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Abstract

Let M be a prime T'-ring satisfying acbic = afbac for all a,b,c € M and
a, f €T with center Z, and U be a Lie (Jordan) ideal. A mapping d : M — M

is called I'- centralizing if [u,d(u)], € Z forall u €U and & €I".In this paper
, we studied Lie and Jordan ideal ina prime T -ring M together with T -

centralizing derivations on U.
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1. Introduction

N. Nobusawa [1] introduced the notion of
I" -ring, more general than a ring.W. E. Barnes
[2]weakened slightly the conditions in the
definition of I"-ring in the sense of Nobusawa
after these two papers were published, number
of modern algebraists have determined a lot of
fundamental properties of T'-ring and extended
numerous significant results in classical ring
theory to gamma ring theory see [3, 4, 5 and 6]
for partial references.

In classical ring the theory of centralizing
mapping on prime ring was initiated by Posner
[7] who proved that the existence of a nonzero
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derivation on a prime ring forces the ring to be
commutative. In [8] R. Awtar considered
centralizing derivations on Lie and Jordan ideals
generalized Posner's theorem. A lot of work has
been done during the last decades in this field
see [9, 10, 11, and 12] where further reference
can be found.

By the same motivation as in the classical ring
theories we proved the following results.

Let M be a prime I"-ring, satisfying,

aabpc = apbacfor all a,b,c € M and

a, f € I'"and it will represented by (*)

i) If characteristic of M is different from 2 and
3and U be Lie ideal then if d isI" -centralizing
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on U then U is central in M.

ii) If M has characteristic 3 and U is Jordan
ideal . then If d is I" -centralizing then U is
central in M further , if U is a Lie ideal with
uau €U for all ueUand,ax eI ,then U is
central in M. The case when M has characteristic
2 is also studied.

2. Some Basic Definitions

Definition 2.1 [2]: Let M and I" be two additive
abelian groups If there exists a mapping

(a,a,b) > aacbof M xI'xM — M Which
satisfies forall a,b,ce Mand ,fT": 1)
N(@a+b)ac =aac +bac,

ia(a + )b =aab +apb,
iiaa(b+c)=aab+aac.

2) (acb)pc =aa(bpe).

Then M is called I" -ring in the sense of Barnes.

Definition2.2[3]: An additive subgroup S of a
I" -ring M is called subring if SI'S < S.

Definition2.3[3]: An additive subgroup | of M
is said to be a left (or right) ideal of M if
Ml <1 (orII'M < 1), if |1 is both a right

and left ideal, then we say that | is an ideal.

Definition2.4[3]: Let M be a I"-ring then M is
called prime if aI'MI'b=0 implies either
a=0o0rb=0 where a,b e M.

Definition2.5[3]: Asubset S if a I"-ring M is
called stronglyilpotent if there exists a positive
integer n such that (SI)"S = (0).

Remark:

1)For any a,beM aab—beoa are denoted
by[a,b], .Then one has the basic identities,
[apb,c], =[a,c], pb+apIb,cl, +a[B, al.b
And,

[a,bpc], =bpla,c], +[a,b], +b[s,a],c,
forall a,b,ce Mand «, f T . Using the
assumption (*) the above identities reduce to,
[apb,c], =[a.c], fb+aplb,c],

And, [a,bgc], =bpla,c], +[a,b], .
2) Let M be I"-ring, the center of M is defined
as,Z={aeM :aam=maa forall

meM,a el
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Definition2.6 [13]: An additive subgroup U of
a I'-ring M is said to be a Lie ideal of M if

[u,m], €U, for all ueU,meM and

ael'.And U is said to be Jordan ideal if

uam+meu €U, for all ueU,meM and

acel.

Definition2.8[14]: An additive mapping

d:M — Mis called a derivation of M if ,
d(xay) = d(X)ay + xed(y), holds for all

X,yeMand a eT.

For a fixed aeMand aeI" the mapping,

17 :M —> M given by 17 =[m,a],, is said

to be inner derivation of M [15].

