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Abstract 

     Our active aim in this paper is to prove the following  Let Ŕ be a ring having an 

idempotent element )1,0(  eee . Suppose that R is a subring of  Ŕ which 

satisfies: 

)(i ReR  and RRe  . 

)(ii 0xR  implies 0x . 

)(iii 0eRx  implies (0x and hence 0Rx  implies )0x . 

)(iv 0)1(  eexeR  implies 0exe .  

If  D  is a derivable map of R  satisfying .2,1,;)(  jiRRD ijij Then D  is 

additive. This extend Daif's result to the case R  need not contain any non-zero 

idempotent element. 
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 هوليال المشتقات الضربية عمى الحمقات 
 

 عبد الرحمن حميد مجيد, *اظم مهديعبد الك هدى 
 العراق ,بغداد ,جامعة بغداد ,كمية العموم ,قسم الرياضيات

 
 الخلاصة

حمقة تمتمك عنصر متحايد  Ŕ لتكن  .ىدفنا الاساسي في ىذا البحث ىو برىان الاتي     
)1,0(  eeeنفرض بأن . R  من حمقة جزئيةŔ :تحقق 

 ReR  )(iوReR  
)(ii0xR 0يؤدي إلىx. 
)(iii0eRx 0  يؤدي إلىx (0 ولذلكRx0 يؤدي إلىx.)     

 0)1(  eexeR )(iv 0يؤدي إلىexe.     
ijijتحقق Rمشتقو ضريية عمى  Dكانت إذا RRDji  وىذه النتيجة  تجميعية. Dفأن ,2,1;)(

 .لا تحتوي عمى اي عنصر متحايد غير صفري Rالباحث ضيف في حالو كون ىي توسيع لنتيجة
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1. Introduction 

     Let  R  be an associative ring (not  

necessarily with identity element) and let  

Ryx , . Recall that R  is prime if ,0xRy   

then either 0x or 0y . A mapping   

 RRD : is derivable (multiplicative  

derivation) if )()()( yxDyxDxyD   

 for all Ryx , .  A mapping   of R  onto 

arbitrary associative ring S  is called a 

multiplicative isomorphism if   is bjiective and 

satisfies  )()()( yxxy   for all Ryx , . 

The study of relationship between the 

multiplicative and the additive structures of a 

ring has become an interesting and active topic 

in ring theory and operator theory recently. For 

operator algebra, one often studies the additivity 

of  bijective  Jordan (semitriple) multiplicative 

map from a standard operator algebra on a 

Banach space of dimension at least 2 onto 

another algebra [1  2  3]  For rings, the study of 

the question when a multiplicative isomorphism 

is additive was first proved by Rickart [4] and 

also by Johnson [5], under some conditions were 

imposed on R . Later on, Martindale [6] 

obtained a quite surprising and famous theorem 

which generalize the main theorem of Rickart's   

Also, Lu and Xie [7], extended Martindale's 

result to ring without idempotent. More 

precisely, Martindale proved,  Theorem M.               

Let R  be a ring containing a  family  of 

idempotents { iei ; } which satisfies: 

)(i  0xR   implies 0x . 

)(ii  If 0Rxei   for each i  then 0x   

(and hence 0Rx  implies 0x ).  

)(iii  For each  i ,  0)1(  iii eRxee   

implies 0ii xee . 

Then any multiplicative isomorphism of  R   

onto an arbitrary ring is additive  In particular  

every multiplicative bijective map from a  

prime ring containing a nontrivial idempotent  

element onto an arbitrary  ring is  necessarily  

additive. Recently Martindale's results extended 

to elementary maps of rings [8]. In 2010 Lu [9], 

defined the following notations  A mapping  

RRD :  is called a Jordan derivable (resp.  

Jordan semitriple derivable) if 

)()()()()( xyDxyDyxDyxDyxxyD 

 (resp. )()()()( xxyDxyxDyxxDxyxD   

for all Ryx , . He showed that every Jordan  

derivable (Jordan Semitriple derivable) of a 2- 

torsion free until Prime ring having a nontrivial 

idempotent element is additive. The notion of 

derivable map of a ring is due to Daif [10], who 

proved that every derivable map of  a ring 

satisfies Martindale's conditions on his theorem 

is additive  We notice that Martindale's 

condition requires that R possess idempotents, 

and many rings do not have idempotents, as in 

strictly upper matrix ring.  

