

Lie and Jordan Structure in Prime Γ - rings with Γ-centralizing Derivations

Abdulrahman H. Majeed*, Aliaa Aqeel Majeed
Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq
*ahmajeed6@yahoo.com

Abstract

Let M be a prime Γ-ring satisfying $a \alpha b \beta c=a \beta b \alpha c$ for all $a, b, c \in M$ and $\alpha, \beta \in \Gamma$ with center Z, and U be a Lie (Jordan) ideal. A mapping $d: M \rightarrow M$ is called Γ - centralizing if $[u, d(u)]_{\alpha} \in Z$ for all $u \in U$ and $\alpha \in \Gamma$. In this paper , we studied Lie and Jordan ideal in a prime Γ - ring M together with Γ centralizing derivations on U.

Keywords: Prime Γ-ring, Lie ideal, Jordan ideal, Γ - centralizing, Derivation.

تركيبه لي و جوردان في الحلقات الاوليه من النمط -ए مع المشتقات المركزيه من النمط

```
عبدالرحمن حميد مجيد ,علياء عقيل مجيد
قسم الرياضيات, كلية العلوم, جامعة بغداد, بغداد, العراق
```


النمط - اذا كان
جوردان للحقة الاوليه من النمط - Γ مع داله المشتقات المركزيه من النمط - Γ على U.

1. Introduction

N. Nobusawa [1] introduced the notion of Γ-ring, more general than a ring.W. E. Barnes [2]weakened slightly the conditions in the definition of Γ-ring in the sense of Nobusawa after these two papers were published, number of modern algebraists have determined a lot of fundamental properties of Γ-ring and extended numerous significant results in classical ring theory to gamma ring theory see $[3,4,5$ and 6$]$ for partial references.

In classical ring the theory of centralizing mapping on prime ring was initiated by Posner [7] who proved that the existence of a nonzero
derivation on a prime ring forces the ring to be commutative. In [8] R. Awtar considered centralizing derivations on Lie and Jordan ideals generalized Posner's theorem. A lot of work has been done during the last decades in this field see $[9,10,11$, and 12$]$ where further reference can be found.
By the same motivation as in the classical ring theories we proved the following results.
Let M be a prime Γ-ring, satisfying, $a \alpha b \beta c=a \beta b \alpha c$ for all $a, b, c \in M$ and $\alpha, \beta \in \Gamma$ and it will represented by (*)
i) If characteristic of M is different from 2 and 3and U be Lie ideal then if d is Γ-centralizing
on U then U is central in M.
ii) If M has characteristic 3 and U is Jordan ideal. then If d is Γ-centralizing then U is central in M further, if U is a Lie ideal with $u \alpha u \in U$ for all $u \in U$ and, $\alpha \in \Gamma$,then U is central in M. The case when M has characteristic 2 is also studied.

2. Some Basic Definitions

Definition 2.1 [2]: Let M and Γ be two additive abelian groups If there exists a mapping $(a, \alpha, b) \rightarrow a \alpha b$ of $M \times \Gamma \times M \rightarrow M$ Which satisfies for all $a, b, c \in M$ and $\alpha, \beta \in \Gamma: 1)$
$i)(a+b) \alpha c=a \alpha c+b \alpha c$,
ii) $a(\alpha+\beta) b=a \alpha b+a \beta b$,
iii) $a \alpha(b+c)=a \alpha b+a \alpha c$.
2) $(a \alpha b) \beta c=a \alpha(b \beta c)$.

Then M is called Γ-ring in the sense of Barnes.
Definition2.2[3]: An additive subgroup S of a Γ-ring M is called subring if $S \Gamma S \subset S$.

Definition2.3[3]: An additive subgroup I of M is said to be a left (or right) ideal of M if $M \Gamma I \subset I \quad$ (or $I \Gamma M \subset I$), if I is both a right and left ideal, then we say that I is an ideal.

Definition2.4[3]: Let M be a Γ-ring then M is called prime if $a \Gamma M \Gamma b=0$ implies either $a=0$ or $b=0$ where $a, b \in M$.

Definition2.5[3]: Asubset S if a Γ-ring M is called stronglyilpotent if there exists a positive integer n such that $(S \Gamma)^{n} S=(0)$.

Remark:

1)For any $a, b \in M \quad a \alpha b-b \alpha a$ are denoted by $[a, b]_{\alpha}$.Then one has the basic identities, $[a \beta b, c]_{\alpha}=[a, c]_{\alpha} \beta b+a \beta[b, c]_{\alpha}+a[\beta, \alpha]_{c} b$ And,
$[a, b \beta c]_{\alpha}=b \beta[a, c]_{\alpha}+[a, b]_{\alpha}+b[\beta, \alpha]_{a} c$, for all $a, b, c \in M$ and $\alpha, \beta \in \Gamma$. Using the assumption $\left({ }^{*}\right)$ the above identities reduce to, $[a \beta b, c]_{\alpha}=[a, c]_{\alpha} \beta b+a \beta[b, c]_{\alpha}$
And, $[a, b \beta c]_{\alpha}=b \beta[a, c]_{\alpha}+[a, b]_{\alpha}$.
2) Let M be Γ-ring, the center of M is defined as, $Z=\{a \in M: a \alpha m=m \alpha a$ for all $m \in M, \alpha \in \Gamma\}$.

Definition2.6 [13]: An additive subgroup U of a Γ-ring M is said to be a Lie ideal of M if $[u, m]_{\alpha} \in U, \quad$ for \quad all $\quad u \in U, m \in M$ and $\alpha \in \Gamma$. And U is said to be Jordan ideal if $u \alpha m+m \alpha u \in U$, for all $u \in U, m \in M$ and $\alpha \in \Gamma$.
Definition2.8[14]: An additive mapping
$d: M \rightarrow M$ is called a derivation of M if ,
$d(x \alpha y)=d(x) \alpha y+x \alpha d(y)$, holds for all $x, y \in M$ and $\alpha \in \Gamma$.

For a fixed $a \in M$ and $\alpha \in \Gamma$ the mapping, $I_{a}^{\alpha}: M \rightarrow M$ given by $I_{a}^{\alpha}=[m, a]_{\alpha}$, is said to be inner derivation of M [15].