Definition2.9[16]: Let M be a I'ring with
center Z and U be lie (Jordan) ideal of M .A

mapping d:M — M is called I-centralizing
(resp.  7-commuting) if [u,d(u)], €Z (resp.
[u,d(u)], =0, forallueU,and x €T

3. Basic Lemmas

For proving our main results, we need some
important results which we have proved here as
lemmas. So, we start as follows:

Lemma3.1: Let M be a prime I'-ring, d a
nonzero derivation of M and a be an element of

M if acd(m)=0,for al meMand aeT.
Then either a =0 or d is zero.
Proof:

We have aad(m) =0, for all me M and

ael’. Replace m by max where xeM
,then
aad(max) = aad(m)ax + acmad (X)
= aamaod (X).
Forall xeM and o €I". That is
al'MId(x) =0, forall xe M.

Since M is prime, either a=0 ordis zero

Lemma3.2: Let M be a prime I -ring of
characteristic not 2 and d,,d, be a derivation of
M such that the iterate d,d, is also a
derivation, Then one at least of d,,d, is zero.
Proof:

We have d,d, isa derivation of M that is,

d,d,(acb) =d,d,(a)ab+acd,d, (b),
forall a,beMand ax eT.
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But d,,d, are each derivation so,
dldz (aab) = dldz (a)ab + dz (a)adl (b)
+d,(a)ad, (b) +acd, (d, ().
But,
d1dz (ach) = d1d2 (@)ab + aadl (dz (b))
So,
d,(a)ad, (b) +d, (a)ed, (b) =0,
forall forall a,beMand ¢ T ...(1)
Replace a in the last equation by aad, (C)
d,(aed, (c))ad, (b) +d, (acd, (c))ad, (b)
=0,forall a,b,ceMand o eT.
That is
aa(d,(d,(c)ad, (b)) +d, (d,(c))ed, (b) =0
forall a,b,ceMand o T".
Which is merely equation (1) with a replaced by
d,(c), then we are left with
d, (a)ed, (c)ed, (b) +d, (a)ad, (C)ad, (b) =0,
forall a,b,ceMand a eT.
But,
d,(a)ad, (b) =—d, (a)od, (b) by replacing a
by c the last equation becomes,
d, (a)ad, (c)ed, (b) - d, (a)ad, (€)ad, (b) =0
Factoring out aad, (b) on the right, we have
(dz (a)adl(c) - dl (a)adz (C))adl (b) =0,
forall a,b,ceMand o eT.
And by Lemma 3.1 unless d, =0 we have,
(dz (a)adl(c) - d1(a)0‘d2 (C)) =0,
forall a,ceMand aeT.
Replace b by c in (1) then,
(dz (a)adl(c) + dl(a)adz (C)) =0,
forall a,ceMand o T.
Adding these last two equations, we get
2d,(a)ad, (c) =0, forall a,b,c e M and
aecl.
Since characteristic of M not equal 2, then
d,(a)ad,(c) =0, orelse d; =0 using Lemma
3.1 again with a replacing d,(a) we get,
either d, =0or d, =0

Lemma3.3:Let M be a prime I' -ring of
characteristic different from 2, U be Lie ideal
of M and d be anon zero derivation of M.
Then if d isT" -centralizing on U and uau €U ,
for all ueUand ael’, then M is I'-
commuting on U.
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Proof:
We have d is I" -centralizing on U
i.e

[u,d)], €Z,forall ueU,and  eT.

Linearizing the  above  relation  on,
U =u-+uau,we get

[uau,d(u)], +[u,ucd(u) +d(u)au], €Z,
forall ueU,and a eT.

That is,
4u,d(u)],au e Z, forall ueU,and « <T.

Since characteristic of M not equal 2 and
[u,d(u)], € Z then we get
[u,d(u)], afu,m], =0, forall
meM,ueUand a,f T.
If for some u €U, [u,d(u)], # Othen we get
[u,m];, =0, in particular [u,d(u)], =0
Hence,
[u,d(u)], =0,forall ueU,and o eT.

Lemma3.4: Let M be a prime I" -ring, U be a
Lie ideal of M and d a nonzero derivation of M.
Ifdis I' -centralizing on U then

[[d(m),ul,,ul, €Z,
forall meM,ueUand o, T
Further, if d is I" -commuting on U then,
[[d(m),u],.u], =0,
forall meM,ueUand o, T.

