

Lie and Jordan Structure in Prime Γ- rings with Γ-centralizing Derivations

Abdulrahman H. Majeed*, Aliaa Aqeel Majeed

Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq *ahmajeed6@yahoo.com

Abstract

Let M be a prime Γ -ring satisfying $a\alpha b\beta c = a\beta b\alpha c$ for all $a, b, c \in M$ and $\alpha, \beta \in \Gamma$ with center Z, and U be a Lie (Jordan) ideal. A mapping $d: M \to M$ is called Γ - centralizing if $[u, d(u)]_{\alpha} \in Z$ for all $u \in U$ and $\alpha \in \Gamma$. In this paper, we studied Lie and Jordan ideal in a prime Γ - ring M together with Γ - centralizing derivations on U.

Keywords: Prime Γ -ring, Lie ideal, Jordan ideal, Γ - centralizing, Derivation.

 Γ تركيبه لى و جوردان في الحلقات الاوليه من النمط $-\Gamma$ مع المشتقات المركزيه من النمط

عبدالرحمن حميد مجيد ,علياء عقيل مجيد قسم الرياضيات, كلية العلوم, جامعة بغداد, بغداد, العراق

لخلاصه

 $M \ni a,b,c$ لتكن M حلقه اوليه من النمط – Γ وتحقق الشرط alpha b eta c = aeta b lpha c لكل alpha b eta c = aeta b lpha c و محمد G وتحقق الشرط $M \to M$ الداله $M \to M$ مع مركز Z وليكن U مثالي لي (جوردان) . الداله $M \to M$ مع مركز Z وليكن Z و كان $(u,d(u))_{\alpha}$ لكل -1 النمط – Γ اذا كان $\Sigma = [u,d(u)]_{\alpha}$ لكل $Z = e_{c}(c)$ مع داله المثناقي لي و جوردان للحلقه الاوليه من النمط – Γ مع داله المشتقات المركزيه من النمط – Γ على U.

1. Introduction

N. Nobusawa [1] introduced the notion of Γ -ring, more general than a ring.W. E. Barnes [2]weakened slightly the conditions in the definition of Γ -ring in the sense of Nobusawa after these two papers were published, number of modern algebraists have determined a lot of fundamental properties of Γ -ring and extended numerous significant results in classical ring theory to gamma ring theory see [3, 4, 5 and 6] for partial references.

In classical ring the theory of centralizing mapping on prime ring was initiated by Posner [7] who proved that the existence of a nonzero derivation on a prime ring forces the ring to be commutative. In [8] R. Awtar considered centralizing derivations on Lie and Jordan ideals generalized Posner's theorem. A lot of work has been done during the last decades in this field see [9, 10, 11, and 12] where further reference can be found.

By the same motivation as in the classical ring theories we proved the following results. Let M be a prime Γ -ring, satisfying,

 $a\alpha b\beta c = a\beta b\alpha c$ for all $a, b, c \in M$ and

 $\alpha, \beta \in \Gamma$ and it will represented by (*)

i) If characteristic of M is different from 2 and 3 and U be Lie ideal then if d is Γ -centralizing

on U then U is central in M.

ii) If *M* has characteristic 3 and *U* is Jordan ideal. then If *d* is Γ -centralizing then *U* is central in *M* further, if *U* is a Lie ideal with $u\alpha u \in U$ for all $u \in U$ and, $\alpha \in \Gamma$, then *U* is central in *M*. The case when M has characteristic 2 is also studied.

2. Some Basic Definitions

Definition 2.1 [2]: Let *M* and Γ be two additive abelian groups If there exists a mapping $(a, \alpha, b) \rightarrow a\alpha b$ of $M \times \Gamma \times M \rightarrow M$ Which satisfies for all $a, b, c \in M$ and $\alpha, \beta \in \Gamma$: 1) $i)(a+b)\alpha c = a\alpha c + b\alpha c$, $ii)a(\alpha + \beta)b = a\alpha b + a\beta b$, $iii)a\alpha(b+c) = a\alpha b + a\alpha c$. 2) $(a\alpha b)\beta c = a\alpha(b\beta c)$.

Then *M* is called Γ -ring in the sense of Barnes.

Definition2.2[3]: An additive subgroup *S* of a Γ -ring *M* is called subring if $S\Gamma S \subset S$.

Definition2.3[3]: An additive subgroup I of M is said to be a left (or right) ideal of M if $M\Gamma I \subset I$ (or $I\Gamma M \subset I$), if I is both a right and left ideal, then we say that I is an ideal.

Definition2.4[3]: Let *M* be a Γ -ring then *M* is called prime if $a\Gamma M\Gamma b = 0$ implies either a = 0 or b = 0 where $a, b \in M$.

Definition2.5[3]: Asubset S if a Γ -ring M is called strongly ipotent if there exists a positive integer n such that $(S\Gamma)^n S = (0)$.

Remark:

1)For any $a, b \in M$ $a\alpha b - b\alpha a$ are denoted by $[a,b]_{\alpha}$. Then one has the basic identities, $[a\beta b,c]_{\alpha} = [a,c]_{\alpha}\beta b + a\beta[b,c]_{\alpha} + a[\beta,\alpha]_{c}b$ And, $[a,b\beta c]_{\alpha} = b\beta[a,c]_{\alpha} + [a,b]_{\alpha} + b[\beta,\alpha]_{a}c$, for all $a,b,c \in M$ and $\alpha, \beta \in \Gamma$. Using the

assumption (*) the above identities reduce to, $[a\beta b,c]_{\alpha} = [a,c]_{\alpha}\beta b + a\beta [b,c]_{\alpha}$

And, $[a, b\beta c]_{\alpha} = b\beta [a, c]_{\alpha} + [a, b]_{\alpha}$. 2) Let *M* be Γ -ring, the center of *M* is defined

as, $Z= \{a \in M : a\alpha m = m\alpha a \text{ for all } m \in M, \alpha \in \Gamma\}.$

Definition2.6 [13]: An additive subgroup U of a Γ -ring M is said to be a Lie ideal of M if $[u,m]_{\alpha} \in U$, for all $u \in U, m \in M$ and $\alpha \in \Gamma$. And U is said to be Jordan ideal if $u \circ m + m \circ u \in U$, for all $u \in U, m \in M$ and $\alpha \in \Gamma$.

