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Abstract

The concept of the optical telescope is the primary mirror design, the Next
Generation Segmented Optical Telescope (NGST) with hexagonal segment of
spherical primary mirror can provide a 3 arc minutes field of view. Extremely Large
Telescopes (ELT) in the 100m dimension would have such unprecedented scientific
effectiveness that their construction would constitute a milestone comparable to that
of the invention of the telescope itself and provide a truly revolutionary insight into
the universe. The scientific case and the conceptual feasibility of giant filled aperture
telescopes was our interested. Investigating the requirements of these imply for
possible technical options in the case of a 100m telescope. For this telescope the
considerable interest is the correction of the optical aberrations for the coming
wavefront, the modified Zernike polynomials for hexagonal aperture were used to
describe the wavefront aberrations and to predict the initial state for the adaptive
optics corrections.
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Introduction

To determine and apply the proper correction
that will eliminate or minimize different types of
aberrations, their characteristics must be first
captured and quantitatively described. The wave
aberration function suits this purpose well
because it completely describes a cumulative
effect of the optical system on light passing
through every location in the aperture [1].

For the NGST can be used the modified
Zernike polynomials for hexagonal aperture to
form a complete set of functions or modes. This
makes them suitable for accurately describing
wave aberrations as well as for data fitting.
They are usually expressed in polar coordinates,
and are readily convertible to Cartesian
coordinates. These polynomials are mutually
orthogonal, and are therefore mathematically
independent, making the variance of the sum of
modes equal to the sum of the variances of each
individual mode. They can be scaled so that
non-zero order modes have zero mean and unit
variance [1, 2]. This puts all modes in a common
reference frame that enables meaningful relative
comparison between them.

Describing The Wave Aberration Function
using Zernike Polynomials
The wave aberration function is expressed as a

weighted sum of Zernike polynomials (Z") [2]
[3]:

W(p.0)= 3 Y W27 (p.0)
W NI o)sinma)

W(pﬂ)zﬁ > noo (1)
n =-n ZWn

m=0

m

R () cos(m6)

Where
k is the polynomial order of the expansion.

W,"is the coefficient of the Z;" mode in the
expansion.
W "is equal to the rms wavefront error for that

mode.

For computational purposes it may be more
convenient to express the wave aberration in
rectangular coordinates and use the single
indexing scheme:
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j max

where
W, =W" and Z,(x,y)=Z(XY)
[_nm+2)+m

2

jmax refers to the highest mode number
included in the expansion.
n order of the radial polynomial.
m azimuthal or angular frequency.
(p,6) polar coordinates where 0<p <l and
0<60<2m.
Orthonormal for
Apertures

It is quite common in optical design and
testing using Zernike circle polynomials to
describe the aberration of a system. These
polynomials have the advantage that they
represent balanced aberrations. Because of their
orthogonality across a circular aperture, the
Zernike expansion coefficients are independent
of each other, each coefficient represents the
standard deviation of the corresponding Zernike
term (with exception of the piston term), and the
variance of the aberration is equal to the sum of
the coefficients. However, in the case of a large
segmented mirror, the segments are typically
hexagonal in the shape, as in the Keck telescope
[4]. The advantage of the orthogonality of the
polynomial can be lost because Zernike
polynomials are not orthogonal over hexagonal
region. Here, orthonormal polynomial for
hexagonal apertures can be determined by the
Gram-Schmidt orthogonalization of Zernike
circle polynomial. The polynomial thus obtained
can be depending on the sequence of the Zernike
polynomials used in the orthogonalization
process [5].
Figure 1 shows a unit hexagon inscribed inside a
unit circle. Each side of the hexagon has a
length of unity. The area of the hexagon is
A=3%3/2. In Cartesian coordinates (x,y), the
aberration function for a hexagonal pupil or
aperture can be expanded in terms of
polynomials H; (x,y) that are orthonormal over
the aperture [6]:

W (X, y)zgajHj(x, 1Y) EETIRR

Where a;is an expansion or the aberration
coefficient of the polynomial H;(x,y). The

Polynomial Hexagonal
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orthonormality of the polynomial is represented
by:

Where 5”. stands for the Kronecker symbol,

which equal to 1 only if when j=;".