Definition2.9[16]: Let M be a Γ ring with center Z and $U \quad$ be lie (Jordan) ideal of M.A mapping $\quad d: M \rightarrow M$ is called Γ-centralizing (resp. $\quad \Gamma$-commuting) if $[u, d(u)]_{\alpha} \in Z$ (resp. $[u, d(u)]_{\alpha}=0$, for all $u \in U$, and $\alpha \in \Gamma$.

3. Basic Lemmas

For proving our main results, we need some important results which we have proved here as lemmas. So, we start as follows:

Lemma3.1: Let M be a prime Γ-ring, d a nonzero derivation of M and a be an element of M if $\operatorname{a\alpha d}(m)=0$, for all $m \in M$ and $\alpha \in \Gamma$. Then either $a=0$ or d is zero.

Proof:

We have $\operatorname{a\alpha d}(m)=0$, for all $m \in M$ and $\alpha \in \Gamma$. Replace m by $m \alpha x$ where $x \in M$,then

$$
\begin{aligned}
\operatorname{a\alpha d}(m \alpha x) & =\operatorname{a\alpha d}(m) \alpha x+\operatorname{aomod}(x) \\
& =\operatorname{a\alpha m} \alpha d(x)
\end{aligned}
$$

For all $x \in M$ and $\alpha \in \Gamma$. That is

$$
a \Gamma M \Gamma d(x)=0, \text { for all } x \in M
$$

Since M is prime, either $a=0$ or d is zero

Lemma3.2: Let M be a prime Γ-ring of characteristic not 2 and d_{1}, d_{2} be a derivation of M such that the iterate $d_{1} d_{2}$ is also a derivation, Then one at least of d_{1}, d_{2} is zero.

Proof:

We have $d_{1} d_{2}$ is a derivation of M that is, $d_{1} d_{2}(a \alpha b)=d_{1} d_{2}(a) \alpha b+a \alpha d_{1} d_{2}(b)$, for all $a, b \in M$ and $\alpha \in \Gamma$.

But d_{1}, d_{2} are each derivation so,

$$
\begin{aligned}
d_{1} d_{2}(a \alpha b) & =d_{1} d_{2}(a) \alpha b+d_{2}(a) \alpha d_{1}(b) \\
& +d_{1}(a) \alpha d_{2}(b)+a \alpha d_{1}\left(d_{2}(b)\right) .
\end{aligned}
$$

But,

$$
d_{1} d_{2}(a \alpha b)=d_{1} d_{2}(a) \alpha b+a \alpha d_{1}\left(d_{2}(b)\right)
$$

So,

$$
d_{2}(a) \alpha d_{1}(b)+d_{1}(a) \alpha d_{2}(b)=0
$$

$$
\begin{equation*}
\text { for all for all } a, b \in M \text { and } \alpha \in \Gamma \tag{1}
\end{equation*}
$$

Replace a in the last equation by $a \alpha d_{1}(c)$

$$
d_{2}\left(a \alpha d_{1}(c)\right) \alpha d_{1}(b)+d_{1}\left(a \alpha d_{1}(c)\right) \alpha d_{2}(b)
$$

$=0$, for all $a, b, c \in M$ and $\alpha \in \Gamma$.
That is

$$
\begin{gathered}
a \alpha\left(d_{2}\left(d_{1}(c) \alpha d_{1}(b)\right)+d_{1}\left(d_{1}(c)\right) \alpha d_{2}(b)=0\right. \\
\text { for all } a, b, c \in M \text { and } \alpha \in \Gamma .
\end{gathered}
$$

Which is merely equation (1) with a replaced by $d_{1}(c)$, then we are left with
$d_{2}(a) \alpha d_{1}(c) \alpha d_{1}(b)+d_{1}(a) \alpha d_{1}(c) \alpha d_{2}(b)=0$, for all $a, b, c \in M$ and $\alpha \in \Gamma$.
But,
$d_{1}(a) \alpha d_{2}(b)=-d_{2}(a) \alpha d_{1}(b)$ by replacing a by c the last equation becomes,
$d_{2}(a) \alpha d_{1}(c) \alpha d_{1}(b)-d_{1}(a) \alpha d_{2}(c) \alpha d_{1}(b)=0$
Factoring out $a \alpha d_{1}(b)$ on the right, we have
$\left(d_{2}(a) \alpha d_{1}(c)-d_{1}(a) \alpha d_{2}(c)\right) \alpha d_{1}(b)=0$, for all $a, b, c \in M$ and $\alpha \in \Gamma$.
And by Lemma 3.1 unless $d_{1}=0$ we have,

$$
\left(d_{2}(a) \alpha d_{1}(c)-d_{1}(a) \alpha d_{2}(c)\right)=0
$$

for all $a, c \in M$ and $\alpha \in \Gamma$.
Replace b by c in (1) then,

$$
\begin{aligned}
& \left(d_{2}(a) \alpha d_{1}(c)+d_{1}(a) \alpha d_{2}(c)\right)=0 \\
& \quad \text { for all } a, c \in M \text { and } \alpha \in \Gamma .
\end{aligned}
$$

Adding these last two equations, we get $2 d_{2}(a) \alpha d_{1}(c)=0$, for all $a, b, c \in M$ and $\alpha \in \Gamma$.
Since characteristic of M not equal 2, then $d_{2}(a) \alpha d_{1}(c)=0$, or else $d_{1}=0$ using Lemma 3.1 again with a replacing $d_{2}(a)$ we get, either $d_{1}=0$ or $d_{2}=0$

Lemma3.3:Let M be a prime Γ-ring of characteristic different from $2, U$ be Lie ideal of M and d be anon zero derivation of M. Then if d is Γ-centralizing on U and $u \alpha u \in U$, for all $u \in U$ and $\alpha \in \Gamma$, then M is Γ commuting on U.

Proof:

We have d is Γ-centralizing on U i.e.

$$
[u, d(u)]_{\alpha} \in Z, \text { for all } u \in U, \text { and } \alpha \in \Gamma
$$

Linearizing the above relation on, $u=u+u \alpha u$, we get
$[u \alpha u, d(u)]_{\alpha}+[u, u \alpha d(u)+d(u) \alpha u]_{\alpha} \in Z$, for all $u \in U$, and $\alpha \in \Gamma$.
That is,
$4[u, d(u)]_{\alpha} \alpha u \in Z$, for all $u \in U$, and $\alpha \in \Gamma$.
Since characteristic of M not equal 2 and $[u, d(u)]_{\alpha} \in Z$ then we get

$$
\begin{gathered}
{[u, d(u)]_{\alpha} \alpha[u, m]_{\beta}=0, \text { for all }} \\
m \in M, u \in U \text { and } \alpha, \beta \in \Gamma .
\end{gathered}
$$

If for some $u \in U,[u, d(u)]_{\alpha} \neq 0$ then we get
$[u, m]_{\beta}=0$, in particular $[u, d(u)]_{\alpha}=0$
Hence,
$[u, d(u)]_{\alpha}=0$,for all $u \in U$, and $\alpha \in \Gamma$.