Proof:
Since U is Lie ideal then,

[um], €U,
forallueU,meMand a T.
So that,[u +[u,m] ,,d(u+[u,m];)], € Z.
That is,
[[u,m],.d ()], +[u,[d(u),m],],
+[u,u,d(m)],], €2,
forall meM,ueUand o, T.

Now since, for any for all
meM,ueU ,a,f el and by (*) we have

[[u,m],,d(W)], +[u.[d(u).m],],

= [m,[d(u),ul,], €Z.

By I -centralizing of d we get,
[[u,m],,d(W)], +[u,[d(u),m],], =0.

Hence,
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[[d(m),u],.ul, €Z,
forall meM,ueUand o, T.
The last part can be obtained similarly.

Lemma3.5: Let M be a prime I' -ring of
characteristic not equal 2 and 3, and let U be a
Lie ideal of ,if dis I -centralizing on U then d
is I' -commuting on U.
Proof:

Since dis T" -centralizing then,
by Lemma 3.4, we have

[[d(m),u],.ul, €Z,
forall meM,ueUand o, .

By using the assumption (*) we get
uBuad(m) +d(m)aupu —2uBd(M)au € Z,

foralmeM,ueUand o, fel’. ...(2)
Commuting withu , we have

3upucd(m)ou +upucudd(m) =

3usd (m)aupu + d(m)duauSu ..(3)

In (3) replace m by u and using d is
I" -centralizing,
uBucudd (u) —d(u)ducupu

=3(uead(u) —d(u)au)supu ..(4)
Furthermore,

2(ued(u) —d(u)au) pu
=ufucd(u)—d(u)aupu. ...(5)

Write d(m) =m’ and then by replacing m by
uem’ in (4) , we get

3uduam” cufu + ufucuduam” —
3ufucuam” su —uam” Juaufu +

3udd (U)am' aufu + ufucudm’ ed (U) —
3uBucd (u)am’su —d(u)am’ Sucuu = 0,
foralmeM,ueUand a, 5,0 T. ...(6)
However, by assumption (*) and (4), we have
3uduam” cufu + ufucuduam” —
3uBuauam” U —uam” duaufu =
Uua(3uom” aufu + ufucudm” —
3upuem”du —m”"sucupu) = 0.

Then equation (6) becomes,

3udd (U)am' aufu + ufucudm’ ed (U) —
3uBued (u)am’du —d(u)am’duacuu = 0,
foral meM,ueUand o, 3,0 T. ...(7)
Multiply (4) on the left by d(u)ca and then sub-
tract the results from (7) to get,

3(ued (u) —d(u)au)dn’aupu +
ufuauad (u) —d(u)aufucu)om’ —
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(upued(u) —d(U)aupu)am’du =0 ...(8)
Using (5) and (6), we arrive at after dividing by
3,
(Ua(u) —d(u)au)a(m'supu +upuom’ —
2upm’'au) =0, forall me M,ueU and
a,p,0 el
If, (uad(u)—d(u)au # 0, for some
ueUand a eI'.Then we have
m’'dupu+upuom’ — 2upm’'su =0 ..(9)
Replace mby ufm in (9) and using (*) we get,
ugm’dufu +upupudm’ —2upudm’ fu +
d(u) Amdéupu +upusd (u)om —
2upd (u)ompu =0
By using (9) we get,

ug(m’'supu +upudm’ —2udm’fu) =0,
Then equation (10) becomes,
d(u) Amdupu +upusd (u)am
—2upd(u)ompu =0. .11
Now in (9) replace m by u, and multiply this
on the right by Sm

..(10)

d(u)éupupm-+upudd (u) Am
—2upd(u)oupm=0. ..(12)
Subtract (12) from (11),

d(u) S(mdupu —udupm)
—2upd(u)o(mpu —upm) = 0. ..(13)

Replace m by ufm and using assumption (*)
d(u)Aup(méupu —upudm)
=2updu)aupg(mpu—upm)=0. ..(14)
Multiply (13) by ug from left and then subtract
the results from (14),

