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Abstract  

     Let R be a commutative ring with identity and let M be a unital left R-module. 

A.Tercan introduced the following concept.An R-module M is called  a CLS-

module if every y-closed submodule is a direct summand .The main purpose of this 

work is to develop  the properties of  y-closed submodules. 
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 -CLS النمط من المقاسات حول
 

 البحراني حمد بهار ,*صاحب حسين لمياء
 العراق ,بغداد,  بغداد جامعة,  العموم كمية, الرياضيات قسم

 
 الخلاصة

 المقاس مفهوم قدم تركان.عميها معرف ايسر ادياح مقاس M و محايد عنصر ذات ابدالية حمقة R لتكن     
 يكون  y-النمط من مغمق جزئي مقاس كل اذا CLS النمط من مقاس M المقاس يدعى CLS النمط من

 من المغمقة الجزئية المقاسات من كل خواص تطوير هو البحث هذا من الرئيسي الغرض.مباشر مجموع مركبة
 .  CLSالنمط من والمقاسات  y-النمط

 
1.Introduction 

      About thirty years ago,M.Harada and 

B.Muller introduced the following concept.An 

R-module M is called extending (briefly CS-

module)if every submodule is essential in a 

direct summand of M, see[1 ].Equivalently,M is 

an extending module if and only if every closed 

submodule of M is a direct summand .Extending 

modules has been studied recently by several 

authors.Among them P.F.Smith and Clark and 

Mohamed see [1, 2] . 

Now recall that, a submodule N of an R-module 

M is a y-closed submodule if  
N

M
 is non-

singular, see[3].It is easily seen that every y-

closed is closed. 

    A.Tercan generalizes the extending modules 

as follow:An R-module M is called a  CLS-

module if every y-closed submodule of M is a 

direct summand, see[4]. Note that ,Tercan used 

the concepts complement(closed submodule) in 

the sense of closed submodule (y-closed 

submodule).CLS-modules also have been 

studied by YongduoWang ,see [5]. 

In this paper,we give some results on y-closed 

submodules and CLS-modules. 

In section one ,we study the properties of y-

closed submodules.We prove that if  f:M          N 

is an epimorphisim and B yN,then for every 

singular submodule A of M ,f(A)B,see 

proposition 1.4. 

     In section two of the paper, we give 

characterizations of CLS-modules.For example , 

we show that an R-module M is CLS if and only 
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if for every y-closed submodule A of M, there is 

a decomposition M=M1M2 such that  

AM1 and M2 is a complement of A in M. 

 

Y-closed Submodule 

Proposition(1.1) : 
     Let M be an R-module and let ABM 

,then 

1- If A yM, then A yB. 

2- Let A   B   M ,then B  y M if and only  

if  
A

B
 y

A

M
. 

3- A  y A+B  if and only if  

      A B  y B. 

4- If A  y M and B   y M ,then 

     A B  y M. 

 

Proof: 

1- Clear . 

2- Clear by the third isomorphism theorem. 

3- Clear by the second isomrphisim theorem. 

4- Assume that A  y M and B  y M  to show 

that A∩B  y M ,let mM such that 

 m+(A B)Z(
BA

M


).Thus  

ann(m+A B) eR.Since 

ann(m+A B) ann(m+A),then  

ann(m+A) eR,by[3].But Z(
A

M
)=0, 

therefor m+A=A.By the same way 

m+B=B.So 

mA B and hence Z(
BA

M


)=0. 

 

Proposition(1.2) : 
      Let A and B be a submodule of an R-module 

M  if  A  y B and B  y M , then A  y M. 

Proof: 

Let A y B and B  yM. Now consider the 

following short exact sequence: 

 

0       
A

B
   

i
   

A

M



 

A

B
A

M

0 

 

Where i is the inclusion map and    is the 

natural epimorphism. SinceA   B and  

B  yM,then
A

B
  y

A

M
 by proposition 

{1.1-2}. 

Since 
A

B
and

A

B
A

M

are non-singular, then
A

M
  

is non-singular by [3 ]. 

Note : 

Let M be an R-module and ABM,then 

1- If  B yM,then A need not  be y-closed 

submoduleof  M ,for example :- 

Consider Z as Z-module and 

2ZZ it is clear that Z yZ.But 

Z(
Z

Z

2
)=Z(Z2)=Z2 is singular. 

