

ON CLS- MODULES

Lmyaa H. Sahib*, Bahar H. AL-Bahraany

Department of Mathematics, College of Science, University of Baghdad, Baghdad – Iraq *Lmyaa82@yahoo.com

Abstract

Let R be a commutative ring with identity and let M be a unital left R-module. A.Tercan introduced the following concept.An R-module M is called a CLSmodule if every y-closed submodule is a direct summand .The main purpose of this work is to develop the properties of y-closed submodules.

Keywords: CLS-modules, Y-closed submodules.

حول المقاسات من النمط -CLS

لمياء حسين صاحب *, بهار حمد البحراني قسم الرياضيات, كلية العلوم, جامعة بغداد, بغداد, العراق

الخلاصة

لتكن R حلقة ابدالية ذات عنصر محايد و M مقاس احادي ايسر معرف عليها.تركان قدم مفهوم المقاس من النمط R حلقة ابدالية ذات عنصر محايد و M مقاس ادا كل مقاس جزئي مغلق من النمط-y يكون مركبة مجموع مباشر الغرض الرئيسي من هذا البحث هو تطوير خواص كل من المقاسات الجزئية المغلقة من النمط-y والمقاسات من النمط CLS .

1.Introduction

About thirty years ago,M.Harada and B.Muller introduced the following concept.An R-module M is called extending (briefly CSmodule)if every submodule is essential in a direct summand of M, see[1].Equivalently,M is an extending module if and only if every closed submodule of M is a direct summand .Extending modules has been studied recently by several authors.Among them P.F.Smith and Clark and Mohamed see [1, 2].

Now recall that, a submodule N of an R-module M is a y-closed submodule if $\frac{M}{N}$ is non-singular, see[3]. It is easily seen that every y-closed is closed.

A.Tercan generalizes the extending modules as follow:An R-module M is called a CLSmodule if every y-closed submodule of M is a direct summand, see[4]. Note that ,Tercan used the concepts complement(closed submodule) in the sense of closed submodule (y-closed submodule).CLS-modules also have been studied by YongduoWang ,see [5].

In this paper, we give some results on y-closed submodules and CLS-modules.

In section one ,we study the properties of yclosed submodules.We prove that if $f:M \longrightarrow N$ is an epimorphisim and $B \subseteq_y N$,then for every singular submodule A of M , $f(A) \subseteq B$,see proposition 1.4.

In section two of the paper, we give characterizations of CLS-modules.For example, we show that an R-module M is CLS if and only

if for every y-closed submodule A of M, there is a decomposition $M=M_1 \oplus M_2$ such that $A \subseteq M_1$ and M_2 is a complement of A in M.

Y-closed Submodule Proposition(1.1) :

Let M be an R-module and let $A \subseteq B \subseteq M$, then

1- If $A \subseteq_y M$, then $A \subseteq_y B$.

2- Let
$$A \subseteq B \subseteq M$$
, then $B \subseteq y$ M if and only
if $\frac{B}{A} \subseteq_y \frac{M}{A}$.

- 3- $A \subseteq_y A+B$ if and only if $A \bigcap B \subseteq_y B$.
- 4- If $A \bigcap_{y} M$ and $B \bigcap_{y} M$, then $A \bigcap B \subseteq_{y} M$.

Proof:

- 1- Clear.
- 2- Clear by the third isomorphism theorem.
- 3- Clear by the second isomrphisim theorem.
- 4- Assume that $A \subseteq_y M$ and $B \subseteq_y M$ to show that $A \cap B \subseteq_y M$, let $m \in M$ such that

$$m+(A \cap B) \in \mathbb{Z}(\frac{M}{A \cap B})$$
. Thus
ann $(m+A \cap B) \subseteq_{e} R$. Since

 $\operatorname{ann}(m+A \cap B) \subseteq \operatorname{ann}(m+A)$, then

ann(m+A)
$$\subseteq_{e}$$
 R,by[3].But $Z(\frac{M}{A})=0,$

therefor m+A=A.By the same way m+B=B.So

$$m \in A \cap B$$
 and hence $Z(\frac{M}{A \cap B}) = 0$.