Lemma3.4: Let M be a prime Γ-ring, U be a
Lie ideal of M and d a nonzero derivation of M.
If d is Γ-centralizing on U then

$$
\left[[d(m), u]_{\beta}, u\right]_{\alpha} \in Z
$$

for all $m \in M, u \in U$ and $\alpha, \beta \in \Gamma$.
Further, if d is Γ-commuting on U then,
$\left[[d(m), u]_{\beta}, u\right]_{\alpha}=0$,
for all $m \in M, u \in U$ and $\alpha, \beta \in \Gamma$.

Proof:

Since U is Lie ideal then,

$$
[u, m]_{\alpha} \in U
$$

for all $u \in U, m \in M$ and $\alpha \in \Gamma$.
So that, $\left[u+[u, m]_{\beta}, d\left(u+[u, m]_{\beta}\right)\right]_{\alpha} \in Z$.
That is,
$\left[[u, m]_{\beta}, d(u)\right]_{\alpha}+\left[u,[d(u), m]_{\beta}\right]_{\alpha}$

$$
+\left[u,[u, d(m)]_{\beta}\right]_{\alpha} \in Z
$$

for all $m \in M, u \in U$ and $\alpha, \beta \in \Gamma$.
Now since, for any for all
$m \in M, u \in U, \alpha, \beta \in \Gamma$ and by (*) we have
$\left[[u, m]_{\beta}, d(u)\right]_{\alpha}+\left[u,[d(u), m]_{\beta}\right]_{\alpha}$
$=\left[m,[d(u), u]_{\beta}\right]_{\alpha} \in Z$.
By Γ-centralizing of d we get,
$\left[[u, m]_{\beta}, d(u)\right]_{\alpha}+\left[u,[d(u), m]_{\beta}\right]_{\alpha}=0$.
Hence,

$$
\left[[d(m), u]_{\beta}, u\right]_{\alpha} \in Z
$$

for all $m \in M, u \in U$ and $\alpha, \beta \in \Gamma$.
The last part can be obtained similarly.
Lemma3.5: Let M be a prime Γ-ring of characteristic not equal 2 and 3 , and let U be a Lie ideal of , if d is Γ-centralizing on U then d is Γ-commuting on U.

Proof:

Since d is Γ-centralizing then, by Lemma 3.4, we have

$$
\left[[d(m), u]_{\phi}, u\right]_{\alpha} \in Z
$$

for all $m \in M, u \in U$ and $\alpha, \beta \in \Gamma$.
By using the assumption (*) we get
$u \beta u \alpha d(m)+d(m) \alpha u \beta u-2 u \beta d(m) \alpha u \in Z$,
for all $m \in M, u \in U$ and $\alpha, \beta \in \Gamma$.
Commuting with u, we have
$3 u \beta u \alpha d(m) \delta u+u \beta u \alpha u \delta d(m)=$
$3 u \delta d(m) \alpha u \beta u+d(m) \delta u \alpha u \beta u$
In (3) replace m by u and using d is Γ-centralizing,
$u \beta u \alpha u \delta d(u)-d(u) \delta u \alpha u \beta u$
$=3(u \alpha d(u)-d(u) \alpha u) \delta u \beta u$
Furthermore,
$2(u \alpha d(u)-d(u) \alpha u) \beta u$
$=u \beta u \alpha d(u)-d(u) \alpha u \beta u$.
Write $d(m)=m^{\prime}$ and then by replacing m by $u \alpha m^{\prime}$ in (4), we get