2- If A yM, then B need not be y-closed 

in M,for example:- 

0 2ZZ. Clearly 0 yZ.But 

Z(
Z

Z

2
)=Z(Z2)=Z2 is singular. 

Note  : 
An epimorphic image of an y-closed 

submodule need not be y-closed submodule 

as the following example show:- 

Let   :Z   
Z

Z

4
   be the natural epimorphism 

.Clearly 0 y Z,but f(0)=0 is not  y-closed  in  

Z

Z

4
 {because 

Z

Z

4
  Z4 is singular}. 

 

Proposition(1.3) : 

Let f:M   N be an epimorphism and  

A  y M.  If ker fA,then f(A) yN. 

Proof: 

Assume that A  y M. To show that  

f(A) yN .let nN such that  

ann(n+f(A)) eR. Since f  is an epimorphism 

,then n=f(m),for some mM.Since 

ker fA, then ann(n+f(A)) ann(m+A) and       

hence ann(n+f(A)) eR,by[3].But A  y M, 

therefore  mA. Thus n=f(m)f(A). 

 

Proposition(1.4): 

     Let f:M  N be an R-homomorphism and 

B yN, then for every singular submodule A of 

M ,f(A)B. 
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Proof: 

Let   :N
B

N
 be the natural epimorphism. 

Consider   f : M    
B

N
. 

Now   f A  :A   
B

N
 

But A is singular and 
B

N
is non-singular, 

Therefor   f A  =0,by[ 3 ].Thus  (f(A))=0  

And  hence f(A) ker =B. 

 

The following corollary follows immediately 

fromproposition{ 1.4}. 

 

Corollary(1.5): 

     Let N be an R-module and B yN.Then 

(HOM(M,N))(M)B,for every singular  

R-module M. 

 
Proposition(1.6): 

     Let M be an R-module and A yM,then 

Z(M)=Z(A). 

Proof: 
It is enough to show that Z(M)Z(A) 

Let  i:Z(M)   M be the inclusionmap and 

 :M    
A

M
 be the natural epimorphism. 

Consider the map   i:Z(M) 
A

M
        

Since Z(M) is singular and 
A

M
  is  

non-singular ,then   i=0,by                                

[3 ].So  i: (Z(M))=  (Z(M))=0.Thus  

Z(M) ker =A.But Z(A)=Z(M)A, 

Therefor Z(A)=Z(M). 

 
Proposition(1.7): 

     Let M be an R-module and let ABM   

and A yM, then 
B

M
 is singular if and only 

B e M. 

 

 

 

 

 

 

 

Proof: 

 Let A yM and 
B

M
 is singular.By the third 

isomorphism theorem 
B

M


A

B
A

M

.Since  

A

M
is non-singular ,then by [ 3 ] 

A

B
 e 

A

M
. 

Let   :M   
A

M
    be the natural 

epimorphism.By [3],                               

B= -1
(

A

B
) e   

-1
(

A

M
) = M 

The converse is clear by [3 ]. 

 

Proposition(1.8): 
     Let M be an R-module and B be a maximal 

and  y-closed submodule of M .Then 
B

M
 is 

projective and B is a direct summand of M. 

Proof: 

Since B is maximal submodule of M ,then
B

M
 is 

simple and hence semisimple .But 
B

M
 is non-

singular,therefor
B

M
 is projective,by[ 3 ]. 

Now consider the following short exact 

sequence:- 

 0 B  
i

 M 


B

M
     0 

Where i is the inclusion map and  is the natural 

epimorphism. 

Since 
B

M
 is projective, then the sequence is 

splits, by [ 6 ].Thus B is a direct summand of M. 

Let M be an R-module and NM.Recall that 

the resdual of M in N{denoted by [N:M]} is 

defined as follows:- 

[N:M]={rR,rMN},see[ 7 ] 

 

Proposition(1.9): 

     Let M be an R-module and N yM,then 

[N:M] yR. 
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Proof: 

Let N yM .Assume that [N:M] is not  

y-closed in R .So there exists rR such that 

[N:M]≠ r+[N:M]Z(
]:[ MN

N
).Thus rMN 

and hence m0M such that rm0N.One can 

easily show that 

ann(r+[N:M]) ann(rm0+N).Since 

ann(r+[N:M])  e R, then ann(rm0+N)  eR 

But 
N

M
 is non-singular ,thereforr mo+N=N 

Which is contradiction. 