Proposition(1.2):

Let A and B be a submodule of an R-module M if $A \subseteq_y B$ and $B \subseteq_y M$, then $A \subseteq_y M$. **Proof:**

Let $A \subseteq_y B$ and $B \subseteq_y M$. Now consider the following short exact sequence:

$$0 \rightarrow \frac{B}{A} \xrightarrow{i} \frac{M}{A} \xrightarrow{\pi} \frac{M}{A} \xrightarrow{\pi} \frac{M}{A} \xrightarrow{\pi} 0$$

Where i is the inclusion map and π is the natural epimorphism. Since $A \subseteq B$ and

B $\subseteq_{y}M$, then $\frac{B}{A} \subseteq_{y}\frac{M}{A}$ by proposition {1.1-2}. Since $\frac{B}{A}$ and $\frac{\frac{M}{A}}{\frac{B}{A}}$ are non-singular, then $\frac{M}{A}$ is non-singular by [3].

Note :

Let M be an R-module and
$$A \subseteq B \subseteq M$$
,then

1- If $B \subseteq_y M$,then A need not be y-closed submodule of M ,for example :-

Consider Z as Z-module and

$$2Z \subseteq Z$$
 it is clear that $Z \subseteq_y Z$.But

$$Z(\frac{Z}{2Z})=Z(Z_2)=Z_2$$
 is singular.

2- If $A \subseteq_y M$, then B need not be y-closed in M, for example:-

$$0 \subseteq 2Z \subseteq Z$$
. Clearly $0 \subseteq yZ$.But
 $Z(\frac{Z}{2Z}) = Z(Z_2) = Z_2$ is singular

Note :

An epimorphic image of an y-closed submodule need not be y-closed submodule as the following example show:-

Let $\pi: \mathbb{Z} \to \frac{Z}{4Z}$ be the natural epimorphism .Clearly $0 \subseteq \mathbb{Y} \mathbb{Z}$, but f(0)=0 is not y-closed in $\frac{Z}{4Z}$ {because $\frac{Z}{4Z} \cong \mathbb{Z}4$ is singular}.

Proposition(1.3):

Let $f: M \to N$ be an epimorphism and $A \subseteq_y M$. If ker $f \subseteq A$, then $f(A) \subseteq_y N$.

Proof:

Assume that $A \subseteq_y M$. To show that $f(A) \subseteq_y N$ let $n \rightarrow N$ such that $ann(n+f(A)) \subseteq_e R$. Since f is an epimorphism ,then n=f(m),for some $m \in M$.Since ker $f \subseteq A$, then $ann(n+f(A)) \subseteq ann(m+A)$ and hence $ann(n+f(A)) \subseteq_e R$,by[3].But $A \subseteq_y M$, therefore $m \in A$. Thus $n=f(m) \in f(A)$.

Proposition(1.4):

Let $f:M \to N$ be an R-homomorphism and $B \subseteq_y N$, then for every singular submodule A of M, $f(A) \subseteq B$.

Proof:

Let $\pi: \mathbb{N} \to \frac{N}{B}$ be the natural epimorphism. Consider $\pi \text{ of }: M \to \frac{N}{B}$. Now $\pi \text{ of } |_{\mathbb{A}} : \mathbb{A} \to \frac{N}{B}$ But A is singular and $\frac{N}{B}$ is non-singular, Therefor $\pi \text{ of } |_{\mathbb{A}} = 0$, by [3]. Thus $\pi (f(A)) = 0$ And hence $f(A) \subseteq \ker \pi = B$.

The following corollary follows immediately from proposition { 1.4}.

Corollary(1.5):

Let N be an R-module and $B \subseteq {}_yN$.Then $(HOM(M,N))(M) \subseteq B$, for every singular R-module M.

Proposition(1.6):

Let M be an R-module and $A \subseteq {}_{y}M$,then Z(M)=Z(A).