Зиßиби $\alpha m^{\prime \prime} \delta u-и \alpha m^{\prime \prime} \delta и \alpha и \beta и+$
$3 u \delta d(u) \alpha m^{\prime} \alpha u \beta u+u \beta u \alpha u \delta m^{\prime} \alpha d(u)-$
$3 u \beta u \alpha d(u) \alpha m^{\prime} \delta u-d(u) \alpha m^{\prime} \delta u \alpha u \beta u=0$,
for all $m \in M, u \in U$ and $\alpha, \beta, \delta \in \Gamma$.
However, by assumption (*) and (4), we have
3и $\delta и \alpha m^{\prime \prime} \alpha u \beta и+и \beta и \alpha и \delta и \alpha m^{\prime \prime}-$
$3 и \beta и \alpha и \alpha m^{\prime \prime} \delta u-и \alpha m^{\prime \prime} \delta и \alpha и \beta и=$
и $\alpha\left(3 u \delta m^{\prime \prime} \alpha и \beta и+u \beta и \alpha и \delta m^{\prime \prime}-\right.$
$\left.3 и \beta и \alpha m^{\prime \prime} \delta u-m^{\prime \prime} \delta и \alpha и \beta u\right)=0$.
Then equation (6) becomes,
$3 u \delta d(u) \alpha m^{\prime} \alpha u \beta u+u \beta u \alpha u \delta m^{\prime} \alpha d(u)-$
$3 u \beta u \alpha d(u) \alpha m^{\prime} \delta u-d(u) \alpha m^{\prime} \delta u \alpha u \beta u=0$,
for all $m \in M, u \in U$ and $\alpha, \beta, \delta \in \Gamma$.
Multiply (4) on the left by $d(u) \alpha$ and then subtract the results from (7) to get,
$3(u \alpha d(u)-d(u) \alpha u) \delta m^{\prime} \alpha u \beta u+$ $u \beta u \alpha u \alpha d(u)-d(u) \alpha u \beta u \alpha u) \delta m^{\prime}-$
$(u \beta u \alpha d(u)-d(u) \alpha u \beta u) \alpha m^{\prime} \delta u=0$
Using (5) and (6), we arrive at after dividing by 3,
$(u \alpha(u)-d(u) \alpha u) \alpha\left(m^{\prime} \delta u \beta u+u \beta u \delta m^{\prime}-\right.$
$\left.2 u \beta m^{\prime} \delta u\right)=0, \quad$ for all $m \in M, u \in U$ and $\alpha, \beta, \delta \in \Gamma$.
If , $(u \alpha d(u)-d(u) \alpha u \neq 0$, for some
$u \in U$ and $\alpha \in \Gamma$. Then we have
$m^{\prime} \delta u \beta u+u \beta u \delta m^{\prime}-2 u \beta m^{\prime} \delta u=0$
Replace m by $u \beta m$ in (9) and using (*) we get,
$u \beta m^{\prime} \delta u \beta u+u \beta u \beta u \delta m^{\prime}-2 u \beta u \delta m^{\prime} \beta u+$ $d(u) \beta m \delta u \beta u+u \beta u \beta d(u) \delta m-$
$2 u \beta d(u) \delta m \beta u=0$
By using (9) we get,
$u \beta\left(m^{\prime} \delta u \beta u+u \beta u \delta m^{\prime}-2 u \delta m^{\prime} \beta u\right)=0$,
Then equation (10) becomes,
$d(u) \beta m \delta u \beta u+u \beta u \beta d(u) \delta m$
$-2 u \beta d(u) \delta m \beta u=0$.
Now in (9) replace m by u, and multiply this on the right by βm,
$d(u) \delta u \beta u \beta m+u \beta u \delta d(u) \beta m$
$-2 u \beta d(u) \delta u \beta m=0$.
Subtract (12) from (11),
$d(u) \beta(m \delta u \beta u-u \delta u \beta m)$
$-2 u \beta d(u) \delta(m \beta u-u \beta m)=0$.
Replace m by $u \beta m$ and using assumption (*)
$d(u) \beta u \beta(m \delta u \beta u-u \beta u \delta m)$
$-2 u \beta d(u) \delta u \beta(m \beta u-u \beta m)=0$.
Multiply (13) by $u \beta$ from left and then subtract the results from (14),
$(u \beta d(u)-d(u) \beta u) \beta(m \delta u \beta u-u \beta u \delta m)-$
$2 u \beta(u \beta d(u)-d(u) \beta u) \delta(m \beta u-u \beta m)=0$.
Since, $u \alpha d(u)-d(u) \alpha u \neq 0$, for all $u \in U$ and $\alpha \in \Gamma$. Then,
$m \delta u \beta u-u \beta u \delta m-2 u(m \beta u-u \beta m)=0$,
for all $m \in M$
So, $m \delta u \beta u-u \beta u \delta m-2 u \beta m \beta u=0$, that is
$u \beta(m \delta u-u \delta m)=(m \delta u-u \delta m) \beta u$,
That is u in the center by Lemma 3.2 or else $u \alpha d(u)-d(u) \alpha u=0$,
Which in both cases
$[u, d(u)]_{\alpha}=0$ for all $u \in U$ and $\alpha \in \Gamma$.
The following lemma may have some independent interest.

Lemma3.6: Let M be a prime Γ-ring of characteristic not $2, U$ be Jordan ideal of M and d be a nonzero derivation of M. If $u \alpha d(u)=d(u) \alpha u=0$, for all $u \in U, \alpha \in \Gamma$.

Then $U=0$.

Proof:

Linearizing the relation $u \alpha d(u)=0$ on $u=u+w$ where $w \in U$ to get,
$u \alpha d(w)+w \alpha d(u)=0$, for all $u, w \in U$ and $\alpha \in \Gamma$.

For $u \in U$ and any $m \in M, \alpha \in \Gamma$,

$$
u \alpha(u \alpha m-m \alpha u)+(u \alpha m-m \alpha u) \alpha u \in U
$$

But, 2(тоиои - иоиот) $=$
$\{u \alpha(m \alpha u-u \alpha m)+(m \alpha u-u \alpha m) \alpha u\}-$
$\{(m \alpha u-u \alpha m) \alpha u+u \alpha(m \alpha u-u \alpha m)\}$
As the first and second term on the right hand side are in U,

$$
2(\text { тоиои - и } \alpha u \alpha m) \in U
$$

Now since,
$2 u \alpha u \in U$ and $2($ mou $\alpha u-u \alpha u \alpha m) \in U$.
Then, 4иоиот and 4тоиои are in U.
Replacing w by $4 m \alpha u \alpha u$ in (15) and using the hypothesis, we get

$$
\begin{equation*}
u \alpha d(m) \alpha u \alpha u=0 \tag{16}
\end{equation*}
$$

for all $m \in M, u \in U$ and $\alpha \in \Gamma$.
Replace w by $m \beta u+u \beta m$ and using the hypothesis, we get
$u \beta u \alpha d(m)+u \alpha d(m) \beta u+u \alpha m \beta d(u)+$
$u \beta m \alpha d(u)=0$, for all $m \in M, u \in U$ and $\alpha, \beta \in \Gamma$.
Multiply by αu on the right and using the assumption (*) together with equation (16) we obtain
$u \beta u \alpha d(m) \alpha u=0$,
for all $m \in M, u \in U$ and $\alpha, \beta \in \Gamma$.
Again replace w by 4uouom in (15), we get

$$
\begin{gathered}
u \alpha u \alpha u \alpha d(m)=0, \quad \text { for all } \\
m \in M, u \in U \text { and } \alpha \in \Gamma .
\end{gathered}
$$

Then by Lemma 3.1, we have
$u \alpha u \alpha u=0$, for all $u \in U$ and $\alpha \in \Gamma$.
For $m \in M, u \in U$ and $\alpha \in \Gamma$,
$2(u \alpha u \alpha m+т \alpha и \alpha и) \in U$.
That is,
$2^{3}[(u \alpha u \alpha m+m \alpha u \alpha u) \alpha]^{2}($ u $\alpha и \alpha m+$ $m \alpha u \alpha u)=0$, for all $m \in M, u \in U$ and $\alpha \in \Gamma$.

Multiply from the right side by $и \propto и \alpha и=0$ we get

$$
2^{3}[(u \alpha u \alpha m) \alpha]^{3}(u \alpha u \alpha m)=0
$$ for all $m \in M, u \in U$ and $\alpha \in \Gamma$.