(usd (u) —d(u) pu) B(mdupu —upudm) —
2up(upd (u) —d(u) pu)s(mpu —upm) = 0.
Since, uad(u) —d(u)au =0, forall ueU
and o €I’. Then,

mauu —upuom—2u(mpu —upm) =0,
forall me M

So, maupu —upuom—2upmpu = 0, that is
ug(mou —udm) = (mdéu —udm) Au,

That is U in the center by Lemma 3.2 or else
ued(u) —d(u)au =0,

Which in both cases

[u,d(u)], =0forall ueUand e €T

The following lemma may have
independent interest.

some
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Lemma3.6: Let M be a prime I -ring of
characteristic not 2, U be Jordan ideal of M

and d be a nonzero derivation of M.
ued(u) =d(u)au =0,forall ueU ,ax eT.

Then U =0.
Proof:
Linearizing the relation uad(u)=0 on

U=u+w where weU to get,
ued(w) +wead (u) =0,
forall uuweU and a €T

ForueUandany me M,a €T,

ua(uam—mau) + (U —mau)ou € U.

But, 2(Mauau —uauom) =

{ua(mau —uam) + (Mo —uam)ou} —

{(mau —uam)au + ua(Mmau —uom)}

As the first and second term on the right hand

side are in U,
2(Mauau —uauom) e U.

Now since,

2uau €U and 2(Mmauou —uauom) eU.

Then, 4ucuam and dmaucuare in U,
Replacing w by 4maucuin (15) and using the
hypothesis, we get
uad(m)auou =0,

forall meM,ueUand o €T. ...(16)
Replace why mpu +ufm and using the
hypothesis, we get

uBuad(m) +ued(m)Su +uempd (u) +
ufmed(u) =0, for all me M,u €U and
a,pel.

Multiply by au on the right and using the
assumption (*) together with equation (16) we
obtain

If

..(15)

uBued (m)au =0,
foralmeM,ueUand o,fel’. ..(117)
Again replace w by 4ucuom in (15), we get
uauauad(m) =0, forall
meM,ueUand el

Then by Lemma 3.1, we have
Uauau =0, forall ueUand a eT.

FormeM,ueUand o €T,
2(uauam + mauau) € U.

That is,
2°[(uauam + mauau)a]? (Uauom +
maucu) =0, forall me M,u €U and
ael.
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Multiply from the right side by uctc =0 we
get
2°[(uauam)a]® (uauam) =0,
forallmeM,ueUand a €T.

If forsomeueUand o €I” , uau = 0 then
UauaM is a nonzero right ideal of M, then by
Levitzki’s Theorem [13] M would have a
nilpotent ideal; which is impossible for prime
I -ring, hence

ucu =0, forall ueU and « eT.

By repeating the above argument we can show
that u=0, forallueU

4. The Main Theorems
Theorem 4.1: Let M be a prime I -ring of
characteristic different from 2 and 3. Let d be a
nonzero derivation of M and U be a Lie ideal of
M .If d is I" -centralizing on U then U — Z.
Proof:

Since d is I" -centralizing on U, then by
using Lemma 3.5, we have

[u,d(u)], =0, forall ueU and « €T.
Then by Lemma 3.4, we get

[[d(m),ul,,.ul, =0,

forall meM,ueU and o €T. ..
In (1) replace u by u+w where weU ,
[[d(m),ul,,wl, +[[d(m),w],,u], =0,
forall me M,u,weUand ,Bel. ...(2)

Suppose now, u,weU are such that wav .
Then by replacing Wby wavin (2) we get after
using (*),
wea[[d(m),u],,v], +[[d(m),u] ;, W], av +
[d(m),w],, Alu,v], +[[d(m),w];,uJav +
wa[[d(m),v], ,u], +[w,u],e[d(m),v], =0.
In view of (2) the last equation reduces to ,
[d(m),w], Blu, V], +[w,u], a[d(m),V], =0.
Replace v by [t,w] where te M in above
equation , we have

[d(m),w],eflt, W], ul, +[w.ul,

[d(m).[t.w], 1, =0, E)
forall ttmeM,u,weUand a, S T.
Putting U =w in (3), we have
[d(m), W], eflt,w],,w], =0 - (4)

Replace t by tad(a) in (4) where ae M
yields on expansion and (*),
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[d(m), w],e{2[t, W], afd (a), W], +
[[t, W], , W], ed(a) +tef[d(a), W], , W], } =0.