 

Proposition(1.10): 
     Let M be an R-module and let {Bα,  }be 

an independent family of submodules of M 

andAαBα, α  .ThenAα  y
Bα if 

and only if  Aα y Bα, α  . 

Proof: 

Suppose that Aα  y
Bα 

By [8]




A

B




 





A

B
.Then by [3 ] 

Aα  y Bα 𝞪, α  .  
Conversely, Aα  yBα 𝞪, α  . 

Then 




A

B
is non-singular ,  α  . 

 and hence  

 




A

B
 is non-singular by [3] 

But  




A

B
 





A

B




   , by [ 8 ],so  

Aα  y
Bα. 

 

 

1. Characterizations of  CLS-modules 

     Following [4],we say that an R-module M is 

a CLS-module if every y-closed submodule is a 

direct summand . 

It is know that a direct summand of 

a CLS-module is CLS ,see[ 4 ]. 

We prove the following:- 

 

Proposition(2.1): 

     Every y-closed submodule of CLS-module is 

CLS. 

Proof: 
Let M be a CLS-module and A yM.We want 

to show that A is a CLS-module .Let 

K yA,then by proposition{ 1.2 }K yM.But M 

is CLS,therefor K is a direct summand of M and 

hence K is a direct summand of A. 

 

Proposition(2.2): 
     Let M be a CLS-module and N be a 

submodule of M, then 
N

M
 is a CLS-module. 

Proof: 

Let 
N

B
 y

N

M
 .Then by proposition 1.1-2 

B yM.But M is CLS,therefor 

M=BK,KM.SinceNB,then one can 

easily show that 
N

M
=

N

B
⊕

N

NK 
 .Thus 

N

M
 

is CLS-module. 

Recall that a module M is called generalized 

extending if for any submodule N of M , there is 

a direct summand K of M such that NK and 

N

K
 is singular, see[ 9]. 

 

Proposition(2.3): 
     Let M be a generalized extending R-module 

,then M is CLS. 

Proof: 

Let N yM.SinceM  is generalized 

extending,then there exists a direct summand K 

of M such that NK and
N

K
 is singular .But  

N

K


N

M
,so  is non- singular .Thus K=N . 

 

Proposition(2.4): 
     An R-module M is a CLS-module if and only 

if for every  y-closed submodule A of M ,there 

is a decomposition M=M1M2 such that 

AM1 and M2 is a complement of A in M. 

Proof: ⟹) Clear . ⟸) let A yM,then by our assumption, there exists a decomposition M=M1⊕M2 such that 
AM1 and M2 is a complement of A in M.So 
AM2 eM,by [3 ] .ThusA eM1 by[3] and 

hence 
N

M1
 is singular.But AM1 and 

A yM,thereforA yM1,by  

Proposition {1.1-1} .Thus A=M1 

 
Proposition(2.5): 
     An R-module M is CLS-module if and only 

if every  y-closed submodule of M is essential in 

a direct summand. 

Proof: 

 ) Clear . 
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 ) let A yM, we want to show that A is a 

direct summand of M. Since A yM, then by 

our assumption A eD, where D is a direct 

summand of M. Thus
A

D
  is singular. 

But
A

D


A

M
  , therefore

A

D
   is non-singular. 

Thus A=D and hence M is CLS. 

 

Proposition(2.6): 
     An R-module M is CLS-module if and only 

if for every y-closed submodule A of M there 

exists a decomposition M=M1M2 such that 

A  M1 andAM2 eM.  

Proof: 

 ) Clear . 

) let A yM, we want to show that A is  

a direct summand of M.SinceA yM,then by 

assumption  there exists a decomposition 

M=M1M2 such that A  M1 andAM2 eM.  

So
2MA

M


   is singular by [3].But  AM1and 

A yM, therefore by proposition (1.1-1) 

A yM1.Since M2 yM2,then  by 

proposition(1.10) AM2 y M1M2=M.So 

2MA

M


is non-singular .Thus M= AM2. 

 
Proposition(2.7): 
      An R-module M is CLS-module if and only 

if for every direct summand A of the injective 

hull E(M) of M such that A M yM, then 

A M is a direct summand of M. 

Proof: 

 ) Clear . 