     The aim of the present paper is extend Daif's 

result to ring need not contain any non-zero  

idempotent element. It should be mentioned that 

the idea of the method comes from [6, 7,10]. 

 

2. Derivable Maps 
     The main result in this section reads as 

follows. 

Theorem 2.1. Let Ŕ be a ring having an  

idempotent element )1,0(  eee . Suppose  

that R  is a subring of  Ŕ which satisfies: 

)(i ReR  and RRe  . 

)(ii 0xR  implies 0x . 

)(iii 0eRx  implies (0x and hence 0Rx  

implies )0x . 

)(iv 0)1(  eexeR implies 0exe . 

If  D  is a derivable map of R  satisfying 

.2,1,;)(  jiRRD ijij Then D  is additive.  

Moreover   D  is not only derivation but also 

covers the concepts of another types of 

derivation. 

     In this sequel we will need the following  

lemmas which are necessary for our proof, 

in which we call this idempotent 1e and set 

formally 12 1 ee   ( R  need not have an 

identity). By Condition )(i  we may write R   in 

its Peirce decomposition relative to idempotent 

element, 

22211211 RRRRR   

Where jiij eR Re ; 2,1, ji   and ijx  will  

denote an element of ijR .  

     Let's begin with 

Lemma 2.2 [10]. For any mnx   in mnR   and  

pqx  in pqR  with qp  , we have 

)()()( pqmnpqmn xDxDxxD  .                                                      

Lemma 2.3. Let 2,1  jik . Then 

)()()( jkijikiijkijikii yxDyxDyxyxD  .  
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Proof.  

     It easy to verify that, 

))(( jkikijiijkijikii yyxxyxyx  .  

Then making use of Lemma 2 2 the following 

equation 

)( jkijikii yxyxD  )])([( jkikijii yyxxD   

)()())(( jkikijiijkikijii yyDxxyyxxD 

= D )(( iix iky + jky )+ D ( ijx )( iky + jky )+ iix D (

iky + jky )+ ijx D ( iky + jky )= D ( iix ( iky + jky ))+

D ( ijx ( iky + jky ))      = D ( iix iky ) 

+ D ( ijx jky ), hold true.                  

     The following are auxiliary lemmas in our  

Proof. 

Lemma 2.4.  D  is additive on 12R , i e.  

D ( 1212 yx  )= D ( 12x )+ D ( 12y ). 

Proof.  

     Let 12x  and 12y  be two elements in subring  

12R  We consider the sum D ( 12x )+ D ( 12y ). 

For any js1  jR1 and any 2it  2iR  from our 

assumption we get  

[ D ( 12x )+ D ( 12y )- D ( 12x + 12y )] js1 =0.        (1) 

2it  [ D ( 12x )+ D ( 12y )- D ( 12x + 12y )]             (2) 

Now let js2  jR2  be arbitrary. For 11t  11R  

making use of Lemma 2 3 together with the fact 

every derivable is Jordan semitriple derivable  

we see that 

11t [ D ( 12x )+ D ( 12y )] js2 = 11t D ( 12x ) js2 + 11t

D ( 12y ) js2 = D (( 11t ( 12x js2 ))+ D (( 11t
12y ) js2

)- D ( 11t ) 12x js2 - 11t 12x D ( js2 )-

D ( 11t ) 12y js2 - 11t
12y D ( js2 ) 

= D ( 11t ( 12x + 12y ) js2 )- D ( 11t )( 12x + 12y ) js2 -

11t ( 12x + 12y ) D ( js2 )= D ( 11t )( 12x + 12y ) js2  

+ 11t D ( 12x + 12y ) js2 + 11t ( 12x + 12y ) D ( js2 )-

D ( 11t )( 12x + 12y ) js2 - 11t ( 12x + 12y ) D ( js2 )        

 = 11t D ( 1212 yx  ) js2 .                 

This imply that 

11t [ D ( 12x )+ D ( 12y )- D ( 1212 yx  )] js2 =0.  

Left multiplying Equation (1) by 11t , we obtain 

11t [ D ( 12x )+ D ( 12y )- D ( 1212 yx  )] js1 =0.  