By (4) the second term is zero, while by (1) the
third term is zero .Hence

[d(m), W], aft, W], ofd(a),w], =0,

forall mt,aeM,weUand o el. ...(5)
Put u =[t,w], in(3), and linearization it s on
t=t+d(a) where ae€ M together with (1)
yields[[t,w],,w], a[d(a),w],,d(m)], =0,
forall mt,aeMM,weUand axel. ...(6)
Replace t by d(t)op where p € M in (6) then
by expanding we get ,

{2d(t), wl, alp,w], +d(t)a
[[p,wl,,w], +[[d(t),w],,w], ar}y
+[[d(a),w],,,d(m)], =0.

By (6) the second term is zero, while by (1)

the third term is zero .Hence

[d(t),wl, alp.w], ¥I[d(a),w],,d(m)],
=0.In view of (5), the last equation reduces to,
[d(t), w], alp,w], xd(m)a[d(a),w], =0,
forall ppaeM,weUand o,y €T.

In (5) replace t by tad(a) where p € M then
by using the last equation, we get

[d(m), w],, TMITd (p), ], [d(a), W], =0,
forall maeM,weUand o, T.
Since M is prime either [d(m),w], =0or
[d(p), W], a[d (@), w], =0.

If forall me M,weUand ST,
[d(m),w]; =0.Thatis, 17(d(m)) =0.
Then by Lemma 3.1, we Z,forall weU

Thus assume there existsa w e U such that
for somem e M, [d(m),w], # 0. That is

wg Z.Thenforall a,pe M,

[d(p),w], old(a),w], =0. -(7)
Replace a by bgc where b,c € M then by
expanding, we get

[d(p), wl, ald(b),w], Sc+[d(p), W],
ad(b) Slc, wl, +[d(p),wl, abp[d(c),w], +
[d(p), wl, alb,w],, Ad(c) =0.

Replace b by [t,w], where t € M. Then by

(7) the first term is zero, by (5) the third term is
zero and by (4) the fourth term is zero, thus
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[d(p), w], ed([t, W], ) Blw.c], =0.
Since, d([t,w],) =[d(t),w], +[t,d(w)], and
using (3), we get
[d(p),wl, alt,d(W)], Alw.c], =0,
forall c,t,peM,weU and o, eT.
Replace ¢ by mac where m € M, then
[d(p).w], aft,d(w)], I'MITw,c], =0.
Since M is prime and w ¢ Z , we get
[d(p), W], oft,d(wW)],, =0,
forall t,pe M,weU and a €T Thus
[d(p), W], I'MITt,d(w)],, =0,
forall t,pe M,weU and « T.
Which in both cases d(w) € Z.
Now suppose that u eU and u € Z then
0=d([u,a],) =[d(u),a], +[u,d(a)],
and hence d(u) € Z. Therefore, d(u) € Z for
all ueU.Sothat, d([w,a],) € Z forall

ae M thatis
thus [w,d(a)], € Z .In particular,

[w,d(apw)], =[w.d(@)], fw+[w,a],
pd(w) ez ...(8).
By commuting (6) with w, we get
[w,[w,a], 1, Ad(w) =0,
forallaeM,weUand o, eT.
If d(w) = Oand as its in the center Z,
[w,[w,a], ], =0, forallacMand o €T
By sub- Lemma [14] w e Z a contradiction.
Hence, d(w) = 0. Thus by (8), we have
[w,d(a)], pwveZ, forall aec Mand « eT.
Thatis, [wd(a)], pg[w,b], =0,
forall a,be M and o, f T.
Replace b by cab where c € M, then
[d(a),w], 'MITw,b], =0.
By primness of M we get, either we Z or
[d(a),w], =0, forallaeMand o T

Which us in both cases a contradiction Hence,
we Zforall weU.