If for some $u \in U$ and $\alpha \in \Gamma, u \alpha u \neq 0$ then $u \alpha u \alpha M$ is a nonzero right ideal of M, then by Levitzki's Theorem [13] M would have a nilpotent ideal; which is impossible for prime Γ-ring, hence
$u \alpha u=0$, for all $u \in U$ and $\alpha \in \Gamma$.
By repeating the above argument we can show that $u=0$, for all $u \in U$

4. The Main Theorems

Theorem 4.1: Let M be a prime Γ-ring of characteristic different from 2 and 3. Let d be a nonzero derivation of M and U be a Lie ideal of M.If d is Γ-centralizing on U then $U \subset Z$.

Proof:

Since d is Γ-centralizing on U, then by using Lemma 3.5, we have
$[u, d(u)]_{\alpha}=0$, for all $u \in U$ and $\alpha \in \Gamma$.
Then by Lemma 3.4, we get

$$
\begin{equation*}
\left[[d(m), u]_{\beta}, u\right]_{\alpha}=0 \tag{1}
\end{equation*}
$$

for all $m \in M, u \in U$ and $\alpha \in \Gamma$.
In (1) replace u by $u+w$ where $w \in U$,
$\left[[d(m), u]_{\beta}, w\right]_{\alpha}+\left[[d(m), w]_{\beta}, u\right]_{\alpha}=0$,
for all $m \in M, u, w \in U$ and $\alpha, \beta \in \Gamma$.
Suppose now, $u, w \in U$ are such that $w \alpha v$.
Then by replacing w by $w \alpha v$ in (2) we get after using (*),
$w \alpha\left[[d(m), u]_{\beta}, v\right]_{\alpha}+\left[[d(m), u]_{\beta}, w\right]_{\alpha} \alpha v+$
$[d(m), w]_{\alpha} \beta[u, v]_{\alpha}+\left[[d(m), w]_{\beta}, u\right] \alpha v+$
$w \alpha\left[[d(m), v]_{\beta,}, u\right]_{\alpha}+[w, u]_{\alpha} \alpha[d(m), v]_{\beta}=0$.
In view of (2) the last equation reduces to,
$[d(m), w]_{\alpha} \beta[u, v]_{\alpha}+[w, u]_{\alpha} \alpha[d(m), v]_{\beta}=0$.
Replace v by $[t, w]_{\alpha}$ where $t \in M$ in above equation, we have

$$
\begin{gather*}
{[d(m), w]_{\beta} \alpha\left[[t, w]_{\alpha}, u\right]_{\alpha}+[w, u]_{\alpha}} \\
{\left[d(m),[t, w]_{\alpha}\right]_{\beta}=0,} \tag{3}
\end{gather*}
$$

for all $t, m \in M, u, w \in U$ and $\alpha, \beta \in \Gamma$.
Putting $u=w$ in (3), we have
$[d(m), w]_{\beta} \alpha\left[[t, w]_{\alpha}, w\right]_{\alpha}=0$
Replace t by $t \alpha d(a)$ in (4) where $a \in M$ yields on expansion and (*),
$[d(m), w]_{\beta} \alpha\left\{2[t, w]_{\alpha} \alpha[d(a), w]_{\alpha}+\right.$
$\left.\left[[t, w]_{\alpha}, w\right]_{\alpha} \alpha d(a)+t \alpha\left[[d(a), w]_{\alpha}, w\right]_{\alpha}\right\}=0$. By (4) the second term is zero, while by (1) the third term is zero. Hence
$[d(m), w]_{\beta} \alpha[t, w]_{\alpha} \alpha[d(a), w]_{\alpha}=0$,
for all $m, t, a \in M, w \in U$ and $\alpha \in \Gamma$.
Put $u=[t, w]_{\alpha}$ in (3), and linearization it s on $t=t+d(a)$ where $a \in M$ together with (1) yields $\left.\left[[t, w]_{\alpha}, w\right]_{\alpha} \alpha[d(a), w]_{\alpha}, d(m)\right]_{\beta}=0$, for all $m, t, a \in M, w \in U$ and $\alpha \in \Gamma$. Replace t by $d(t) \alpha p$ where $p \in M$ in (6) then by expanding we get ,

$$
\left\{2[d(t), w]_{\alpha} \alpha[p, w]_{\alpha}+d(t) \alpha\right.
$$

$$
\begin{gathered}
\left.\left[[p, w]_{\alpha}, w\right]_{\alpha}+\left[[d(t), w]_{\alpha}, w\right]_{\alpha} \alpha p\right\} \gamma \\
\quad+\left[[d(a), w]_{\alpha}, d(m)\right]_{\beta}=0 .
\end{gathered}
$$

By (6) the second term is zero, while by (1) the third term is zero .Hence
$[d(t), w]_{\alpha} \alpha[p, w]_{\alpha} \gamma\left[[d(a), w]_{\alpha}, d(m)\right]_{\beta}$
$=0$.In view of (5), the last equation reduces to, $[d(t), w]_{\alpha} \alpha[p, w]_{\alpha} \gamma d(m) \alpha[d(a), w]_{\beta}=0$,
for all $p, a \in M, w \in U$ and $\alpha, \gamma \in \Gamma$.
In (5) replace t by $t \alpha d(a)$ where $p \in M$ then by using the last equation, we get
$[d(m), w]_{\beta} \Gamma M \Gamma[d(p), w]_{\alpha}[d(a), w]_{\alpha}=0$, for all $m, a \in M, w \in U$ and $\alpha, \beta \in \Gamma$.
Since M is prime either $[d(m), w]_{\beta}=0$ or $[d(p), w]_{\alpha} \alpha[d(a), w]_{\alpha}=0$.