Comparing those two equations  we arrive at 

11t [ D ( 12x )+ D ( 12y )- D ( 1212 yx  )] R =0.  

Then by Condition )(ii , we get 

11t [ D ( 12x )+ D ( 12y )- D ( 1212 yx  )]=0       (3)  

In a similar fashion as above  for 21t  21R  one 

shows that  

21t [ D ( 12x )+ D ( 12y )- D ( 1212 yx  )]=0.  

This together with (2) and (3) gives us 

R [ D ( 12x )+ D ( 12y )- D ( 1212 yx  )]=0.  

Therefore  

D ( 1212 yx  )= D ( 12x )+ D ( 12y ) in view of 

condition )(iii .                                                    

Lemma 2.5.  D  is additive on 11R  i e  

D ( 1111 yx  )= D ( 11x )+ D ( 11y ). 

Proof.  

     Let 11x , 11y  be arbitrary elements in 11R .  

For 12t  12R , we have  

[ D ( 11x )+ D ( 11y )] 12t = D ( 11x 12t )+ D ( 11y 12t )-

( 11x + 11y ) D ( 12t ) 

But 11x 12t  and 11y 12t  are in 12R  and D  is 

additive on 12R  by Lemma 2.4, hence  

[ D ( 11x )+ D ( 11y )] 12t = D (( 11x + 11y ) 12t )-

( 11x + 11y ) D ( 12t )= D ( 11x + 11y ) 12t +( 11x + 11y )

D ( 12t )-( 11x + 11y ) D ( 12t ).    

Therefore, 

[ D ( 11x )+ D ( 11y )- D ( 11x + 11y )] 12t =0. 

In other words 

[ D ( 11x )+ D ( 11y )- D ( 11x + 11y )] 12R =0. 

Since  

D ( 11x )+ D ( 11y )- D ( 11x + 11y ) is an element in 

11R  by assumption, and our previous conclusion 

that 

[ D ( 11x )+ D ( 11y )- D ( 11x + 11y )] 12R =0, forces 

D ( 1111 yx  )= D ( 11x )+ D ( 11y ), because of 

condition )(iv .                                                   

      In light of these lemmas we can prove 

Lemma 2.6. D  is additive on 11R + 12R = Re1 , 

i e  

D (( 11x + 12x )+( 11y + 12y ))= D ( 11x + 12x )+ D (

11y + 12y ).        

Proof 

     Let 11x , 11y  be in 11R and 12x , 12y be in 12R . 

Then taking use of Lemmas 2.2, 2.4-2.5, we 

have   
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D (( 11x + 12x )+( 11y + )12y ) 

= D ( 11x + 11y + 12x + 12y ) 

= D ( 11x + 11y )+ D ( 12x + 12y )           

 = D ( 11x )+ D ( 11y )+ D ( 12x )+ D ( 12y )          

= D ( 11x + 12x )+ D ( 11y + 12y ).  

       

Now we are in a position to show that 

D  preserves addition. 

 

Proof of main Theorem.  

     Let yx,  be any elements of  R  and let t  be 

in eR  Thus tx  and ty are elements of eR . 

Hence in light of Lemma 2.6, the equations 

t [ D ( x )+ D ( y )]= t D ( x )+ t D ( y )= D ( tx )+

D ( ty )- D ( t )( x + y )= D ( t ( x + y ))-

D ( t )( x + y )= D ( t )( x + y )+ t D ( x + y )-

D ( t )( x + y )= t D ( x + y ), hold true  

Therefore,  

t [ D ( x )+ D ( y )]= t D ( x + y ) 

Since t  is arbitrary in eR , we can deduce that 

eR [ D ( x )+ D ( y )- D ( x + y )]=0. 

By Condition )(iii , we see that 

D ( x + y )= D ( x )+ D ( y ). 

Therefore D  is derivation                       

Obviously, Theorem 2.1 has the following  

Corollary 2.7. Let Ŕ be a ring having an  

idempotent element )1,0(  eee . Suppose 

that R  ( R  need not have an identity) is a prime 

subring of Ŕ which satisfies ReR   and 

RRe  . If D  is a derivable map of R  

satisfying  .2,1,;)(  jiRRD ijij Then D  is 

additive.  
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