Now we should like to settle the problem
when M has characteristic 3 .Hence we get the
following result.
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Theorem4.2: Let M be a prime I" -ring of
characteristic 3, and d be a nonzero derivation of
M. if d is T -centralizing on U and uau €U
then U c Z.
Proof:

Since d is T -centralizing on U then,
By Lemma 3.3 we get d is T"-commuting on U
.Therefore , by similar way of the proof in
Theorem 4.1 we can get U — Z.

Now we show that the conclusion of
Theorem 4.1 and Theorem 4.2 holds even if U is
Jordan ideal of M.

Theorem4.3: Let M be a prime I'-ring of
characteristic not 2. Let d be a nonzero
derivation of M and U be a Jordan ideal of M if
dis I" -centralizing then U < Z.

Proof:
Since 2uau €U , then by Lemma 3.3,
[u,d(u)], =0,forall ueUand o €T
Linearizing the relation [u,d(u)], =0, on
u=u+v where veU , we get
[u,d(W)], +[v.d(u)], =0,
forall uyveUand o T.
In (9) ,replace vby ufm+mpu where
m e M then by expanding, we get
upfu,d(m)], +[u,d(m)su+d(u)slu,m],
+[u,m], Ad (u) +upm, d(u)], +[md(u),
pu=0. ie.
2upmed (u) — 2d (U)ampu +
upued(m) —d(m)eupu =0
Replace m by uamin (10), we get
d(Wea(upuem—maupu) =0,
forall meMueUand o,fel ....(10)
That is, d(u)al,, (M) =0,
forall meMueUand o,B T
Hence by Lemma 3.1 we have, either upu e Z
or d(u)=0, forall ueU and
a,pel.
ForueUandany me M,a €I", we have
uam+mau € U. But,
Juamau = 2{ua(uam + mau) + (Uam +
mau)ou} —{2ucuam + ma2uau}.

The first and second term on the right are in U
then, 4uamatu €U .Replace v by 4uamau
in (9), we get

.(9)

..(10)
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Uauamed (U) — d (U)amauau + uou
omed (M)au —ucd (M)aucu =0 ...(12)

Replace m by uam in (12) and then by using

(12) we get,

uead (U)a(Uuamau — mauau) = 0.

In view of (11) the last equation reduces to
ued (UW)aua(uam —mau) = 0.

Thatis, uad(U)auad | (m) =0.

Then by Lemma 3.1, we have either
uad(u)au =00r U — Z, forall ueU

and a €T ..(13)

In (11), replace u by u+ v where veU then
by using (11) , we get
{d(u) +d(V)}alvpu +vpu,m], +
du)alvpu,m], +d(Vv)afupu,m], =0.
Replace u by —u then,
{=d(u) +d(V)}al-vpu —vpu,m], -
d(u)efvpu,m], +d(v)afupu,m], =0.

Adding the last two equations and dividing by 2,
we have

d(u)elvpu +vpu,m], +d(v)efupu,m], =0

forall me M,u,veUand «, S eT.
By lemma 3.6 we get uad (u)au = 0, for some
ueU,axel;d(u)=0.
Hence by (12),ufu € Z.The net results of this
is d(u)a[vpu+vpu,m], =0,

forall me M,u,veU and o, T.

Thatis,d(u)al g, (M) =0,

forall me M,u,veU and o, eT.
By Lemma 3.1, vAu+Vvpu € Z, for all
uveUand a,p eT.
If uau =0, then
0=d(uau) =ucd(u) +d(u)au

=2ucad(u).

That is, uad(u) =0 a contradiction hence
ucu = 0, Now suppose that uad (u)au =0,
then uauad(u) =0 thatis, d(u) =0 a
contradiction hence uad (u)au # 0,
Soby (13) U < Z hence 2uav € Z;that is

2uav e Zforall veU and ax eT.

AsU=0 wehave ve Z forall veU .
Hence U c Z

We should like to settle the problem even when
M has characteristic 2 .In this case Lie and
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Jordan ideals will coincide.