The hexagonal region of integration consists of
five parts: rectangle ACDF, triangles AGB,
GCB, DHE, and HFE with limits of integration
(—1/2,1/2; —3/2N3/2), (1/2,1; V3(1-x),0 ),
(1/2,1; —3(1-x),0), (—1,-1/2; 0.V3(1+x)), and
(—1,-1/2 ; 0,N3(1+X)) , respectively.

The area of the unit hexagon is approximately
17.3% smaller than the area of the unit circle.

Figurel- Unit hexagon inscribed inside a unit
circle showing the coordinates of its corners. Each
side of the hexagon has a length of unity. The x
axis passes through the corners B and E of the
hexagon, and the y axis bisects its parallel sides
AC and FD [5].

The relative value of the coefficients of the
circle polynomials whose linear combination
yields an orthonormal hexagonal polynomial Hy
and the variance are given by:

a.
33

o =Zaj2
]

JW (X, y)H jdxdy.....ccounnn. (5)

hexagon

Respectively, the mean value of each
polynomial, except for j=1, is zero. The number
of polynomial, i.e, the maximum value of j is
increased until the variance is equal to the actual
variance within a prechosen tolerance.

The orthonormal polynomials H; (x,y) can be
obtained from the Zernike polynomials Z; (x,y)
by Gram-Schmidt orthogonalization process [6].
Using abbreviated notation, where the argument
(x,y) of the polynomial is omitted,
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G, =2,=1
J
Gia =§Cj+1ka +Z
_ B _ Cia . (7)
j+1 ||Gj+1 1 , %
= J'Gmdxdy
hexagon
where
2
Cjik :_ﬁ sz+1deXdy

hexagon

Thus, the H-polynomial are obtained recursively
starting with H; =1. Each G and, therefore, H-
polynomial is a linear combination of Zernike
polynomials. The orthonormal H-polynomials
represent the unit vectors of the space that spans
the aberration function.

The Zernike circle polynomials are orthonormal
over a circular pupil of unit radius is:

j Z,(x,Y)Z,.(x, y)dxdy/ j dxdy =& ......(8)

i}
Substituting for the Zernike polynomial and
noting that of an odd function over the hexagon
is zero owing to its symmetry, it is possible to
obtain:

G,=CH+Z,=¢,2,+2,=2,=2X

2X
1 2

{A j4x dxdy]

=2J6/5 psind

hexagon
where A= - 2/3 V3
Similarly

H, =/6/5(2y) =1.09545Z, = 2/6/5 pcosé

Cyy =1/43

G, =(U/V3)z, + 2, =\3(2p? -516)
J3(2p? -516)

[i 13(2p% —5/6)2dxdy]""

hexagon

H, = 7 =6/5(2x) =1.09545Z,

Ciy =0=0Cyg

H, =

_3(2p*-516)

- J43/60
=/5/43Z, +2415/43Z,
= 0.34100Z, +1.18125Z,

=215/7 p’sin20
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The other polynomial can be obtained in similar
manner as shown as in table (1).

Table 1 Orthonormal Hexagonal Polynomials
in Polar Coordinates

H1=1

H2 =2 \(6/5) p sind

H3 =2(6/5) p cos®

H4 =2 (15/7) p?sin20

H5 =(5/43) (-5 + 12 p?)

H6 =2 \(15/7) p® cos26

H7 = (4V(10)/3) p® sin36

H8 =4 \(42/3685) (-14 p+25 p%) sin®

H9 =4 \(42/3685) (-14 p+25 p°) cosd

H10 = 4 N(70/103) p® cos30

HI1=(10/3) V(7/99258181) (-10 (297 - 598
p?) p’ sin20 + 5413 p*sin46

H12 = (30 / \(492583)) (-249 p*+ 392 p*) sin26
HI3=(3/ V(1072205)) (737 - 5140 p+ 6020
p)

H14 = (30 / \(492583)) (-249 p*+392 p*)
cos20

H15 = (10/3) V(7/99258181) (10 (297 - 598 p®)
p? c0s20 + 5413 p* cos40

H16 = (2.17600248 p - 13.23551876 p*+
16.15533716 p°) sinb + 5.95928883 p°sin50
H17 =4 N(5/97)(-22 p*+ 35 p°) sin30