Definition2.8[14]: An additive mapping

 $d: M \to M$ is called a derivation of M if, $d(x \alpha y) = d(x)\alpha y + x \alpha d(y)$, holds for all $x, y \in M$ and $\alpha \in \Gamma$.

For a fixed $a \in M$ and $\alpha \in \Gamma$ the mapping, $I_a^{\alpha}: M \to M$ given by $I_a^{\alpha} = [m, a]_{\alpha}$, is said to be inner derivation of M [15].

Definition2.9[16]: Let M be a Γ ring with center Z and U be lie (Jordan) ideal of M. A mapping $d: M \to M$ is called Γ -centralizing (resp. Γ -commuting) if $[u, d(u)]_{\alpha} \in Z$ (resp. $[u, d(u)]_{\alpha} = 0$, for all $u \in U$, and $\alpha \in \Gamma$.

3. Basic Lemmas

For proving our main results, we need some important results which we have proved here as lemmas. So, we start as follows:

Lemma3.1: Let *M* be a prime Γ -ring, *d* a nonzero derivation of *M* and *a* be an element of *M* if $a\alpha d(m) = 0$, for all $m \in M$ and $\alpha \in \Gamma$. Then either a = 0 or *d* is zero. **Proof:**

We have $a\alpha d(m) = 0$, for all $m \in M$ and $\alpha \in \Gamma$. Replace *m* by $m\alpha x$ where $x \in M$, then

 $a\alpha d(m\alpha x) = a\alpha d(m)\alpha x + a\alpha m\alpha d(x)$ $= a\alpha m\alpha d(x).$

For all $x \in M$ and $\alpha \in \Gamma$. That is $a\Gamma M\Gamma d(x) = 0$, for all $x \in M$.

Since *M* is prime, either a = 0 or *d* is zero

Lemma3.2: Let *M* be a prime Γ -ring of characteristic not 2 and d_1, d_2 be a derivation of *M* such that the iterate d_1d_2 is also a derivation, Then one at least of d_1, d_2 is zero. **Proof:**

We have d_1d_2 is a derivation of M that is, $d_1d_2(a\alpha b) = d_1d_2(a)\alpha b + a\alpha d_1d_2(b)$, for all $a, b \in M$ and $\alpha \in \Gamma$.

But d_1, d_2 are each derivation so, $d_1d_2(a\alpha b) = d_1d_2(a)\alpha b + d_2(a)\alpha d_1(b)$ $+ d_1(a)\alpha d_2(b) + a\alpha d_1(d_2(b)).$ But, $d_1d_2(a\alpha b) = d_1d_2(a)\alpha b + a\alpha d_1(d_2(b))$ So, $d_2(a)\alpha d_1(b) + d_1(a)\alpha d_2(b) = 0,$ for all for all $a, b \in M$ and $\alpha \in \Gamma$...(1) Replace *a* in the last equation by $a\alpha d_1(c)$ $d_2(a\alpha d_1(c))\alpha d_1(b) + d_1(a\alpha d_1(c))\alpha d_2(b)$ = 0, for all $a, b, c \in M$ and $\alpha \in \Gamma$. That is $a\alpha(d_{2}(d_{1}(c)\alpha d_{1}(b)) + d_{1}(d_{1}(c))\alpha d_{2}(b) = 0$ for all $a, b, c \in M$ and $\alpha \in \Gamma$. Which is merely equation (1) with a replaced by $d_1(c)$, then we are left with $d_2(a)\alpha d_1(c)\alpha d_1(b) + d_1(a)\alpha d_1(c)\alpha d_2(b) = 0,$ for all $a, b, c \in M$ and $\alpha \in \Gamma$. But. $d_1(a)\alpha d_2(b) = -d_2(a)\alpha d_1(b)$ by replacing a by c the last equation becomes, $d_2(a)\alpha d_1(c)\alpha d_1(b) - d_1(a)\alpha d_2(c)\alpha d_1(b) = 0$ Factoring out $a\alpha d_1(b)$ on the right, we have $(d_2(a)\alpha d_1(c) - d_1(a)\alpha d_2(c))\alpha d_1(b) = 0,$ for all $a, b, c \in M$ and $\alpha \in \Gamma$. And by Lemma 3.1 unless $d_1 = 0$ we have, $(d_2(a)\alpha d_1(c) - d_1(a)\alpha d_2(c)) = 0,$ for all $a, c \in M$ and $\alpha \in \Gamma$. Replace b by c in (1) then, $(d_2(a)\alpha d_1(c) + d_1(a)\alpha d_2(c)) = 0,$ for all $a, c \in M$ and $\alpha \in \Gamma$. Adding these last two equations, we get $2d_2(a)\alpha d_1(c) = 0$, for all $a, b, c \in M$ and $\alpha \in \Gamma$. Since characteristic of M not equal 2, then $d_2(a)\alpha d_1(c) = 0$, or else $d_1 = 0$ using Lemma 3.1 again with a replacing $d_2(a)$ we get, either $d_1 = 0$ or $d_2 = 0$

Lemma3.3:Let M be a prime Γ -ring of characteristic different from 2, U be Lie ideal of M and d be anon zero derivation of M. Then if d is Γ -centralizing on U and $u\alpha u \in U$, for all $u \in U$ and $\alpha \in \Gamma$, then M is Γ -commuting on U.

Proof:

We have d is Γ -centralizing on U i.e.

 $[u, d(u)]_{\alpha} \in \mathbb{Z}$, for all $u \in U$, and $\alpha \in \Gamma$. Linearizing the above relation on, $u = u + u \alpha u$, we get $[u\alpha u, d(u)]_{\alpha} + [u, u\alpha d(u) + d(u)\alpha u]_{\alpha} \in \mathbb{Z},$ for all $u \in U$, and $\alpha \in \Gamma$. That is, $4[u, d(u)]_{\alpha} \alpha u \in \mathbb{Z}$, for all $u \in U$, and $\alpha \in \Gamma$. Since characteristic of M not equal 2 and $[u, d(u)]_{\alpha} \in \mathbb{Z}$ then we get $[u, d(u)]_{\alpha} \alpha [u, m]_{\beta} = 0$, for all $m \in M, u \in U$ and $\alpha, \beta \in \Gamma$. If for some $u \in U$, $[u, d(u)]_a \neq 0$ then we get $[u,m]_{\beta} = 0$, in particular $[u,d(u)]_{\alpha} = 0$ Hence, $[u, d(u)]_{\alpha} = 0$, for all $u \in U$, and $\alpha \in \Gamma$.