Theorem 4.4: Let M be a prime I'-ring of
characteristic 2 ,and let d be a nonzero
derivation of M .Let U be Lie (Jordan )ideal and
subring of M .If d is I"-centralizing on U then
U is commutative

Proof:
Since d is T"-centralizing on U then by
Lemma 3.4

d(m)fuau +ucupd(m) e Z ..(14)
Commute(14) with d (m) and ucu respectively
we get ,

uauBd(m)yd(m) = d(m)yd(m)Sucu (15a)
And ,
d(m)fuauduau = uauducupd(m)  (15b)
in (15a) replace m by v+uaufv and by using
(15 a) we get,
ucud (v +uauVv)d (v +uaufpv)
=d(V+uauV)d(v+uaufV) fucu.
ForueU,ael,

d(uau) =ued(u) +d(U)au € Z.
So in view of (15b) the last equation reduces to
uaud (V)weupd (v) +d (V)uaupd (v) B
uau =0, forall uveU,aeT.
Since M is prime, and by using (14) we get,
ucusd(v) =d(v) fuau, forall u,veU, and
...(16)
Replace U by u+w where welU we get,
(uaw+wau) fd (V) =d(V) S(Uuaw + Wau)
Replace v by vaw and by using (*) we have,

aecl’

(uaw+wau) S(ued (V) +d(v)au) =0,
forall u,v,weU,a, g eT. ..(17)

Linearize the last equationon U=U+VvaV

where v eU and put v=u then using (16) we
et,

%vavaw+ wavav) f(ued (u) +d(u)au) =0

forall u,v,weU,a, g eT.

If [u,d(u)], =0, forsome ueUand « €T.

Then,

(vaovow +wavaw) =0, for  all
a €T So that,

Uca(Wam+ mow) = (Wom + mow) o au

v,weU and
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That is
wa(Uauam+mauou) = (Uauom+ mau
au)av. Replace m by mau then
(Uauom+ mauau)a(wau + uaw) = 0,
forall me M,uweUand a T.
Replace wby [u,t], we get,
(Uauom+ mauau)a(Uuauat +tauau) = 0,
forall mte M,u,weUand a T.
Replace t by pat where pe M, then
(Uauom+ mauau)I'MIN(Uau ot + tauau)
=0. By primness of M we have,
uau € Z, for all u eU. Thus assume that

[u,d(u)], =0, forall ueU,a eT.
Then by lemma 3.4 we have,

uaufd(m) =d(m)Luau.
Replace mby mea where a € M and using (*)
we get,
d(m)a(uaufa+afuau) +
(uaupm-+mpuau)ed(a) = 0.

ForveU,ael,
d(vav) =ved(v) +d(V)av = 0.
Hence the last equation becomes,
d(m)a(uaufvan +vavfuc) +
(UaufMm+mpuau)od (Vvav) = 0.
Thus by lemma 3.4 we have,
uaufvav = vav ool .Therefore,

uauf(vaw +wav) = (Vow + wav) fucl
forall u,v,weU,a, S eT.

Replace vby [w,m]_ then we have,

I (M) SUcuaw +wauau) =0,

By using Lemma 3.1 we get,

wow ¢ Z, forsome weUand a €T

So that, uauowW = Walal That is,
[fu,v],,w], =0, forall uuweU and o €T
Since, [[v,w],,u], +[[w,u],,Vv], =

[[u,v], wl,.
Replace in above equation v by vawand
expanding we get,

[v.w], a[w,u], =0,

forall uyweU and a €T.

Replace vby [w,m]_ and uby [w,t], we get,
((wawom + mawow)a(Wawot +
towaw) = 0.
Replace t by patwhere pe M , then
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[waw, m], T'MITwaw,t],, =0.

By primness of M we have, waw e Z a
contradiction .Hence the conclusion is that,
So in all possible cases,

wow e Z, forall ueU,a eTI'.So that,
(Uav+vau) e Zand (Uav +Vau)au € Z
If ugZ(U) where Z(U) denotes the center
of, then (Uav +vau =0, forall veU and
uezU)

Hence U is commutative.
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