Proof:

It is enough to show that $Z(M) \subseteq Z(A)$ Let i: $Z(M) \rightarrow M$ be the inclusionmap and

$$\pi: \mathbf{M} \to \frac{M}{A}$$
 be the natural epimorphism.

Consider the map
$$\pi o i: Z(M) \to \frac{M}{A}$$

Since Z(M) is singular and $\frac{M}{A}$ is

non-singular ,then $\pi \circ i=0,by$ [3].So $\pi \circ i: (Z(M))=\pi (Z(M))=0$.Thus $Z(M) \subseteq \ker \pi = A$.But $Z(A)=Z(M) \cap A$, Therefor Z(A)=Z(M).

Proposition(1.7):

Let M be an R-module and let $A \subseteq B \subseteq M$ and $A \subseteq_{y}M$, then $\frac{M}{B}$ is singular if and only $B \subseteq e M$.

Proof:

Let $A \subseteq_{y} M$ and $\frac{M}{B}$ is singular. By the third isomorphism theorem $\frac{M}{B} \cong \frac{\frac{M}{A}}{\frac{B}{A}}$. Since $\frac{M}{A}$ is non-singular, then by $[3] \frac{B}{A} \subseteq_{e} \frac{M}{A}$. Let $\pi : M \xrightarrow{\longrightarrow} \frac{M}{A}$ be the natural epimorphism. By [3], $B = \pi^{-1}(\frac{B}{A}) \subseteq_{e} \pi^{-1}(\frac{M}{A}) = M$ The converse is clear by [3].

Proposition(1.8):

Let M be an R-module and B be a maximal and y-closed submodule of M. Then $\frac{M}{B}$ is projective and B is a direct summand of M. **Proof:**

Since B is maximal submodule of M, then $\frac{M}{B}$ is simple and hence semisimple .But $\frac{M}{B}$ is non-

singular, therefor $\frac{M}{B}$ is projective, by [3].

B Now consider the following short exact sequence:-

$$0 \to \mathbf{B} \xrightarrow{i} \mathbf{M} \xrightarrow{\pi} \frac{M}{B} \to 0$$

Where i is the inclusion map and π is the natural epimorphism.

Since $\frac{M}{B}$ is projective, then the sequence is

splits, by [6].Thus B is a direct summand of M. Let M be an R-module and $N \subseteq M$.Recall that the resdual of M in N{denoted by [N:M]} is defined as follows:-[N:M]={r \in R,rM \subset N},see[7]

Proposition(1.9):

Let M be an R-module and $N \subseteq_y M$, then $[N:M] \subseteq_y R$.

Proof:

Let $N \subseteq_{y} M$. Assume that [N:M] is not y-closed in R .So there exists $r \in R$ such that

$$[N:M] \neq r+[N:M] \in Z(\frac{N}{[N:M]})$$
. Thus $rM \not\subset N$

and hence $\exists m_0 \in M$ such that $rm_0 \notin N$.One can easily show that

 $ann(r+[N:M]) \subseteq ann(rm_0+N)$.Since

ann(r+[N:M]) $\subseteq_{e} R$, then ann(rm₀+N) $\subseteq_{e} R$

But $\frac{M}{N}$ is non-singular ,therefore m_o+N=N

Which is contradiction.

Proposition(1.10):

Let M be an R-module and let $\{B\alpha, \in \land\}$ be an independent family of submodules of M and $A\alpha \subset B\alpha$, $\forall \alpha \in \land$. Then $\oplus A\alpha \subseteq \mathbb{Q} \oplus B\alpha$ if and only if $A\alpha \subseteq_{v} B\alpha, \forall \alpha \in \land$.