Lemma3.4: Let *M* be a prime Γ -ring, *U* be a Lie ideal of *M* and *d* a nonzero derivation of *M*. If *d* is Γ -centralizing on *U* then $[[d(m),u]_{\beta},u]_{\alpha} \in Z,$

for all $m \in M$, $u \in U$ and $\alpha, \beta \in \Gamma$. Further, if d is Γ -commuting on U then,

 $\left[\left[d(m),u\right]_{\beta},u\right]_{\alpha}=0,$

for all $m \in M$, $u \in U$ and $\alpha, \beta \in \Gamma$.

Proof:

Since U is Lie ideal then,

$$[u,m]_{\alpha} \in U,$$

for all $u \in U, m \in M$ and $\alpha \in \Gamma$.

So that, $[u + [u, m]_{\beta}, d(u + [u, m]_{\beta})]_{\alpha} \in \mathbb{Z}$. That is,

 $[[u,m]_{\beta},d(u)]_{\alpha}+[u,[d(u),m]_{\beta}]_{\alpha}$

$$+ [u, [u, d(m)]_{\beta}]_{\alpha} \in \mathbb{Z}$$

for all $m \in M, u \in U$ and $\alpha, \beta \in \Gamma$.

Now since, for any for all $m \in M, u \in U, \alpha, \beta \in \Gamma$ and by (*) we have $[[u,m]_{\beta}, d(u)]_{\alpha} + [u, [d(u),m]_{\beta}]_{\alpha}$ $= [m, [d(u),u]_{\beta}]_{\alpha} \in Z.$

By Γ -centralizing of d we get,

 $[[u,m]_{\beta}, d(u)]_{\alpha} + [u, [d(u),m]_{\beta}]_{\alpha} = 0.$ Hence, $[[d(m),u]_{\beta},u]_{\alpha} \in \mathbb{Z},$ for all $m \in M, u \in U$ and $\alpha, \beta \in \Gamma$. The last part can be obtained similarly.

Lemma3.5: Let *M* be a prime Γ -ring of

characteristic not equal 2 and 3, and let U be a Lie ideal of , if d is Γ -centralizing on U then d is Γ -commuting on U. **Proof:** Since *d* is Γ -centralizing then, by Lemma 3.4, we have $[[d(m), u]_{a}, u]_{\alpha} \in \mathbb{Z},$ for all $m \in M$, $u \in U$ and $\alpha, \beta \in \Gamma$. By using the assumption (*) we get $u\beta u\alpha d(m) + d(m)\alpha u\beta u - 2u\beta d(m)\alpha u \in \mathbb{Z},$ for all $m \in M$, $u \in U$ and $\alpha, \beta \in \Gamma$(2) Commuting with *u*, we have $3u\beta u\alpha d(m)\delta u + u\beta u\alpha u\delta d(m) =$ $3u\delta d(m)\alpha u\beta u + d(m)\delta u\alpha u\beta u$...(3) In (3) replace m by u and using d is Γ -centralizing, $u\beta u\alpha u\delta d(u) - d(u)\delta u\alpha u\beta u$ $= 3(u\alpha d(u) - d(u)\alpha u)\delta u\beta u$...(4) Furthermore. $2(u\alpha d(u) - d(u)\alpha u)\beta u$ $= u\beta u\alpha d(u) - d(u)\alpha u\beta u.$...(5) Write d(m) = m' and then by replacing m by $u\alpha m'$ in (4), we get $3u\delta u\alpha m''\alpha u\beta u + u\beta u\alpha u\delta u\alpha m'' 3u\beta u\alpha \alpha m''\delta u - u\alpha m''\delta u\alpha u\beta u +$ $3u\delta d(u)\alpha m'\alpha u\beta u + u\beta u\alpha u\delta m'\alpha d(u) 3u\beta u\alpha d(u)\alpha m'\delta u - d(u)\alpha m'\delta u\alpha u\beta u = 0,$ for all $m \in M, u \in U$ and $\alpha, \beta, \delta \in \Gamma$(6) However, by assumption (*) and (4), we have Зибист" си ви + и ви си бист" – $3u\beta u\alpha \alpha m''\delta u - u\alpha m''\delta u\alpha u\beta u =$ $u\alpha(3u\delta m''\alpha u\beta u + u\beta u\alpha u\delta m'' 3u\beta u\alpha m''\delta u - m''\delta u\alpha u\beta u) = 0.$ Then equation (6) becomes, $3u\delta d(u)\alpha m'\alpha u\beta u + u\beta u\alpha u\delta m'\alpha d(u) 3u\beta u\alpha d(u)\alpha m'\delta u - d(u)\alpha m'\delta u\alpha u\beta u = 0,$ for all $m \in M, u \in U$ and $\alpha, \beta, \delta \in \Gamma$(7) Multiply (4) on the left by $d(u)\alpha$ and then subtract the results from (7) to get, $3(u\alpha d(u) - d(u)\alpha u)\delta m'\alpha u\beta u +$ $u\beta u\alpha u\alpha d(u) - d(u)\alpha u\beta u\alpha u)\delta m' -$