If for all $m \in M, w \in U$ and $\beta \in \Gamma$,
$[d(m), w]_{\beta}=0$. That is, $I_{w}^{\beta}(d(m))=0$.
Then by Lemma 3.1, $w \in Z$, for all $w \in U$
Thus assume there exists a $w \in U$ such that for some $m \in M,[d(m), w]_{\beta} \neq 0$. That is
$w \notin Z$. Then for all $a, p \in M$,

$$
\begin{equation*}
[d(p), w]_{\alpha} \alpha[d(a), w]_{\alpha}=0 . \tag{7}
\end{equation*}
$$

Replace a by $b \beta c$ where $b, c \in M$ then by expanding, we get
$[d(p), w]_{\alpha} \alpha[d(b), w]_{\alpha} \beta c+[d(p), w]_{\alpha}$ $\alpha d(b) \beta[c, w]_{\alpha}+[d(p), w]_{\alpha} \alpha b \beta[d(c), w]_{\alpha}+$ $[d(p), w]_{\alpha} \alpha[b, w]_{\alpha} \beta d(c)=0$.
Replace b by $[t, w]_{\alpha}$ where $t \in M$. Then by (7) the first term is zero, by (5) the third term is zero and by (4) the fourth term is zero, thus
$[d(p), w]_{\alpha} \alpha d\left([t, w]_{\alpha}\right) \beta[w, c]_{\alpha}=0$.
Since, $d\left([t, w]_{\alpha}\right)=[d(t), w]_{\alpha}+[t, d(w)]_{\alpha,}$ and using (3), we get
$[d(p), w]_{\alpha} \alpha[t, d(w)]_{\alpha} \beta[w, c]_{\alpha}=0$, for all $c, t, p \in M, w \in U$ and $\alpha, \beta \in \Gamma$.
Replace c by $m \alpha c$ where $m \in M$, then
$[d(p), w]_{\alpha} \alpha[t, d(w)]_{\alpha} \Gamma M \Gamma[w, c]_{\alpha}=0$.
Since M is prime and $w \notin Z$, we get

$$
[d(p), w]_{\alpha} \alpha[t, d(w)]_{\alpha}=0,
$$

for all $t, p \in M, w \in U$ and $\alpha \in \Gamma$. Thus

$$
[d(p), w]_{\alpha} \Gamma M \Gamma[t, d(w)]_{\alpha}=0,
$$

for all $t, p \in M, w \in U$ and $\alpha \in \Gamma$.
Which in both cases $d(w) \in Z$.
Now suppose that $u \in U$ and $u \in Z$ then

$$
0=d\left([u, a]_{\alpha}\right)=[d(u), a]_{\alpha}+[u, d(a)]_{\alpha}
$$

and hence $d(u) \in Z$. Therefore, $d(u) \in Z$ for all $u \in U$. So that, $d\left([w, a]_{\alpha}\right) \in Z$ for all $a \in M$,that is
thus $[w, d(a)]_{\alpha} \in Z$.In particular,
$[w, d(a \beta w)]_{\alpha}=[w, d(a)]_{\alpha} \beta w+[w, a]_{\alpha}$
$\beta d(w) \in Z$
By commuting (6) with w, we get

$$
\left[w,[w, a]_{\alpha}\right]_{\alpha} \beta d(w)=0,
$$

for all $a \in M, w \in U$ and $\alpha, \beta \in \Gamma$.
If $d(w) \neq 0$ and as its in the center Z ,
$\left[w,[w, a]_{\alpha}\right]_{\alpha}=0$, for all $a \in M$ and $\alpha \in \Gamma$.
By sub- Lemma [14] $w \in Z$ a contradiction.
Hence, $d(w)=0$. Thus by (8), we have
$[w, d(a)]_{\alpha} \beta w \in Z$, for all $a \in M$ and $\alpha \in \Gamma$.
That is, $\quad[w . d(a)]_{\alpha} \beta[w, b]_{\alpha}=0$,
for all $a, b \in M$ and $\alpha, \beta \in \Gamma$.
Replace b by $c \alpha b$ where $c \in M$, then

$$
[d(a), w]_{\alpha} \Gamma M \Gamma[w, b]_{\alpha}=0 .
$$

By primness of M we get, either $w \in Z$ or [$d(a), w]_{\alpha}=0$, for all $a \in M$ and $\alpha \in \Gamma$.
Which us in both cases a contradiction Hence, $w \in Z$ for all $w \in U$.

Now we should like to settle the problem when M has characteristic 3 .Hence we get the following result.

Theorem4.2: Let M be a prime Γ-ring of characteristic 3 , and d be a nonzero derivation of M. if d is Γ-centralizing on U and $u \alpha u \in U$ then $U \subset Z$.

Proof:

Since d is Γ-centralizing on U then,
By Lemma 3.3 we get d is Γ-commuting on U .Therefore , by similar way of the proof in Theorem 4.1 we can get $U \subset Z$.

Now we show that the conclusion of Theorem 4.1 and Theorem 4.2 holds even if U is Jordan ideal of M.

Theorem4.3: Let M be a prime Γ-ring of characteristic not 2 . Let d be a nonzero derivation of M and U be a Jordan ideal of M if d is Γ-centralizing then $U \subset Z$.

Proof:

Since $2 u \alpha u \in U$, then by Lemma 3.3, $[u, d(u)]_{\alpha}=0$, for all $u \in U$ and $\alpha \in \Gamma$.
Linearizing the relation $[u, d(u)]_{\alpha}=0$, on $u=u+v$ where $v \in U$, we get
$[u, d(v)]_{\alpha}+[v, d(u)]_{\alpha}=0$,
for all $u, v \in U$ and $\alpha \in \Gamma$.
In (9) ,replace v by $u \beta m+m \beta u$ where $m \in M$ then by expanding, we get $u \beta[u, d(m)]_{\alpha}+\left[u, d(m) \beta u+d(u) \beta[u, m]_{\alpha}\right.$ $+[u, m]_{\alpha} \beta d(u)+u \beta[m, d(u)]_{\alpha}+[m \cdot d(u)]_{\alpha}$ $\beta u=0$. i.e.

$$
\begin{align*}
& 2 u \beta m \alpha d(u)-2 d(u) \alpha m \beta u+ \\
& u \beta u \alpha d(m)-d(m) \alpha u \beta u=0
\end{align*}
$$

Replace m by uom in (10), we get

$$
\begin{equation*}
d(u) \alpha(u \beta u \alpha m-m \alpha u \beta u)=0 \tag{11}
\end{equation*}
$$

for all $m \in M . u \in U$ and $\alpha, \beta \in \Gamma$
That is, $d(u) \alpha I_{u \beta u}^{u}(m)=0$,
for all $m \in M . u \in U$ and $\alpha, \beta \in \Gamma$.
Hence by Lemma 3.1 we have, either $u \beta u \in Z$ or $d(u)=0$, for all $u \in U$ and
$\alpha, \beta \in \Gamma$.
For $u \in U$ and any $m \in M, \alpha \in \Gamma$, we have $u \alpha m+m \alpha u \in U$. But,
$4 u \alpha m \alpha u=2\{u \alpha(u \alpha m+m \alpha u)+(u \alpha m+$ $m \alpha u) \alpha u\}-\{2 u \alpha u \alpha m+m \alpha 2 u \alpha u\}$.
The first and second term on the right are in U then, $4 u \alpha m \alpha u \in U$.Replace v by $4 u \alpha m \alpha u$ in (9), we get