H18 =2 V(6/1089382547) (70369 p- 322280 p°
+309540 p°) sind

H19 = 2 V(6/1089382547) (70369 p- 322280 p°
+309540 p°) cosd

H20 = 4 V(385/295894589) (-3322 p+4635 p°)
cos 30

H21 = (-2.17600248 p +13.23551876 p°-
16.15533716 p°) cos 0 + 5.95928883 p° cos50

Calculating the Point Spread Function (PSF)

Aberrations negatively impact image quality.
They change the size and shape of impulse
response or point spread function (PSF), which
blurs the image. In terms of frequency analysis,
the frequency response of the optical system is
reduced by phase distortion within the passband.
The effects of aberrations can therefore be
characterized by calculating the PSF of the
optical system [8], [9]. The image of a point
object formed by the optical system is the point
spread function or impulse response. It is
defined as [10], [11]:

.2r
FT{p(x, ye s ”}

2

PSF ()= s )

Ap

X y
fy=—  fy =2
“Tad Y d

FT is the fourier Transform operator.
d is the distance from the exit pupil to the image.
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A, is the area of the exit pupil.
P(x,y) define shape, size, and transmission of
exit pupil.

2

X,Y) _—
g Accounts for the phase deviations of

the wavefront from a reference sphere.
W(x,y) is the wave aberration function at the exit
pupil.

27

P(x,y)=p(x,y)e *
exit pupil function.

For wvisual applications it is often more
convenient to express the PSF in terms of

visual angle. These expressions are given by
[12]:

) . .
is the generalized

PSF (sin(6,).sin(6,)) = %2 FT{p(X’y)e—i:W(x‘y)}

p

for small angle:

% wx,y

2
4 FT{p(x, y)e *

PSF (6,,6,) ="~

p

Where:

p

7 is the area of the exit pupil in unit of
(wavelength)?

p(x, y) defines shape, size (in unit of wave
lengths), and transmission of exit pupil.

The calculations and computational domains are
illustrated in Figure 2.
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Utilize equation (10) to generate and plot the
PSF for any wave aberration mode associated
with any modified Zernike polynomial for
hexagonal specification by (n, m):

(1,-1) y tilt, (1,2) x tilt, (2,-2), (2,2) astigmatism,
(2,0) defocus, (3,-1), (3,1) coma, (3,-3), (3,3)
trefoil, (4,0) spherical aberration and secondary
coma, the diameter of the aperture is 100 pixel
(equivalent to 100 m), Root Mean Square (RMS)

wavefront error (in mm), and wavelength (in m) are
shown in Figures 3,7.

eDouble-Index Modified Zernike
Polynomials (H)
Figure 3 illustrated modified Zernike
polynomials for hexagonal up to 5th order in
a pyramid arrangement.

Figure 3- Modified Zernike polynomials up to 5" order
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eDouble-Index Modified Zernike

Polynomial (H) PSFs

Iragi Journal of Science., 2013, Vol.54, No.1, Pp.222-231

illustrated their visual appearance, and to more
explanation and representation of PSF cross-

The image in Figure 4 shows the image of a section in terms of visual angle (64 and 6y)
point object (binary star) in the presence of measured in mrad are shown in Figures 6,7.
polynomial aberration (image convolution with
polynomials). The PSF images in Figure 5
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Figure 7- PSF Cross-Sections in Terms of Visual Angle 6,(mrad)
Figure 8 shows the observed image as a result of Figure 9 illustrates its shape as produced in a

almost types of aberration up to 5" order. The deformable mirror in adaptive optics toCorrect

isometric plot in

and reduce aberrations from the incident at
hexagonal aperture of the telescope
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Observed image
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Figure 9- Isometric Plot Shows the Shape roduced
in a Deformable Mirror in Adaptive Optics

Conclusions

Orthogonal  polynomials  have  been
considered for analysis of wavefronts across
noncircular pupil such as hexagonal segments
of a large mirror telescopes. From previous
Figures 4,8 it can be noticed that this
configuration is more sensitive to Seidel
aberration except coma which is slightly less
sensitive. The isometric plot Figure 9 can
represent the initial state for adaptive optics
correction.
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