 $(u\beta u\alpha d(u) - d(u)\alpha u\beta u)\alpha m'\delta u = 0$...(8) Using (5) and (6), we arrive at after dividing by 3, $(u\alpha(u) - d(u)\alpha u)\alpha(m'\delta u\beta u + u\beta u\delta m' 2u\beta m'\delta u = 0$, for all $m \in M, u \in U$ and $\alpha, \beta, \delta \in \Gamma$. If, $(u\alpha d(u) - d(u)\alpha u \neq 0$, for some $u \in U$ and $\alpha \in \Gamma$. Then we have $m' \delta u \beta u + u \beta u \delta m' - 2u \beta m' \delta u = 0$...(9) Replace *m* by $u\beta m$ in (9) and using (*) we get, $u\beta m'\delta u\beta u + u\beta u\beta u\delta m' - 2u\beta u\delta m'\beta u +$ $d(u)\beta m\delta u\beta u + u\beta u\beta d(u)\delta m 2u\beta d(u)\delta m\beta u = 0$...(10) By using (9) we get, $u\beta(m'\delta u\beta u + u\beta u\delta m' - 2u\delta m'\beta u) = 0,$ Then equation (10) becomes, $d(u)\beta m \delta u \beta u + u \beta u \beta d(u) \delta m$ $-2u\beta d(u)\delta m\beta u = 0.$...(11) Now in (9) replace m by u, and multiply this on the right by βm , $d(u)\delta u\beta u\beta m + u\beta u\delta d(u)\beta m$ $-2u\beta d(u)\delta u\beta m = 0.$...(12) Subtract (12) from (11), $d(u)\beta(m\delta u\beta u - u\delta u\beta m)$ $-2u\beta d(u)\delta(m\beta u - u\beta m) = 0.$...(13) Replace *m* by $u\beta m$ and using assumption (*) $d(u)\beta u\beta(m\delta u\beta u - u\beta u\delta m)$ $-2u\beta d(u)\delta u\beta(m\beta u - u\beta m) = 0.$...(14) Multiply (13) by $u\beta$ from left and then subtract the results from (14), $(u\beta d(u) - d(u)\beta u)\beta(m\delta u\beta u - u\beta u\delta m) 2u\beta(u\beta d(u) - d(u)\beta u)\delta(m\beta u - u\beta m) = 0.$ Since, $u\alpha d(u) - d(u)\alpha u \neq 0$, for all $u \in U$ and $\alpha \in \Gamma$. Then, $m\delta u\beta u - u\beta u\delta m - 2u(m\beta u - u\beta m) = 0,$ for all $m \in M$ So, $m\delta u\beta u - u\beta u\delta m - 2u\beta m\beta u = 0$, that is $u\beta(m\delta u - u\delta m) = (m\delta u - u\delta m)\beta u$, That is *u* in the center by Lemma 3.2 or else $u\alpha d(u) - d(u)\alpha u = 0,$ Which in both cases $[u, d(u)]_{\alpha} = 0$ for all $u \in U$ and $\alpha \in \Gamma$. The following lemma may have some

independent interest.

Lemma3.6: Let M be a prime Γ -ring of characteristic not 2, U be Jordan ideal of M and d be a nonzero derivation of M. If $u\alpha d(u) = d(u)\alpha u = 0$, for all $u \in U$, $\alpha \in \Gamma$. Then U = 0.

Proof:

Linearizing the relation $u\alpha d(u) = 0$ on u = u + w where $w \in U$ to get, $u\alpha d(w) + w\alpha d(u) = 0$, for all $u, w \in U$ and $\alpha \in \Gamma$(15) For $u \in U$ and any $m \in M, \alpha \in \Gamma$,

 $u\alpha(u\alpha m - m\alpha u) + (u\alpha m - m\alpha u)\alpha u \in U.$

But, $2(m\alpha u\alpha u - u\alpha u\alpha m) =$

 $\{u\alpha(m\alpha u - u\alpha m) + (m\alpha u - u\alpha m)\alpha u\} -$

 $\{(m\alpha u - u\alpha m)\alpha u + u\alpha (m\alpha u - u\alpha m)\}$

As the first and second term on the right hand side are in U,

 $2(m\alpha u\alpha u - u\alpha u\alpha m) \in U.$

Now since,

 $\alpha \in \Gamma$.

 $2u\alpha u \in U$ and $2(m\alpha u - u\alpha u \alpha m) \in U$.

Then, $4u\alpha u\alpha m$ and $4m\alpha u\alpha u$ are in U.

Replacing w by $4m\alpha u\alpha u$ in (15) and using the hypothesis, we get

 $u\alpha d(m)\alpha u\alpha u = 0,$

for all $m \in M$, $u \in U$ and $\alpha \in \Gamma$(16) Replace w by $m\beta u + u\beta m$ and using the

hypothesis, we get $u\beta u\alpha d(m) + u\alpha d(m)\beta u + u\alpha m\beta d(u) +$

 $u\beta m\alpha d(u) = 0$, for all $m \in M, u \in U$ and $\alpha, \beta \in \Gamma$.

Multiply by αu on the right and using the assumption (*) together with equation (16) we obtain

 $u\beta u\alpha d(m)\alpha u = 0,$

for all $m \in M$, $u \in U$ and $\alpha, \beta \in \Gamma$(17) Again replace w by $4u\alpha u\alpha m$ in (15), we get

 $u \alpha u \alpha u \alpha d(m) = 0$, for all $m \in M, u \in U$ and $\alpha \in \Gamma$. Then by Lemma 3.1, we have $u \alpha u \alpha u = 0$, for all $u \in U$ and $\alpha \in \Gamma$. For $m \in M, u \in U$ and $\alpha \in \Gamma$, $2(u \alpha u \alpha m + m \alpha u \alpha u) \in U$. That is, $2^{3}[(u \alpha u \alpha m + m \alpha u \alpha u)\alpha]^{2}(u \alpha u \alpha m + m \alpha u \alpha u) = 0$, for all $m \in M, u \in U$ and Multiply from the right side by $u\alpha u\alpha u = 0$ we get

 $2^{3}[(u\alpha u\alpha m)\alpha]^{3}(u\alpha u\alpha m) = 0,$ for all $m \in M, u \in U$ and $\alpha \in \Gamma$.

If for some $u \in U$ and $\alpha \in \Gamma$, $u\alpha u \neq 0$ then $u\alpha u\alpha M$ is a nonzero right ideal of M, then by Levitzki's Theorem [13] M would have a nilpotent ideal; which is impossible for prime Γ -ring, hence

 $u\alpha u = 0$, for all $u \in U$ and $\alpha \in \Gamma$.

