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Abstract 

     The concept of the optical telescope is the primary mirror design, the Next 

Generation Segmented Optical Telescope (NGST) with hexagonal segment of 

spherical primary mirror can provide a 3 arc minutes field of view. Extremely Large 

Telescopes (ELT) in the 100m dimension would have such unprecedented scientific 

effectiveness that their construction would constitute a milestone comparable to that 

of the invention of the telescope itself and provide a truly revolutionary insight into 

the universe. The scientific case and the conceptual feasibility of giant filled aperture 

telescopes was our interested. Investigating the requirements of these imply for 

possible technical options in the case of a 100m telescope. For this telescope the 

considerable interest is the correction of the optical aberrations for the coming 

wavefront, the modified Zernike polynomials for hexagonal aperture were used to 

describe the wavefront aberrations and to predict the initial state for the adaptive 

optics corrections. 
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 الخلاصة
، الجيل القادم من التمسكوبات البصرية المجزأة تصميم المرأة الاولية في مفهوم التمسكوب البصري هو     

الكبير جداً  اتدقائق قوسية . التمسكوب 3بمقدار رؤيا مجال ان يوفر بقطع سداسية لممرآة الكروية الاولية يمكن 
بتركيبها ستشكل معمماً يمكن مقارنته بأكتشاف التمسكوب  م يممك هكذا تاثيرات عممية لا سابق لها 011 بابعاد
ثورة حقيقية لتفهمنا وتبصرنا لمكون. الحالة العممية والتصور المعقول لمفتحات العملاقة لمتمسكوبات  ويوفر نفسه

م 011منا. تحقيق المتطمبات لهكذا تمسكوب يتضمن خيارات التقنية الممكنة في حالة هي موضع اهتما
 ،في تصحيح التشوهات البصرية لجبهة الموجة القادمة لهذا النوع من التمسكوب هوالاهتمام الكبير  تمسكوب.

مين الحالة لمطورة لمفتحة السداسية لوصف تشوهات جبهة الموجة وتخا  Zernike  استخدمت متعددة حدود 
 .البصريات المطورة اتالاساسية لتصحيح
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Introduction  
     To determine and apply the proper correction 

that will eliminate or minimize different types of 

aberrations, their characteristics must be first 

captured and quantitatively described. The wave 

aberration function suits this purpose well 

because it completely describes a cumulative 

effect of the optical system on light passing 

through every location in the aperture [1]. 

     For the NGST can be used the modified 

Zernike polynomials for hexagonal aperture to 

form a complete set of functions or modes. This 

makes them suitable for accurately describing 

wave aberrations as well as for data fitting.  

They are usually expressed in polar coordinates, 

and are readily convertible to Cartesian 

coordinates.  These polynomials are mutually 

orthogonal, and are therefore mathematically 

independent, making the variance of the sum of 

modes equal to the sum of the variances of each 

individual mode.  They can be scaled so that 

non-zero order modes have zero mean and unit 

variance [1, 2]. This puts all modes in a common 

reference frame that enables meaningful relative 

comparison between them. 

 

Describing The Wave Aberration Function 

using Zernike Polynomials 

The wave aberration function is expressed as a 

weighted sum of Zernike polynomials (
m

nZ ) [2] 

[3]: 
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Where  

k is the polynomial order of the expansion. 
m

nW is the coefficient of the 
m

nZ  mode in the 

expansion. 
m

nW is equal to the rms wavefront error for that 

mode. 

For computational purposes it may be more 

convenient to express the wave aberration in 

rectangular coordinates and use the single 

indexing scheme: 
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jmax refers to the highest mode number 

included in the expansion. 

n order of the radial polynomial. 

m azimuthal or angular frequency. 

(ρ,θ) polar coordinates  where  0 ≤ ρ ≤1 and  

 0 ≤ θ ≤ 2π . 

 

Orthonormal Polynomial for Hexagonal 

Apertures 

     It is quite common in optical design and 

testing using Zernike circle polynomials to 

describe the aberration of a system. These 

polynomials have the advantage that they 

represent balanced aberrations. Because of their 

orthogonality across a circular aperture, the 

Zernike expansion coefficients are independent 

of each other, each coefficient represents the 

standard deviation of the corresponding Zernike 

term (with exception of the piston term), and the 

variance of the aberration is equal to the sum of 

the coefficients. However, in the case of a large 

segmented mirror, the segments are typically 

hexagonal in the shape, as in the Keck telescope 

[4]. The advantage of the orthogonality of the 

polynomial can be lost because Zernike 

polynomials are not orthogonal over hexagonal 

region. Here, orthonormal polynomial for 

hexagonal apertures can be determined by the 

Gram-Schmidt orthogonalization of Zernike 

circle polynomial. The polynomial thus obtained 

can be depending on the sequence of the Zernike 

polynomials used in the orthogonalization 

process [5]. 