 ) Let A yM and let B be a relative 

complement of A,then by [3 ] 

AB eM.SinceM eE(M),then 

AB eE(M).Thus  

E(A) E(B)=E(AB)=E(M).Since E(A) is a 

summand of E(M) ,then by our assumption 

E(A) M is a summand of M.NowA eE(A) 

and M eM,thus by[3 ] 

A=A M eE(A) M.Hence by proposition 

{2.5}, M is CLS. 

 
Proposition(2.8): 
   Let R be a ring ,then R is a  CLS-module if 

and only if every cyclic non-singular  R-module 

is projective. 

Proof: 
Let R be a CLS-ring and M=Ra, aM be a 

nonsingular R-module. Now consider the short 

exact sequence . 

0     ann(a)  
i

R   
f

 Ra     o 

Where i  is the inclusion homomorphisim and f 

is a map defined by f(r)= ra,rR. Clearly that f  

is an epimorphisim and ker f =ann(a) . Then by 

first isomorphisim theorem,
)(aann

R
 Ra.But 

Ra is non-singular ,thereforann(a) y R. 

Since R is CLS ,then ann(a) is a direct summand 

of R ,so  the sequence is split.Thus by[ 6 ] 

R ann(a)Ra.Since R is projective, then Ra is 

projective by [6 ]. 

 

Conversely , let A be a y-closed ideal in R , 

then
A

R
is non-singular.Since  R is cyclic ,then 

A

R
  is cyclic.By our assumption 

A

R
 is 

projective.Now 

consider the following short exact sequence: 

 

0 A 
i

 R 


 
A

R
0           

Where i  is the incusionhomomorphisim and   

is the natural epimorphisim ,since
A

R
 is 

projective,then the sequence is split by [6 ]. 

Thus A is a summand of R.It is well known that 

a direct sum of  CLS-modules need not to be a 

CLS-modules  see[4],so we give some 

conditions under which this relation is true.   

 
Proposition(2.9): 
     Let M and N be CLS-modules such that 

annM+annN=R ,then MN is CLS. 

Proof: 

Let A be a y-closed submodule of MN. Since 

annM+annN=R,then by the same way of the 

prove [11,prop.4.2,CH.1] , A=CD,where C is 

a submodule of M and D is a submodule of N. 

Since  A=CD yMN,then  C and D are 

y-closedsubmodule in M and N respectively by 

proposition{1.10}. 

But M and N are CLS-modules,therefor C is a 

summand of  M and D is a summand  of N 

So A=C D  is a summand of M N . 

Thus M N  is a CLS-module. 

 

𝜋 
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Recall that a submodule N of R-module M is 

called a fully invarientsubmodule of M ,if for 

every endomorphism f:M   M, 

f(N)N,see[11]. 

 
Proposition(2.10): 

Let M=Mi be an R-module ,such that every 

y-closedsubmodule of M is fully invarient ,then   

M is CLS if and only if Mi is CLS   iI. 

Proof: 
 )Clear . 
 ) let S be a y-closed sub module of M . 

For each iI, let  i:MMi be the projection 

map .Now Let xS ,then x=
Ii

mi , mi  Mi 

and mi=0 for all but finite many element of  

i I  . 

  i(x)= mi , Ii  

.Since S is y-closed submodule ,then by our 

assumption ,Sis fully invarient 

and hence  i(x)=mi  SMiSo x                

( SMi).Thus S  ( S Mi). 

But  ( S Mi)S,therefor S= ( S Mi). 
Since S yM, then by proposition {1.1-1} 
( S Mi) yMi  iI. .But Mi CLS  iI. 
,therefor (S Mi) is a direct summand of Mi  
Thus S is a direct summand on M 

Recall that an R-module M is called a 

distributive module if  

A (B+C)=(A B)+(AC) ,for all 

submodules A,B and C of M,see[12]. 

 

Proposition(2.11): 

     Let  M= M1M2 be distributive R-

module.Then M is CLS if and only if M1  

and M2 are CLS. 

Proof: 

 ) Clear. 

) K y M.Since M=M1M2, then 

 K = K  (M1M2) . But M distributive , 

therefore K=(K M1) (K M2).by 

proposition{1.10} KM1 yM1 and 

K M2 yM2.  

Since M1and M2 are CLS,then 

(K M1)is a direct summand of M1, and  

(K M2)is a direct summand of M2 

Clearly that K=(K M1) (K M2) is a direct 

summand of M. 
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