By repeating the above argument we can show that u = 0, for all $u \in U$

4. The Main Theorems

Theorem 4.1: Let *M* be a prime Γ -ring of characteristic different from 2 and 3. Let *d* be a nonzero derivation of *M* and *U* be a Lie ideal of *M*. If *d* is Γ -centralizing on *U* then $U \subset Z$. **Proof:**

Since d is Γ -centralizing on U, then by using Lemma 3.5, we have

 $[u, d(u)]_{\alpha} = 0$, for all $u \in U$ and $\alpha \in \Gamma$.

Then by Lemma 3.4, we get

$$\left[\left[d(m),u\right]_{\beta},u\right]_{\alpha}=0$$

for all $m \in M, u \in U$ and $\alpha \in \Gamma$(1) In (1) replace u by u + w where $w \in U$, $[[d(m), u]_{\beta}, w]_{\alpha} + [[d(m), w]_{\beta}, u]_{\alpha} = 0$, for all $m \in M, u, w \in U$ and $\alpha, \beta \in \Gamma$(2) Suppose now, $u, w \in U$ are such that $w \alpha v$. Then by replacing w by $w \alpha v$ in (2) we get after using (*), $w\alpha[[d(m), u]_{\beta}, v]_{\alpha} + [[d(m), u]_{\beta}, w]_{\alpha} \alpha v +$ $[d(m), w]_{\alpha} \beta[u, v]_{\alpha} + [[d(m), w]_{\beta}, u]\alpha v +$ $w\alpha[[d(m), v]_{\beta}, u]_{\alpha} + [w, u]_{\alpha} \alpha[d(m), v]_{\beta} = 0$. In view of (2) the last equation reduces to, $[d(m), w]_{\alpha} \beta[u, v]_{\alpha} + [w, u]_{\alpha} \alpha[d(m), v]_{\beta} = 0$. Replace v by $[t, w]_{\alpha}$ where $t \in M$ in above equation , we have

 $[d(m),w]_{\beta}\alpha[[t,w]_{\alpha},u]_{\alpha}+[w,u]_{\alpha}$

$$[d(m), [t, w]_{\alpha}]_{\beta} = 0, \qquad \dots (3)$$

for all $t, m \in M, u, w \in U$ and $\alpha, \beta \in \Gamma$.

Putting u = w in (3), we have $[d(m), w]_{\beta} \alpha[[t, w]_{\alpha}, w]_{\alpha} = 0$...(4)

Replace t by $t\alpha d(a)$ in (4) where $a \in M$

yields on expansion and (*),

186

 $[d(m), w]_{\beta} \alpha \{2[t, w]_{\alpha} \alpha[d(a), w]_{\alpha} + [[t, w]_{\alpha}, w]_{\alpha} \alpha d(a) + t\alpha[[d(a), w]_{\alpha}, w]_{\alpha}\} = 0.$ By (4) the second term is zero, while by (1) the third term is zero. Hence $[d(m), w]_{\beta} \alpha[t, w]_{\alpha} \alpha[d(a), w]_{\alpha} = 0,$ for all $m, t, a \in M, w \in U$ and $\alpha \in \Gamma$(5) Put $u = [t, w]_{\alpha}$ in (3), and linearization it s on t = t + d(a) where $a \in M$ together with (1) yields $[[t, w]_{\alpha}, w]_{\alpha} \alpha[d(a), w]_{\alpha}, d(m)]_{\beta} = 0,$ for all $m, t, a \in M, w \in U$ and $\alpha \in \Gamma$(6) Replace t by $d(t)\alpha p$ where $p \in M$ in (6) then by expanding we get, $\{2[d(t) w] \alpha[n w] + d(t)\alpha$

$$[[p,w]_{\alpha},w]_{\alpha} + [[d(t),w]_{\alpha},w]_{\alpha} \alpha p\}\gamma$$
$$+ [[d(a),w]_{\alpha},d(m)]_{\beta} = 0.$$

By (6) the second term is zero, while by (1)the third term is zero .Hence $[d(t),w]_{\alpha} \alpha[p,w]_{\alpha} \gamma[[d(a),w]_{\alpha},d(m)]_{\beta}$ =0.In view of (5), the last equation reduces to, $[d(t), w]_{\alpha} \alpha[p, w]_{\alpha} \gamma d(m) \alpha[d(a), w]_{\beta} = 0,$ for all $p, a \in M, w \in U$ and $\alpha, \gamma \in \Gamma$. In (5) replace t by $t\alpha d(a)$ where $p \in M$ then by using the last equation, we get $[d(m),w]_{\beta}\Gamma M\Gamma[d(p),w]_{\alpha}[d(a),w]_{\alpha}=0,$ for all $m, a \in M, w \in U$ and $\alpha, \beta \in \Gamma$. Since *M* is prime either $[d(m), w]_{\beta} = 0$ or $[d(p), w]_{\alpha} \alpha [d(a), w]_{\alpha} = 0.$ If for all $m \in M$, $w \in U$ and $\beta \in \Gamma$, $[d(m), w]_{\beta} = 0$. That is, $I_{w}^{\beta}(d(m)) = 0$. Then by Lemma 3.1, $w \in Z$, for all $w \in U$ Thus assume there exists a $w \in U$ such that for some $m \in M$, $[d(m), w]_{\beta} \neq 0$. That is $w \notin Z$. Then for all $a, p \in M$,

 $[d(p), w]_{\alpha} \alpha [d(a), w]_{\alpha} = 0. \qquad ...(7)$ Replace *a* by $b\beta c$ where $b, c \in M$ then by expanding, we get

 $[d(p),w]_{\alpha} \alpha [d(b),w]_{\alpha} \beta c + [d(p),w]_{\alpha}$ $\alpha d(b)\beta [c,w]_{\alpha} + [d(p),w]_{\alpha} \alpha b\beta [d(c),w]_{\alpha} + [d(p),w]_{\alpha} \alpha [b,w]_{\alpha} \beta d(c) = 0.$

Replace *b* by $[t,w]_{\alpha}$ where $t \in M$. Then by (7) the first term is zero, by (5) the third term is zero and by (4) the fourth term is zero, thus