Figure 1 shows a unit hexagon inscribed inside a 

unit circle. Each side of the hexagon has a 

length of unity. The area of the hexagon is 

A=3√3/2. In Cartesian coordinates (x,y), the 

aberration function for a hexagonal pupil or 

aperture can be expanded in terms of 

polynomials Hj (x,y) that are orthonormal over 

the aperture [6]:  

)3........().........,(),( yxHayxW j
j

j  

Where aj is an expansion or the aberration 

coefficient of the polynomial Hj(x,y). The 
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orthonormality of the polynomial is represented 

by: 

   )4......(..........
33

2
'' jjjj dxdyHH   

Where jj stands for the Kronecker symbol, 

which equal to 1 only if when j=j’.  

The hexagonal region of integration consists of 

five parts: rectangle ACDF, triangles AGB, 

GCB, DHE, and HFE with limits of integration 

(−1/2,1/2; −√3/2,√3/2), (1/2,1; √3(1−x),0 ), 

(1/2,1; −√3(1−x),0), (−1,−1/2; 0,√3(1+x)), and 

(−1,−1/2 ; 0,√3(1+x))  , respectively. 

The area of the unit hexagon is approximately 

17.3% smaller than the area of the unit circle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The relative value of the coefficients of the 

circle polynomials whose linear combination 

yields an orthonormal hexagonal polynomial Hk 

and the variance are given by: 
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Respectively, the mean value of each 

polynomial, except for j=1, is zero. The number 

of polynomial, i.e, the maximum value of j is 

increased until the variance is equal to the actual 

variance within a prechosen tolerance.  

The orthonormal polynomials Hj (x,y) can be 

obtained from the Zernike polynomials Zj (x,y) 

by Gram-Schmidt orthogonalization process [6]. 

Using abbreviated notation, where the argument 

(x,y) of the polynomial is omitted, 
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Thus, the H-polynomial are obtained recursively 

starting with H1 =1. Each G and, therefore, H-

polynomial is a linear combination of Zernike 

polynomials. The orthonormal H-polynomials 

represent the unit vectors of the space that spans 

the aberration function.  

The Zernike circle polynomials are orthonormal 

over a circular pupil of unit radius is: 

 

)8....(/),(),( '' jjj dxdydxdyyxZyxZ j   

Substituting for the Zernike polynomial and 

noting that of an odd function over the hexagon 

is zero owing to its symmetry, it is possible to 

obtain: 
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where A= - 2/3 √3 

Similarly 
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Figure1- Unit hexagon inscribed inside a unit         

circle showing the coordinates of its corners. Each 

side of the hexagon has a length of unity. The x 

axis passes through the corners B and E of the 

hexagon, and the y axis bisects its parallel sides 

AC and FD [5]. 
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The other polynomial can be obtained in similar 

manner as shown as in table (1). 

 

Table 1 Orthonormal Hexagonal Polynomials 

in Polar Coordinates  

H1 = 1 

H2 = 2 √(6/5)  ρ sinθ 

H3 = 2 √(6/5)  ρ  cosθ  

H4 = 2 √(15/7)  ρ
2
 sin2θ 

H5 = √(5/43) (-5 + 12  ρ
2
)   

H6 = 2 √(15/7) ρ
2
 cos2θ 

H7 = (4√(10)/3) ρ
3
 sin3θ 

H8 = 4 √(42/3685)  (-14  ρ + 25  ρ
3
)  sinθ 

H9 = 4 √(42/3685)  (-14  ρ + 25  ρ
3
)  cosθ 

H10 = 4 √(70/103) ρ
3
 cos3θ 

H11 = (10/3) √(7/99258181)  (-10  (297 - 598  

ρ
2
)  ρ

2
  sin2θ + 5413  ρ

3 
sin4θ 

H12 = (30 / √(492583)) (-249 ρ
2
+ 392  ρ

4
) sin2θ 

H13 = (3 / √(1072205)) (737 - 5140  ρ
2 
+ 6020  

ρ
4
)  

H14 = (30 / √(492583)) (-249  ρ
2
+ 392  ρ

4
)  

cos2θ 

H15 = (10/3) √(7/99258181) (10 (297 - 598 ρ
2 
) 