иоиатодd(u)-d(и) стокиои + иои
$\alpha m \alpha d(m) \alpha u-u \alpha d(m) \alpha u \alpha u=0$
Replace m by uom in (12) and then by using (12) we get,
$u \alpha d(u) \alpha($ и $\alpha т \alpha и-т \alpha и \alpha и)=0$.
In view of (11) the last equation reduces to $u \alpha d(u) \alpha u \alpha(u \alpha m-m \alpha u)=0$.
That is , $u \alpha d(u) \alpha u \alpha I_{u}^{\alpha}(m)=0$.
Then by Lemma 3.1, we have either $u \alpha d(u) \alpha u=0$ or $U \subset Z$, for all $u \in U$
and $\alpha \in \Gamma$.
In (11), replace u by $u+v$ where $v \in U$ then by using (11), we get

$$
\begin{gathered}
\{d(u)+d(v)\} \alpha[v \beta u+v \beta u, m]_{\alpha}+ \\
d(u) \alpha[v \beta u, m]_{\alpha}+d(v) \alpha[u \beta u, m]_{\alpha}=0 .
\end{gathered}
$$

Replace u by $-u$ then,

$$
\begin{gathered}
\{-d(u)+d(v)\} \alpha[-v \beta u-v \beta u, m]_{\alpha}- \\
d(u) \alpha[v \beta u, m]_{\alpha}+d(v) \alpha[u \beta u, m]_{\alpha}=0 .
\end{gathered}
$$

Adding the last two equations and dividing by 2 , we have

$$
d(u) \alpha[v \beta u+v \beta u, m]_{\alpha}+d(v) \alpha[u \beta u, m]_{\alpha}=0
$$

for all $m \in M, u, v \in U$ and $\alpha, \beta \in \Gamma$.
By lemma 3.6 we get $u \alpha d(u) \alpha u \neq 0$, for some $u \in U, \alpha \in \Gamma ; d(u) \neq 0$.
Hence by (12), $u \beta u \in Z$. The net results of this
is $\quad d(u) \alpha[v \beta u+v \beta u, m]_{\alpha}=0$,
for all $m \in M, u, v \in U$ and $\alpha, \beta \in \Gamma$.
That is , $d(u) \alpha I_{u \beta v+v \beta u}^{\alpha}(m)=0$,
for all $m \in M, u, v \in U$ and $\alpha, \beta \in \Gamma$.
By Lemma 3.1, $v \beta u+v \beta u \in Z$, for all $u, v \in U$ and $\alpha, \beta \in \Gamma$.
If $u \alpha u=0$, then

$$
\begin{aligned}
0=d(u \alpha u) & =u \alpha d(u)+d(u) \alpha u \\
& =2 u \alpha d(u) .
\end{aligned}
$$

That is, $u \alpha d(u)=0$ a contradiction hence $u \alpha u \neq 0$, Now suppose that $u \alpha d(u) \alpha u=0$, then $u \alpha u \alpha d(u)=0$ that is, $d(u)=0$ a contradiction hence $u \alpha d(u) \alpha u \neq 0$,
So by (13) $U \subset Z$ hence $2 u \alpha v \in Z$; that is $2 u \alpha v \in Z$ for all $v \in U$ and $\alpha \in \Gamma$.
As $u \neq 0$ we have $v \in Z$ for all $v \in U$.
Hence $U \subset Z$
We should like to settle the problem even when M has characteristic 2 .In this case Lie and

Jordan ideals will coincide.

Theorem 4.4: Let M be a prime Γ-ring of characteristic 2 , and let d be a nonzero derivation of M.Let U be Lie (Jordan)ideal and subring of M.If d is Γ-centralizing on U then U is commutative

Proof:

Since d is Γ-centralizing on U then by Lemma 3.4
$d(m) \beta u \propto u+u \alpha u \beta d(m) \in Z$
Commute(14) with $d(m)$ and $u \alpha u$ respectively we get ,
$u \propto u \beta d(m) \gamma d(m)=d(m) \gamma d(m) \beta u \alpha u(15 a)$
And,
$d(m) \beta u \propto u \delta и \alpha u=u \alpha u \delta u \alpha u \beta d(m)$
in (15a) replace m by $v+u \alpha u \beta v$ and by using (15 a) we get,
$u \alpha u \beta d(v+u \alpha u \beta v) \gamma d(v+u \alpha u \beta v)$
$=d(v+u \alpha u \beta v) \gamma d(v+u \alpha u \beta v) \beta u \alpha u$.
For $u \in U, \alpha \in \Gamma$,

$$
d(u \alpha u)=u \alpha d(u)+d(u) \alpha u \in Z .
$$

So in view of (15b) the last equation reduces to иои $\beta d(v)$ ни $\alpha и \beta d(v)+d(v) \gamma u \alpha u \beta d(v) \beta$ $u \alpha u=0$, for all $u, v \in U, \alpha \in \Gamma$.
Since M is prime, and by using (14) we get, $u \alpha u \beta d(v)=d(v) \beta u \alpha u$, for all $u, v \in U$, and $\alpha \in \Gamma$
Replace u by $u+w$ where $w \in U$ we get, $(u \alpha w+w \alpha u) \beta d(v)=d(v) \beta(u \alpha w+w \alpha u)$
Replace v by $v \alpha w$ and by using $\left(^{*}\right)$ we have,
$(u \alpha w+w \alpha u) \beta(u \alpha d(v)+d(v) \alpha u)=0$,
for all $u, v, w \in U, \alpha, \beta \in \Gamma$.
Linearize the last equation on $u=u+v \alpha v$ where $v \in U$ and put $v=u$ then using (16) we get,
$(v \alpha v \alpha w+w \alpha v \alpha v) \beta(u \alpha d(u)+d(u) \alpha u)=0$
for all $u, v, w \in U, \alpha, \beta \in \Gamma$.
If $[u, d(u)]_{\alpha} \neq 0$, for some $u \in U$ and $\alpha \in \Gamma$.
Then,
$(v \alpha v \alpha w+w \alpha v \alpha v)=0$, for all $v, w \in U$ and
$\alpha \in \Gamma$. So that,
$u \alpha u \alpha(w \alpha m+m \alpha w)=(w \alpha m+m \alpha w) \alpha u \alpha u$