 $[d(p),w]_{\alpha}\alpha d([t,w]_{\alpha})\beta[w,c]_{\alpha} = 0.$ Since, $d([t, w]_{\alpha}) = [d(t), w]_{\alpha} + [t, d(w)]_{\alpha}$ and using (3), we get $[d(p), w]_{\alpha} \alpha[t, d(w)]_{\alpha} \beta[w, c]_{\alpha} = 0,$ for all $c, t, p \in M, w \in U$ and $\alpha, \beta \in \Gamma$. Replace *c* by $m\alpha c$ where $m \in M$, then $[d(p), w]_{\alpha} \alpha[t, d(w)]_{\alpha} \Gamma M \Gamma[w, c]_{\alpha} = 0.$ Since *M* is prime and $w \notin Z$, we get $[d(p), w]_{\alpha} \alpha[t, d(w)]_{\alpha} = 0,$ for all $t, p \in M, w \in U$ and $\alpha \in \Gamma$. Thus $[d(p), w]_{\alpha} \Gamma M \Gamma[t, d(w)]_{\alpha} = 0,$ for all $t, p \in M, w \in U$ and $\alpha \in \Gamma$. Which in both cases $d(w) \in Z$. Now suppose that $u \in U$ and $u \in Z$ then $0 = d([u,a]_{\alpha}) = [d(u),a]_{\alpha} + [u,d(a)]_{\alpha}$ and hence $d(u) \in Z$. Therefore, $d(u) \in Z$ for all $u \in U$. So that, $d([w, a]_{\alpha}) \in Z$ for all $a \in M$, that is thus $[w, d(a)]_{\alpha} \in \mathbb{Z}$. In particular, $[w, d(a\beta w)]_{\alpha} = [w, d(a)]_{\alpha}\beta w + [w, a]_{\alpha}$ $\beta d(w) \in Z$...(8). By commuting (6) with w, we get $[w, [w, a]_{\alpha}]_{\alpha}\beta d(w) = 0,$ for all $a \in M, w \in U$ and $\alpha, \beta \in \Gamma$. If $d(w) \neq 0$ and as its in the center Z, $[w, [w, a]_{\alpha}]_{\alpha} = 0$, for all $a \in M$ and $\alpha \in \Gamma$. By sub-Lemma [14] $w \in Z$ a contradiction. Hence, d(w) = 0. Thus by (8), we have $[w, d(a)]_{\alpha} \beta w \in \mathbb{Z}$, for all $a \in M$ and $\alpha \in \Gamma$. $[w.d(a)]_{\alpha}\beta[w,b]_{\alpha}=0,$ That is, for all $a, b \in M$ and $\alpha, \beta \in \Gamma$. Replace b by $c\alpha b$ where $c \in M$, then $[d(a), w]_{\alpha} \Gamma M \Gamma[w, b]_{\alpha} = 0.$ By primness of *M* we get, either $w \in Z$ or $[d(a), w]_{\alpha} = 0$, for all $a \in M$ and $\alpha \in \Gamma$. Which us in both cases a contradiction Hence,

 $w \in Z$ for all $w \in U$.

Now we should like to settle the problem when M has characteristic 3 .Hence we get the following result.

Theorem 4.2: Let *M* be a prime Γ -ring of characteristic 3, and *d* be a nonzero derivation of *M*. if *d* is Γ -centralizing on *U* and $u\alpha u \in U$ then $U \subset Z$.

Proof:

Since *d* is Γ -centralizing on *U* then, By Lemma 3.3 we get *d* is Γ -commuting on *U*. Therefore, by similar way of the proof in Theorem 4.1 we can get $U \subset Z$.

Now we show that the conclusion of Theorem 4.1 and Theorem 4.2 holds even if U is Jordan ideal of M.

Theorem4.3: Let M be a prime Γ -ring of characteristic not 2. Let d be a nonzero derivation of M and U be a Jordan ideal of M if d is Γ -centralizing then $U \subset Z$.

Proof:

Since $2u\alpha u \in U$, then by Lemma 3.3, $[u, d(u)]_{\alpha} = 0$, for all $u \in U$ and $\alpha \in \Gamma$. Linearizing the relation $[u, d(u)]_{\alpha} = 0$, on u = u + v where $v \in U$, we get $[u, d(v)]_{\alpha} + [v, d(u)]_{\alpha} = 0,$ for all $u, v \in U$ and $\alpha \in \Gamma$(9) In (9), replace v by $u\beta m + m\beta u$ where $m \in M$ then by expanding, we get $u\beta[u,d(m)]_{\alpha} + [u,d(m)\beta u + d(u)\beta[u,m]_{\alpha}$ $+[u,m]_{\alpha}\beta d(u)+u\beta[m,d(u)]_{\alpha}+[m.d(u)]_{\alpha}$ $\beta u = 0$. i.e. $2u\beta m\alpha d(u) - 2d(u)\alpha m\beta u +$ $u\beta u\alpha d(m) - d(m)\alpha u\beta u = 0$...(10) Replace *m* by $u\alpha m$ in (10), we get $d(u)\alpha(u\beta u\alpha m - m\alpha u\beta u) = 0,$ for all $m \in M.u \in U$ and $\alpha, \beta \in \Gamma$ (11) That is, $d(u)\alpha I_{u\beta u}^{u}(m) = 0$, for all $m \in M.u \in U$ and $\alpha, \beta \in \Gamma$. Hence by Lemma 3.1 we have, either $u\beta u \in Z$ or d(u) = 0, for all $u \in U$ and $\alpha, \beta \in \Gamma$. For $u \in U$ and any $m \in M, \alpha \in \Gamma$, we have $u\alpha m + m\alpha u \in U$. But, $4u\alpha m\alpha u = 2\{u\alpha(u\alpha m + m\alpha u) + (u\alpha m + m\alpha u)\}$ $m\alpha u$) αu } - { $2u\alpha u\alpha m + m\alpha 2u\alpha u$ }. The first and second term on the right are in Uthen, $4u\alpha m\alpha u \in U$. Replace v by $4u\alpha m\alpha u$ in (9), we get

