(\sum_{k=1}^{S} c_{k} a_{i, k}\right) w^{i}$

$$
\begin{gathered}
=\sum_{k=1}^{s} c_{k}\left(\sum_{i=b}^{\infty} \frac{i(\gamma+\beta)+\gamma(b-\beta)+\beta(2 \alpha-q)}{i-q} \Gamma_{i}^{\lambda, \mu, v, \eta} \frac{i!}{(i-q-1)!} a_{i, k}\right) \\
\leq \sum_{k=1}^{s} c_{k}(\beta(b+q+\gamma-2 \alpha))\left(\frac{(b+q-1)!}{(b-1)!}\right)=(\beta(b+q+\gamma-2 \alpha)) \frac{(b+q-1)!}{(b-1)!}
\end{gathered}
$$

By using Theorem (2), we have $F \in \sum_{b}^{+}(\lambda, \mu, v, \eta, \gamma, \alpha, \beta)$.
The proof is complete.
Theorem (8): The class $\sum_{b}^{+}(\lambda, \mu, v, \eta, \gamma, \alpha, \beta)$ is closed under convex linear combination .
Proof: If the function $f_{k}(k=1,2)$ givn by (30) be in the class
$\sum_{b}^{+}(\lambda, \mu, v, \eta, \gamma, \alpha, \beta)$, then the function

$$
\begin{equation*}
g(\mathrm{w})=\sigma f_{1}(w)+(1-\sigma) f_{2}(w), \quad(0 \leq \sigma \leq 1) \tag{32}
\end{equation*}
$$

is also in the class $\sum_{b}^{+}(\lambda, \mu, v, \eta, \gamma, \alpha, \beta)$.

Since, for $(0 \leq \sigma \leq 1)$,

$$
g(w)=w^{-(b)}+\sum_{i=b}^{\infty}\left[\sigma a_{i, 1}+(1-\sigma) a_{i, 2}\right] w^{i}
$$

We observe that

$$
\begin{aligned}
& \sum_{i=b}^{\infty} \frac{i(\gamma+\beta)+\gamma(b-\beta)+\beta(2 \alpha-q)}{i-q} \Gamma_{i}^{\lambda, \mu, v, \eta} \frac{i!}{(i-q-1)!}\left\{\sigma a_{i, 1}+(1-\sigma) a_{i, 2}\right\} \\
& = \\
& \quad \sigma \sum_{i=b}^{\infty} \frac{i(\gamma+\beta)+\gamma(b-\beta)+\beta(2 \alpha-q)}{i-q} \Gamma_{i}^{\lambda, \mu, v, \eta} \frac{i!}{(i-q-1)!} a_{i, 1} \\
& \quad+(1-\sigma) \sum_{i=b}^{\infty} \frac{i(\gamma+\beta)+\gamma(b-\beta)+\beta(2 \alpha-q)}{i-q} \Gamma_{i}^{\lambda, \mu, v, \eta} \frac{i!}{(i-q-1)!} a_{i, 2} \\
& \leq \\
& \quad\left(\beta(b+q+\gamma-2 \alpha) \frac{(b+q-1)!}{(b-1)!}\right.
\end{aligned}
$$

By using Theorem (2), we have $g \in \sum_{b}^{+}(\lambda, \mu, v, \mathrm{y}, \gamma, \alpha, \beta)$.
Theorem (9): Let $f_{b-1}(w)=w^{-q}$,

$$
\begin{equation*}
f_{b}(w)=w^{-(b)}+\frac{\beta(b+q+\gamma-2 \alpha)) \frac{(b+q-1)!}{(b-1)!}}{\frac{i(\gamma+\beta)+\gamma(b-\beta)+\beta(2 \alpha-q)}{i-q} \Gamma_{i}^{\lambda, \mu, v, \eta} \frac{i!}{(i-q-1)!}} w^{i}, \tag{33}
\end{equation*}
$$

for every parameters are constrained as in Theorem (1).
Then
$f \in \sum_{b}^{+}(\lambda, \mu, v, \mathrm{n}, \gamma, \alpha, \beta)$ if and only if f ca n be expressed in the form

$$
\begin{equation*}
f(w)=\sigma_{b-1} f_{b-1}(w)+\sum_{b}^{\infty} \sigma_{i} f_{i}(w) \tag{34}
\end{equation*}
$$

where $\sigma_{b-1} \geq 0, \sigma_{i} \geq 0$ and $\sigma_{b-1}+\sum_{i=b}^{\infty} \sigma_{i}=1$.
Proof: Let