Proof:

Suppose that
$$\bigoplus A\alpha \subseteq_{y} \bigoplus B\alpha$$

By [8] $\bigoplus B\alpha \oplus B\alpha \oplus A\alpha \cong A\alpha \oplus A\alpha$. Then by [3]
 $A_{\alpha} \subseteq_{y} B_{\alpha}\alpha, \forall \alpha \in \land$.
Conversely, $A_{\alpha} \subseteq_{y} B_{\alpha}\alpha, \forall \alpha \in \land$.
Then $\frac{B\alpha}{A\alpha}$ is non-singular, $\forall \alpha \in \land$.
and hence
 $\bigoplus \frac{B\alpha}{A\alpha}$ is non-singular by [3]
But $\bigoplus \frac{B\alpha}{A\alpha} \cong \bigoplus B\alpha \oplus A\alpha$, by [8],so
 $\bigoplus A\alpha \subseteq \bigoplus B\alpha$

Following [4], we say that an R-module M is a CLS-module if every y-closed submodule is a direct summand .

It is know that a direct summand of a CLS-module is CLS .see[4]. We prove the following:-

Proposition(2.1):

Every y-closed submodule of CLS-module is CLS.

Proof:

Let M be a CLS-module and $A \subseteq_y M$. We want to show that A is a CLS-module .Let $K \subseteq_v A$, then by proposition { 1.2 } $K \subseteq_v M$. But M is CLS, therefor K is a direct summand of M and hence K is a direct summand of A.

Proposition(2.2):

Let M be a CLS-module and N be a submodule of M, then $\frac{M}{N}$ is a CLS-module.

Proof:

Let $\frac{B}{N} \subseteq_{y} \frac{M}{N}$. Then by proposition 1.1-2 $B \subseteq M.But M$ is CLS, therefor

 $M=B \oplus K, K \subset M.$ Since $N \subset B$, then one can

easily show that
$$\frac{M}{N} = \frac{B}{N} \bigoplus \frac{K+N}{N}$$
. Thus $\frac{M}{N}$

is CLS-module.

Recall that a module M is called generalized extending if for any submodule N of M, there is a direct summand K of M such that $N \subset K$ and

$$\frac{K}{N}$$
 is singular, see[9].

Proposition(2.3):

Let M be a generalized extending R-module ,then M is CLS.

Proof:

Let $N \subseteq M$.Since M is generalized extending, then there exists a direct summand K

of M such that $N \subseteq K$ and $\frac{K}{N}$ is singular .But

$$\frac{K}{N} \subseteq \frac{M}{N}$$
, so is non-singular. Thus K=N.

Proposition(2.4):

An R-module M is a CLS-module if and only if for every y-closed submodule A of M, there is a decomposition $M=M_1 \oplus M_2$ such that $A \subseteq M_1$ and M_2 is a complement of A in M.

Proof $_{iear}$ M then by our assumption there $A \subseteq M_1$ and M_2 is a complement of A in M.So $A \oplus M_2 \subseteq M_{e}M_{e}M_{1}$ by [3]. Thus $A \subseteq M_1$ by [3] and hence $\frac{M1}{N}$ is singular. But A \subseteq M₁ and $A \subseteq _{v}M$, therefor $A \subseteq _{v}M_{1}$, by

Proposition $\{1.1-1\}$. Thus A=M₁

Proposition(2.5):

An R-module M is CLS-module if and only if every y-closed submodule of M is essential in a direct summand.

Proof:

 \Rightarrow) Clear.

 \Leftarrow) let $A \subseteq_y M$, we want to show that A is a direct summand of M. Since $A \subseteq_y M$, then by our assumption $A \subseteq_e D$, where D is a direct

summand of M. Thus $\frac{D}{A}$ is singular.

But $\frac{D}{A} \subseteq \frac{M}{A}$, therefore $\frac{D}{A}$ is non-singular. Thus A=D and hence M is CLS.

Proposition(2.6):

An R-module M is CLS-module if and only if for every y-closed submodule A of M there exists a decomposition $M=M_1 \oplus M_2$ such that $A \subseteq M_1$ and $A \oplus M_2 \subset M$.

Proof:

 \Rightarrow) Clear.