That is
$w \alpha(u \alpha u \alpha m+m \alpha u \alpha u)=(u \alpha u \alpha m+m \alpha u$
$\alpha u) \alpha v$. Replace m by $m \alpha u$ then
$(u \propto u \alpha m+$ тоисиu $) \alpha(w \alpha u+u \alpha w)=0$,
for all $m \in M, u, w \in U$ and $\alpha \in \Gamma$.
Replace w by $[u, t]_{\alpha}$ we get,

for all $m, t \in M, u, w \in U$ and $\alpha \in \Gamma$.
Replace t by $p \alpha t$ where $p \in M$, then

$=0$. By primness of M we have,
$u \alpha u \in Z$, for all $u \in U$. Thus assume that $[u, d(u)]_{\alpha}=0$, for all $u \in U, \alpha \in \Gamma$.
Then by lemma 3.4 we have,

$$
u \alpha u \beta d(m)=d(m) \beta u \alpha u .
$$

Replace m by $m \alpha a$ where $a \in M$ and using (*) we get,
$d(m) \alpha(u \alpha u \beta a+a \beta u \alpha u)+$
$(и \alpha u \beta m+m \beta и \alpha u) \alpha d(a)=0$.
For $v \in U, \alpha \in \Gamma$,
$d(v \alpha v)=v \alpha d(v)+d(v) \alpha v=0$.
Hence the last equation becomes,
$d(m) \alpha(u \alpha u \beta v \alpha v+v \alpha v \beta u \alpha u)+$
$(u \propto u \beta m+m \beta u \alpha u) \alpha d(v \alpha v)=0$.
Thus by lemma 3.4 we have,
$u \alpha u \beta v \alpha v=v \alpha v \alpha u \alpha u$.Therefore,
$u \alpha u \beta(v \alpha w+w \alpha v)=(v \alpha w+w \alpha v) \beta u \alpha u$
for all $u, v, w \in U, \alpha, \beta \in \Gamma$.
Replace v by $[w, m]_{\alpha}$ then we have,
$I_{\text {wow }}^{\alpha}(m) \beta(u \alpha u \alpha w+w \alpha u \alpha u)=0$,
By using Lemma 3.1 we get, $w \alpha w \notin Z$, for some $w \in U$ and $\alpha \in \Gamma$.
So that, ucuow = woucu That is,
$\left[[u, v]_{\alpha}, w\right]_{\alpha}=0$, for all $u, w \in U$ and $\alpha \in \Gamma$.
Since, $\left[[v, w]_{\alpha}, u\right]_{\alpha}+\left[[w, u]_{\alpha}, v\right]_{\alpha}=$
$\left.[{ } u, v]_{\alpha}, w\right]_{\alpha}$.
Replace in above equation v by $v \alpha w$ and expanding we get,

$$
\begin{aligned}
& {[v, w]_{\alpha} \alpha[w, u]_{\alpha}=0,} \\
& \text { for all } u, w \in U \text { and } \alpha \in \Gamma .
\end{aligned}
$$

Replace v by $[w, m]_{\alpha}$ and u by $[w, t]_{\alpha}$ we get,
$((w \alpha w \alpha m+m \alpha w \alpha w) \alpha(w \alpha w \alpha t+$ $t \alpha w \alpha w)=0$.
Replace t by $p \alpha t$ where $p \in M$, then
$[w \alpha w, m]_{\alpha} \Gamma M \Gamma[w \alpha w, t]_{\alpha}=0$.
By primness of M we have, $w \alpha w \in Z$ a contradiction.Hence the conclusion is that, So in all possible cases, $w \alpha w \in Z$, for all $u \in U, \alpha \in \Gamma$. So that, $(u \alpha v+v \alpha u) \in Z$ and $(u \alpha v+v \alpha u) \alpha u \in Z$
If $u \notin Z(U)$ where $Z(U)$ denotes the center of, then $(u \alpha v+v \alpha u=0$, for all $v \in U$ and $u \in Z(U)$
Hence U is commutative.

References

1. Nobusawa N., 1964, On a Generalization of the Ring Theory, Osaka J. Math. 1, 81-89.
2. Barnes W. E., 1966, On the Γ-Rings of Nobusawa, Pacific J. Math., 18, 411-422.
3. Kyuno S.,1977, On the Semi-simple Gamma rings, Tohoku Math. J., 29, 217-225.
4. Luh J., 1969,On the theory of simple Γ rings, Michigan Math. J., 16, 65-75.
5. Booth G. L., 1987, On the radicals of $\Gamma_{N^{-}}$ rings, Math. Japonica, 32(3), 357-372.
6. S. Kyuno,1978, On prime gamma rings, Pacific J. Math., 75(1), 185-190.
7. Posner, E. C, 1957. Derivations in prime rings, Proc. Amer. Soc., 8, 1093-1100.
8. Awtar, R, 1973. Lie and Jordan structure in prime rings with derivations, Proc. Amer. Math. Soc., 41, 67-74.
9. Mayne J ., 1984, Centralizing mappings of prime rings, Canad. Math.Bull.27, 122-126.
10. Bell H. E. and Martindale W. S., 1987. Centralizing mappings of semiprime rings, Canad. Math. Bull. 30, 92-101
11. Vukman J.,1990, Commuting and centralizing mappings in prime rings, Proc. Amer. Math. Soc. 109, 47-52.
12. Bresar M., 1993, Centralizing mappings and derivations in prime rings, J. Algebra 156, 385-394.
13. Paul A. C. and Sabur Uddin, 2010, Lie and Jordan Structure in Simple Gamma Rings, Journal of Physical Sciences, 14, 77-86.
14. Sapanc, M. and Nakajima, A, 1997, Jordan derivations on completely prime gamma rings, Math.Japonica, 46, 1, 47-51.
15. Dey K.K. and Paul A.C. , 2012,Generlized Derivations Acting as Homomorphisms and Anti - Homomorphisms of Gamma Rings ,Journal of scientific research, 4 (1), 33-37.
16. Motashar S.K., 2011, Γ-centralizing mappings on prime and semi-prime Γ-rings, M.Sc. thesis Baghdad University.