$$
\begin{gathered}
f(w)=\sigma_{b-1} f_{b-1}(w)+\sum_{i=b}^{\infty} \sigma_{i} f_{i}(w) \\
=w^{-(b)}+\sum_{i=b}^{\infty} \frac{\beta(b+\gamma+q-2 \alpha) \frac{(b+q-1)!}{(b-1)!}}{\frac{i(\gamma+\beta)+\gamma(b-\beta)+\beta(2 \alpha-q)}{i-q} \Gamma_{i}^{\lambda, \mu, v, \gamma} \frac{i!}{(i-q-1)!}} \sigma_{i} w^{i} .
\end{gathered}
$$

Then

$$
\begin{gathered}
\sum_{i=b}^{\infty} \frac{\left(\beta(b+\gamma+q-2 \alpha) \frac{(b+q-1)!}{(b-1)!}\left(\frac{i(\gamma+\beta)+\gamma(b-\beta)+\beta(2 \alpha-q)}{i-q} \Gamma_{i}^{\lambda, \mu, v, \eta} \frac{i!}{(i-q-1)!}\right)\right.}{\left(\frac{i(\gamma+\beta)+\gamma(b-\beta)+\beta(2 \alpha-q)}{i-q} \Gamma_{i}^{\lambda, \mu, v, \eta} \frac{i!}{(i-q-1)!}\right)\left(\beta(b+\gamma+q-2 \alpha) \frac{(b+q-1)!}{(b-1)!}\right)} \sigma_{n} \\
=\sum_{i=b}^{\infty} \sigma_{i}=1-\sigma_{b-1} \leq 1 .
\end{gathered}
$$

By using Theorem (2), we have $f \in \sum_{b}^{+}(\lambda, \mu, v, \eta, \gamma, \alpha, \beta)$.
Conversely, let $f \in \sum_{b}^{+}(\lambda, \mu, v, \eta, \gamma, \alpha, \beta)$.
Since

$$
a_{i} \leq \frac{\beta(b+q+\gamma-2 \alpha) \frac{(b+q-1)!}{(b-1)!}}{\frac{i(\gamma+\beta)+\gamma(b-\beta)+\beta(2 \alpha-q)}{i-q} \Gamma_{i}^{\lambda, \mu, v, \eta} \frac{i!}{(i-q-1)!}}, \text { for } i \geq b
$$

We may take

$$
\sigma_{i}=\frac{\frac{i(\gamma+\beta)+\gamma(b-\beta)+\beta(2 \alpha-q)}{i-q} \Gamma_{i}^{\lambda, \mu, \nu, \eta} \frac{i!}{(i-q-1)!}}{\beta(b+q+\gamma-2 \alpha) \frac{\left(\frac{(b+q-1)!}{(b-1)!}\right.}{}} a_{i} \text {, for } i \geq b
$$

and $\sigma_{b-1}=1-\sum_{i=b}^{\infty} \sigma_{i}$. Then

$$
f(w)=\sigma_{b-1} f_{b-1}(w)+\sum_{i=b}^{\infty} \sigma_{i} f_{i}(w)
$$

proof is complete.

References

1. Duren, P.L. 1983. Univalent Functions, Grundlehren der Mathematischen Wissenschaften. (Vol. 259), Springer-Verlag, New York.
2. Owa, S., Saigo, M. and Srivastava, H.M. 1989. Some Characterization Theorems for Starlike and Convex Functions Involving A Certain Fractional Integral Operator , J . Math, Anal. APPL., 140(1989): 419-426.
3. srivastava, H.M., Saigo, M. and Owa, S. 1988. A class of distortion theorems involving certain operators of fractional calculus, J.Math .Anal. Appl., 31: 412-420.
4. Srvastava, H.M. and Owa, S. 1992. Current Topics in Analytic Function Theory, World Scientific publishing company, Singapore, New Jersey, London and Hong kong.
5. Owa, S. 1978. On the distortion theorems, I. Kyung Pook Math.J., 18: 53-59.
6. Srivastava, H.M. and Owa, S. 1989. Univalent Functions, Fractional calculus and their Applications, Halsted press (Ellis Horwood Limited , chichester), John wiley and Sons, New York, Chichester, Brisbane and Toronto, (1989).
7. Darus, M. 2004. Meromorphic functions with positive coefficients, Int. J. Math. \& Math .Sci., 6(2004): 319-324.

[^0]: *Email:kasimmathphd2@gmail.com