(⇐) let A⊆_yM, we want to show that A is a direct summand of M.SinceA⊆_yM, then by assumption there exists a decomposition M=M₁⊕ M₂ such that A⊆ M₁ andA⊆M₂⊆_eM. So $\frac{M}{A \oplus M2}$ is singular by [3].But A⊆M₁and A⊆_yM, therefore by proposition (1.1-1) A⊆_yM₁.Since M₂⊆_yM₂, then by proposition(1.10) A⊕ M₂⊆_y M₁⊕ M₂=M.So $\frac{M}{A \oplus M2}$ is non-singular .Thus M= A⊕ M₂.

Proposition(2.7):

An R-module M is CLS-module if and only if for every direct summand A of the injective hull E(M) of M such that $A \bigcap M \subseteq_y M$, then $A \bigcap M$ is a direct summand of M.

Proof:

⇒) Clear . ⇐) Let $A \subseteq_y M$ and let B be a relative complement of A,then by [3] $A \oplus B \subseteq_e M.Since M \subseteq_e E(M)$,then $A \oplus B \subseteq_e E(M)$.Thus $E(A) \oplus E(B)=E(A \oplus B)=E(M)$.Since E(A) is a summand of E(M), then by our assumption $E(A) \bigcap M$ is a summand of M.Now $A \subseteq_e E(A)$ and $M \subseteq_e M$,thus by[3] $A=A \bigcap M \subseteq_e E(A) \bigcap M$.Hence by proposition {2.5}, M is CLS.

Proposition(2.8):

Let R be a ring ,then R is a CLS-module if and only if every cyclic non-singular R-module is projective.

Proof:

Let R be a CLS-ring and M=Ra, $a \in M$ be a nonsingular R-module. Now consider the short exact sequence .

 $0 \rightarrow ann(a) \xrightarrow{i} R \xrightarrow{f} Ra$ o Where i is the inclusion homomorphisim and f is a map defined by $f(r) = ra, r \in R$. Clearly that f is an epimorphisim and ker f = ann(a). Then by

first isomorphisim theorem,
$$\frac{R}{ann(a)} \cong \text{Ra.But}$$

Ra is non-singular ,thereforann(a) $\subseteq_y R$. Since R is CLS ,then ann(a) is a direct summand of R ,so the sequence is split. Thus by [6] $R \cong ann(a) \oplus Ra.$ Since R is projective, then Ra is projective by [6].

Conversely, let A be a y-closed ideal in R,

then $\frac{R}{A}$ is non-singular.Since R is cyclic ,then

$$\frac{R}{A}$$
 is cyclic.By our assumption $\frac{R}{A}$ is

projective.Now

consider the following short exact sequence:

$$0 \to \mathbf{A} \xrightarrow{i} \mathbf{R} \xrightarrow{\pi} \frac{\mathbf{R}}{A} \to 0$$

Where i is the incusionhomomorphisim and π

is the natural epimorphisim ,since $\frac{R}{A}$ is

projective, then the sequence is split by [6]. Thus A is a summand of R.It is well known that a direct sum of CLS-modules need not to be a CLS-modules see[4], so we give some conditions under which this relation is true.

Proposition(2.9):

Let M and N be CLS-modules such that annM+annN=R ,then $M \oplus N$ is CLS. **Proof:**

Let A be a y-closed submodule of $M \oplus N$. Since annM+annN=R,then by the same way of the prove [11,prop.4.2,CH.1], A=C \oplus D,where C is a submodule of M and D is a submodule of N. Since A=C \oplus D \subseteq_y M \oplus N,then C and D are y-closed submodule in M and N respectively by proposition {1.10}. Put M and N are CLS modules therefor C is a

But M and N are CLS-modules, therefor C is a summand of M and D is a summand of N

So A=C \oplus *D* is a summand of M \oplus *N*.

Thus $M \oplus N$ is a CLS-module.

Recall that a submodule N of R-module M is called a fully invarient submodule of M ,if for every endomorphism f:M \rightarrow M, f(N) \subset N,see[11].