 $u\alpha u\alpha m\alpha d(u) - d(u)\alpha m\alpha u\alpha u + u\alpha u$ $\alpha m \alpha d(m) \alpha u - u \alpha d(m) \alpha u \alpha u = 0$...(12) Replace m by $u \alpha m$ in (12) and then by using (12) we get, $u\alpha d(u)\alpha(u\alpha m\alpha u - m\alpha u\alpha u) = 0.$ In view of (11) the last equation reduces to $u\alpha d(u)\alpha u\alpha(u\alpha m - m\alpha u) = 0.$ That is, $u\alpha d(u)\alpha u\alpha I_u^{\alpha}(m) = 0.$ Then by Lemma 3.1, we have either $u \alpha d(u) \alpha u = 0$ or $U \subset Z$, for all $u \in U$ and $\alpha \in \Gamma$(13) In (11), replace u by u + v where $v \in U$ then by using (11), we get ${d(u) + d(v)}\alpha[v\beta u + v\beta u, m]_{\alpha} +$ $d(u)\alpha[v\beta u,m]_{\alpha} + d(v)\alpha[u\beta u,m]_{\alpha} = 0.$ Replace u by -u then, $\{-d(u)+d(v)\}\alpha[-v\beta u-v\beta u,m]_{\alpha}$ $d(u)\alpha[v\beta u,m]_{\alpha} + d(v)\alpha[u\beta u,m]_{\alpha} = 0.$ Adding the last two equations and dividing by 2, we have $d(u)\alpha[v\beta u + v\beta u, m]_{\alpha} + d(v)\alpha[u\beta u, m]_{\alpha} = 0$ for all $m \in M, u, v \in U$ and $\alpha, \beta \in \Gamma$. By lemma 3.6 we get $u\alpha d(u)\alpha u \neq 0$, for some $u \in U, \alpha \in \Gamma; d(u) \neq 0.$ Hence by (12), $u\beta u \in Z$. The net results of this is $d(u)\alpha[v\beta u + v\beta u, m]_{\alpha} = 0$, for all $m \in M, u, v \in U$ and $\alpha, \beta \in \Gamma$. That is, $d(u)\alpha I^{\alpha}_{u\beta v+v\beta u}(m) = 0$, for all $m \in M, u, v \in U$ and $\alpha, \beta \in \Gamma$. By Lemma 3.1, $v\beta u + v\beta u \in Z$, for all $u, v \in U$ and $\alpha, \beta \in \Gamma$. If $u\alpha u = 0$, then $0 = d(u\alpha u) = u\alpha d(u) + d(u)\alpha u$ $=2u\alpha d(u).$ That is, $u\alpha d(u) = 0$ a contradiction hence $u\alpha u \neq 0$, Now suppose that $u\alpha d(u)\alpha u = 0$, then $u \alpha u \alpha d(u) = 0$ that is, d(u) = 0 a contradiction hence $u\alpha d(u)\alpha u \neq 0$, So by (13) $U \subset Z$ hence $2u\alpha v \in Z$; that is $2u\alpha v \in Z$ for all $v \in U$ and $\alpha \in \Gamma$. As $u \neq 0$ we have $v \in Z$ for all $v \in U$. Hence $U \subset Z$ We should like to settle the problem even when M has characteristic 2. In this case Lie and

Jordan ideals will coincide.

Theorem 4.4: Let M be a prime Γ -ring of characteristic 2 ,and let d be a nonzero derivation of M.Let U be Lie (Jordan)ideal and subring of M.If d is Γ -centralizing on U then U is commutative

Proof:

Since d is Γ -centralizing on U then by Lemma 3.4 $d(m)\beta u\alpha u + u\alpha u\beta d(m) \in Z$...(14) Commute(14) with d(m) and $u\alpha u$ respectively we get, $u \alpha u \beta d(m) \gamma d(m) = d(m) \gamma d(m) \beta u \alpha u$ (15*a*) And. $d(m)\beta u \alpha u \delta u \alpha u = u \alpha u \delta u \alpha u \beta d(m)$ (15b) in (15a) replace m by $v + u\alpha u\beta v$ and by using (15 a) we get, $u \alpha u \beta d (v + u \alpha u \beta v) \gamma d (v + u \alpha u \beta v)$ $= d(v + u\alpha u\beta v)\gamma d(v + u\alpha u\beta v)\beta u\alpha u.$ For $u \in U, \alpha \in \Gamma$, $d(u\alpha u) = u\alpha d(u) + d(u)\alpha u \in Z.$ So in view of (15b) the last equation reduces to $u \alpha u \beta d(v) \gamma u \alpha u \beta d(v) + d(v) \gamma u \alpha u \beta d(v) \beta$ $u\alpha u = 0$, for all $u, v \in U, \alpha \in \Gamma$. Since M is prime, and by using (14) we get, $u \alpha u \beta d(v) = d(v) \beta u \alpha u$, for all $u, v \in U$, and $\alpha \in \Gamma$...(16) Replace u by u + w where $w \in U$ we get, $(u\alpha w + w\alpha u)\beta d(v) = d(v)\beta(u\alpha w + w\alpha u)$ Replace v by $v\alpha w$ and by using (*) we have, $(u\alpha w + w\alpha u)\beta(u\alpha d(v) + d(v)\alpha u) = 0,$ for all $u, v, w \in U, \alpha, \beta \in \Gamma$(17)