ρ
2
 cos2θ + 5413 ρ

4
 cos4θ 

H16 = (2.17600248 ρ - 13.23551876 ρ
3
+ 

16.15533716 ρ
5
) sinθ + 5.95928883 ρ

5 
sin5θ 

H17 = 4 √(5/97)(-22 ρ
3 
+ 35 ρ

5
) sin3θ 

H18 = 2 √(6/1089382547) (70369 ρ- 322280 ρ
3 

+309540 ρ
5
) sinθ 

H19 = 2 √(6/1089382547) (70369 ρ- 322280 ρ
3 

+309540 ρ
5
) cosθ 

H20 = 4 √(385/295894589) (-3322 ρ
3 
+4635 ρ

5
) 

cos 3θ 

H21 = (-2.17600248 ρ +13.23551876 ρ
3 
-

16.15533716 ρ
5
) cos θ + 5.95928883 ρ

5 
cos5θ 

 

Calculating the Point Spread Function (PSF) 

     Aberrations negatively impact image quality. 

They change the size and shape of impulse 

response or point spread function (PSF), which 

blurs the image. In terms of frequency analysis, 

the frequency response of the optical system is 

reduced by phase distortion within the passband. 

The effects of aberrations can therefore be 

characterized by calculating the PSF of the 

optical system [8], [9]. The image of a point 

object formed by the optical system is the point 

spread function or impulse response.  It is 

defined as [10], [11]: 
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FT is the fourier Transform operator. 

d is the distance from the exit pupil to the image. 

Ap is the area of the exit pupil. 

P(x,y) define shape, size, and transmission of 

exit pupil. 
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Accounts for the phase deviations of 

the wavefront from a reference sphere. 

W(x,y) is the wave aberration function at the exit 

pupil. 
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 is the generalized 

exit pupil function. 

For visual applications it is often more 

convenient to express the PSF in terms of  

visual angle.  These expressions are given by 

[12]: 
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Where: 

2

pA
 is the area of the exit pupil in unit of 

(wavelength)
2  

 yxp ,  defines shape, size (in unit of wave 

lengths), and transmission of exit pupil. 

The calculations and computational domains are 

illustrated in Figure 2. 

 

 
 

    Figure 2-SPFPSFCalculationandComputational  

                     Domains 



Abood  et.al.                                             Iraqi Journal of Science., 2013, Vol.54, No.1, Pp.222-231 

 226 

Utilize equation (10) to generate and plot the 

PSF for any wave aberration mode associated 

with any modified Zernike polynomial for 

hexagonal specification by (n, m):  

(1,-1) y tilt, (1,1) x tilt, (2,-2), (2,2) astigmatism, 

(2,0) defocus, (3,-1), (3,1) coma, (3,-3), (3,3) 

trefoil, (4,0) spherical aberration  and secondary 

coma, the diameter of the aperture is 100 pixel 

(equivalent to 100 m), Root Mean Square (RMS) 

wavefront error (in mm), and wavelength (in m) are 

shown in Figures 3,7.  

 

 Double-Index Modified Zernike 

Polynomials (H)  

     Figure 3 illustrated modified Zernike 

polynomials for hexagonal up to 5th order in 

a pyramid arrangement. 

 

 

 

                 Figure 3- Modified Zernike polynomials up to 5
th

 order 
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 Double-Index Modified Zernike 

Polynomial (H) PSFs 

     The image in Figure 4 shows the image of a 

point object (binary star) in the presence of 

polynomial aberration (image convolution with 

polynomials). The PSF images in Figure 5  

illustrated their visual appearance, and to more 

explanation and representation of PSF cross-

section in terms of visual angle (θx and θy) 

measured in mrad are shown in Figures 6,7.   

 

 

 

Figure 4-Image Convolution with Polynomials Aberration 
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       Figure5- Double-Index Modified Zernike Polynomial PSFs 
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Figure 6- PSF Cross-Sections in Terms of Visual Angle θx(mrad) 
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Figure 8 shows the observed image as a result of 

almost types of aberration up to 5
th
 order. The 

isometric plot in 

 

 

 

 

 Figure 9 illustrates its shape as produced in a 

deformable mirror in adaptive optics toCorrect 

and reduce aberrations from the incident at 

hexagonal aperture of the telescope  

 

                    Figure 7-  PSF Cross-Sections in Terms of Visual Angle θy(mrad) 
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Conclusions  

     Orthogonal polynomials have been 

considered for analysis of wavefronts across 

noncircular pupil such as hexagonal segments 

of a large mirror telescopes. From previous 

Figures 4,8 it can be noticed that this 

configuration is more sensitive to Seidel 

aberration except coma which is slightly less 

sensitive. The isometric plot Figure 9 can 

represent the initial state for adaptive optics 

correction. 
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    Figure 8- Shows the Result of the Accumulative H 

                     Modes (Observed Image) 

Figure 9- Isometric Plot Shows the Shape roduced 

              in a Deformable Mirror in Adaptive Optics 

 

 

 