Proposition(2.10):

Let $M = \bigoplus M_i$ be an R-module ,such that every y-closedsubmodule of M is fully invarient ,then M is CLS if and only if M_i is CLS $\forall i \in I$. **Proof:**

 \Rightarrow)Clear.

 $\stackrel{\leftarrow}{\leftarrow}) let S be a y-closed sub module of M .$ $For each i \in I, let <math>\pi$ i:M \rightarrow M_i be the projection map .Now Let x \in S ,then x= $\sum_{i \in I} mi$, m_i \in M_i

and $m_i=0$ for all but finite many element of $i \in I$.

 $\pi_{i}(x) = m_{i}, \forall i \in I$

.Since S is y-closed submodule ,then by our assumption ,Sis fully invarient

and hence $\pi_i(x) = m_i \in S \cap M_i$ So $x \in \bigotimes$

 $(S \cap M_i)$. Thus $S \subseteq \bigoplus (S \cap M_i)$.

But \oplus (S \cap M_i) \subseteq S, therefor S= \oplus (S \cap M_i). Since S \subseteq M, then, by proposition {1,1-1}, therefor (S) M_i) is a direct summand of M_i Thus S is a direct summand on M Recall that an R-module M is called a distributive module if

A \cap (B+C)=(A \cap B)+(A \cap C), for all submodules A,B and C of M,see[12].

Proposition(2.11):

Let $M=M_1 \oplus M_2$ be distributive R-module. Then M is CLS if and only if M_1 and M_2 are CLS.

Proof:

 \Rightarrow) Clear.

 $(=) K \subseteq_y M.Since M = M_1 \bigoplus M_2, \text{ then } K = K \cap (M_1 \bigoplus M_2) . But M \text{ distributive }, \\ \text{therefore } K = (K \cap M_1) \oplus (K \cap M_2).\text{by } \\ \text{proposition} \{1.10\} K \cap M_1 \subseteq_y M_1 \text{ and } \\ K \cap M_2 \subseteq_y M_2. \\ \text{Since } M_1 \text{ and } M_2 \text{ are } CLS, \text{then } \\ (K \cap M1) \text{ is a direct summand of } M1, \text{ and } \\ (K \cap M2) \text{ is a direct summand of } M2 \\ \text{Clearly that } K = (K \cap M_1) \oplus (K \cap M_2) \text{ is a direct summand of } M. \\ \end{cases}$

Refrences

1. Dungh ,N.V.,D.V.Huynh,P.F.Smith and R.Wisbauer,**1994**,Extending Modules,PitmanResearh Notes in Mathematics Series **313**,Longmon,New York.

- 2. Mohamed, S.H. and B.J.Muller, **2008**, Continuous and Discrete Modules,LondonMath.Soc.LNS,147 Cambridge Univ.Press,Cambridge.
- 3. Goodearl ,K.R., **1976**,Ring Theory,Non Singular Rings and Modules,MarcelDekker,New York.
- 4. Tercan, A. , **1995**, On CLS-Modules, Rocky Mountain J.Math. **25**:1557-1564.
- 5. Yongduo Wang,**2010**, When an y-closed submodule is a direct summand ,Math R.A.
- 6. Kasch, F.,**1982**,Modules and Ring,Acad. Press,London.
- 7. Larsen ,M.D..P.J.McCarthy,**1971**, Multiplicative Theory ofideals, AcademicPress,New York.
- 8. JonaThanS.Golan and Tom head,**2007**, Modules and Structure of Rings.
- 9. Zeng Qing-yi, **2005**, On Generalized Extending Modules, Journal of Zhejiang University Science A, TSSN 1673-565 X(print); Issn 1862-1755 (on line).
- 10. AL-Zubaidey ,Z.T.,**2005**,On Purely Extending Modules,M.Sc.Thesis,College of Science,University of Baghdad.
- 11. Abass ,M.S., **1991**,On Fully Stable Modules,Ph.D.Thesis, University of Baghdad.
- 12. Erdogdu, V., **1987**, Distributive Modules Canada Math.Bull,Vol.**30**,P.P(248-254).