Linearize the last equation on $u = u + v\alpha v$ where $v \in U$ and put v = u then using (16) we get, $(v\alpha v\alpha w + w\alpha v\alpha v)\beta(u\alpha d(u) + d(u)\alpha u) = 0$ for all $u, v, w \in U, \alpha, \beta \in \Gamma$. If $[u, d(u)]_{\alpha} \neq 0$, for some $u \in U$ and $\alpha \in \Gamma$. Then, $(v\alpha v\alpha w + w\alpha v\alpha v) = 0$, for all $v, w \in U$ and $\alpha \in \Gamma$. So that, $u\alpha u\alpha(w\alpha m + m\alpha w) = (w\alpha m + m\alpha w)\alpha u\alpha u$ That is $w\alpha(u\alpha u\alpha m + m\alpha u\alpha u) = (u\alpha u\alpha m + m\alpha u)$ αu) αv . Replace *m* by *m* αu then $(u\alpha u\alpha m + m\alpha u\alpha u)\alpha(w\alpha u + u\alpha w) = 0,$ for all $m \in M, u, w \in U$ and $\alpha \in \Gamma$. Replace w by $[u,t]_{\alpha}$ we get, $(u\alpha u\alpha m + m\alpha u\alpha u)\alpha(u\alpha u\alpha t + t\alpha u\alpha u) = 0,$ for all $m, t \in M, u, w \in U$ and $\alpha \in \Gamma$. Replace t by $p \alpha t$ where $p \in M$, then $(u \alpha u \alpha m + m \alpha u \alpha u) \Gamma M \Gamma (u \alpha u \alpha t + t \alpha u \alpha u)$ =0. By primness of M we have, $u\alpha u \in Z$, for all $u \in U$. Thus assume that $[u, d(u)]_{\alpha} = 0$, for all $u \in U, \alpha \in \Gamma$. Then by lemma 3.4 we have, $u \alpha u \beta d(m) = d(m) \beta u \alpha u.$ Replace *m* by $m\alpha a$ where $a \in M$ and using (*) we get. $d(m)\alpha(u\alpha u\beta a + a\beta u\alpha u) +$ $(u\alpha u\beta m + m\beta u\alpha u)\alpha d(a) = 0.$ For $v \in U, \alpha \in \Gamma$, $d(v\alpha v) = v\alpha d(v) + d(v)\alpha v = 0.$ Hence the last equation becomes, $d(m)\alpha(u\alpha u\beta v\alpha v + v\alpha v\beta u\alpha u) +$ $(u\alpha u\beta m + m\beta u\alpha u)\alpha d(v\alpha v) = 0.$ Thus by lemma 3.4 we have, $u\alpha u\beta v\alpha v = v\alpha v\alpha u\alpha u$. Therefore, $u\alpha u\beta(v\alpha w + w\alpha v) = (v\alpha w + w\alpha v)\beta u\alpha u$ for all $u, v, w \in U, \alpha, \beta \in \Gamma$. Replace v by $[w, m]_{\alpha}$ then we have, $I^{\alpha}_{waw}(m)\beta(u\alpha u\alpha w + w\alpha u\alpha u) = 0,$ By using Lemma 3.1 we get, $w \alpha w \notin Z$, for some $w \in U$ and $\alpha \in \Gamma$. So that, $u \alpha u \alpha w = w \alpha u \alpha u$ That is, $[[u, v]_{\alpha}, w]_{\alpha} = 0$, for all $u, w \in U$ and $\alpha \in \Gamma$. Since, $[[v,w]_{\alpha},u]_{\alpha} + [[w,u]_{\alpha},v]_{\alpha} =$ $[[u,v]_{\alpha},w]_{\alpha}.$ Replace in above equation v by $v\alpha w$ and expanding we get, $[v,w]_{\alpha}\alpha[w,u]_{\alpha}=0,$ for all $u, w \in U$ and $\alpha \in \Gamma$. Replace v by $[w,m]_{\alpha}$ and u by $[w,t]_{\alpha}$ we get, $((w \alpha w \alpha m + m \alpha w \alpha w) \alpha (w \alpha w \alpha t +$ $t\alpha w\alpha w = 0.$ Replace t by $p \alpha t$ where $p \in M$, then

 $[w \alpha w, m]_{\alpha} \Gamma M \Gamma [w \alpha w, t]_{\alpha} = 0.$

By primness of M we have, $w\alpha w \in Z$ a contradiction .Hence the conclusion is that, So in all possible cases,

 $w\alpha w \in Z$, for all $u \in U, \alpha \in \Gamma$. So that,

 $(u\alpha v + v\alpha u) \in Z$ and $(u\alpha v + v\alpha u)\alpha u \in Z$

If $u \notin Z(U)$ where Z(U) denotes the center

of, then $(u\alpha v + v\alpha u = 0$, for all $v \in U$ and

 $u \in Z(U)$

Hence U is commutative.

References

- 1. Nobusawa N., **1964**, On a Generalization of the Ring Theory, Osaka J. Math. **1**, 81-89.
- 2. Barnes W. E., **1966**, On the Γ-Rings of Nobusawa, Pacific J. Math., **18**, 411-422.
- 3. Kyuno S., **1977**, On the Semi-simple Gamma rings, Tohoku Math. J., **29**, 217-225.
- 4. Luh J., **1969**,*On the theory of simple Γrings*, *Michigan Math. J.*, **16**, 65-75.
- 5. Booth G. L., **1987**, On the radicals of $\Gamma_{N-rings}$, Math. Japonica, **32(3)**, 357-372.
- 6. S. Kyuno, **1978**, On prime gamma rings, Pacific J. Math., **75(1)**, 185-190.
- 7. Posner, E. C, **1957**. *Derivations in prime rings*, Proc. *Amer. Soc.*, **8**, 1093-1100.
- 8. Awtar, R, **1973**. *Lie and Jordan structure in prime rings with derivations*, Proc. Amer. Math. Soc., **41**, 67-74.

- 9. Mayne J., **1984**, *Centralizing mappings of prime rings*, *Canad. Math.Bull.***27**, 122-126.
- Bell H. E. and Martindale W. S., 1987. Centralizing mappings of semiprime rings, Canad. Math. Bull. 30, 92–101
- 11. Vukman J., **1990**, Commuting and centralizing mappings in prime rings, Proc. Amer. Math. Soc. **109**, 47-52.
- 12. Bresar M., **1993**, Centralizing mappings and derivations in prime rings, J. Algebra **156**, 385-394.
- 13. Paul A. C. and Sabur Uddin, **2010**, *Lie and Jordan Structure in Simple Gamma Rings, Journal of Physical Sciences*, **14**, 77-86.
- 14. Sapanc, M. and Nakajima, A, **1997**, *Jordan derivations on completely prime gamma rings*, Math.Japonica, **46**, 1, 47-51.
- 15. Dey K.K. and Paul A.C., **2012**, *Generlized* Derivations Acting as Homomorphisms and Anti - Homomorphisms of Gamma Rings, Journal of scientific research, **4** (1), 33-37.
- Motashar S.K., 2011, *Γ-centralizing* mappings on prime and semi-prime *Γ-rings*, M.Sc. thesis Baghdad University.