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Abstract  

      Let M  be a prime Γ-ring satisfying cbacba   for all Mcba ,, and 

,  with center Z, and U be a Lie (Jordan) ideal. A mapping MMd :  

is called Γ- centralizing if Zudu )](,[   for all Uu and  .In this paper 

, we studied  Lie  and Jordan  ideal in a  prime  Γ - ring  M  together  with   Γ -

centralizing derivations  on  U.    
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Γ–مع المشتقات المركزيه من النمط  Γ-تركيبه لي و جوردان في الحمقات الاوليه من النمط   
 

   عمياء عقيل مجيد ,يدمج الرحمن حميدعبد  
العراق, بغداد ,جامعة بغداد ,كمية العموم ,قسم الرياضيات  

 

 خلاصهال
cbacbaوكحقتق الرتر    –حمقت  اوليت  مت  الت م    Mلتكك            لكت cba ,,M 

MMdمثتتالل لتتل دجتتوردا  د ل الدالتت U  ولتتيك  Z  متتم مركتتز ,و  :  كتتد م مركزيتت  متت
],)[(اذا كتتا   Γ–التت م   uduZ    لكتت uU   وفتتل اتتذا البحتتا درستت ا المثتتالل لتتل و   ل

 لU مم  Γ–المركزي  م   ال م   المركقات دال مم  Γ–دا  لمحمق  الاولي  م  ال م  جور 
 

1. Introduction 

     N. Nobusawa [1] introduced the notion of 

 -ring, more general than a ring.W. E. Barnes 

[2]weakened slightly the conditions in the 

definition of  -ring in the sense of Nobusawa  

after these two papers were published, number 

of modern algebraists have determined a lot of 

fundamental properties of Γ-ring and extended 

numerous significant results in classical ring 

theory to gamma ring theory see [3, 4, 5 and 6] 

for partial references.                             

     In classical ring the theory of centralizing 

mapping on prime ring was initiated by Posner 

[7] who proved that the existence of a nonzero 

derivation on a prime ring forces the ring to be 

commutative. In [8] R. Awtar considered 

centralizing derivations on Lie and Jordan ideals 

generalized Posner's theorem. A lot of work has 

been done during the last decades in this field 

see [9, 10, 11, and 12] where further reference 

can be found.       

By the same motivation as in the classical ring 

theories we proved the following results.          

Let M be a prime  -ring,  satisfying,  

cbacba   for all Mcba ,, and 

, and it will represented by (*) 

i) If characteristic of  M is different from 2 and 

3and U be Lie ideal then if d is -centralizing 
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on U then U  is central in M. 

ii) If M has characteristic 3  and U is Jordan 

ideal . then If  d  is    -centralizing  then U is 

central in M further , if U is a Lie ideal with 

Uuu  for all  Uu and,   ,then U  is 

central in M. The case when M has characteristic 

2 is also studied. 

 

2. Some Basic Definitions 

Definition 2.1 [2]: Let M and   be two additive 

abelian groups If there exists a mapping 

baba  ),,( of MMM   Which 

satisfies for all Mcba ,, and , : 1) 

,))( cbcacbai                      

.)()

,)()

cabacbaiii

bababaii








  

 2) )()( cbacba   .                             

Then M is called  -ring in the sense of Barnes. 

 

Definition2.2[3]: An additive subgroup S of a 

 -ring M is called subring if .SSS   

 
Definition2.3[3]:  An additive subgroup I of M 

is said to be a left  (or right) ideal of M if 

IIM   (or )IMI  ,if I is both a right 

and left ideal, then we say that I  is an ideal. 

 

Definition2.4[3]: Let M be a  -ring then M is 

called prime if  0 bMa  implies either 

0a or 0b  where ., Mba   

 

Definition2.5[3]: Asubset S if a  -ring M is 

called stronglyilpotent if there exists a positive 

integer  n  such that  ).0()(  SS n
 

Remark: 

1)For any Mba ,   abba    are denoted 

by ],[ ba  .Then one has the basic identities,        

bacbabcacba c],[],[],[],[   

And,                                                                       

,],[],[],[],[ cbbacabcba a                   

for all Mcba ,, and , . Using the  

assumption (*) the above identities reduce to,      

  ],[],[],[ cbabcacba         

And,   ],[],[],[ bacabcba  . 

2) Let M be  -ring, the center of M is defined  

as, Z= ammaMa   :{  for all 

}.,  Mm    

 

Definition2.6 [13]:  An additive subgroup U  of 

a  -ring M is said to be a Lie ideal of M if 

,],[ Umu    for all MmUu  , and 

. And  U is said to be Jordan ideal if 

,Uummu   for all MmUu  , and 

.  

Definition2.8[14]: An additive mapping 

MMd : is called a derivation of M if ,                   

,     )()()( ydxyxdyxd   , holds for all 

Myx , and .  

For a fixed Ma and   the mapping,     

MMI a :
 given by ,],[ 

 amI a   is said 

to be inner derivation  of M [15]. 

 

Definition2.9[16]: Let M be a  ring with 

center Z and U       be lie (Jordan) ideal of M .A 

mapping   MMd : is called Γ-centralizing 

(resp.   Γ-commuting) if Zudu )](,[ (resp. 

,0)](,[ udu  for all ,Uu and .  

 

3. Basic Lemmas                                        
   For proving our main results, we need some 

important results which we have proved here as 

lemmas. So, we start as follows: 

 

Lemma3.1: Let M be a prime  -ring, d a 

nonzero derivation of M and a  be an element of 

M if ,0)( mda for all Mm and  .  

Then either 0a  or d is zero. 
Proof: 

     We have ,0)( mda  for all Mm  and 

 . Replace m by xm  where Mx  

,then  

 )()()( xdmaxmdaxmda    

                   ).(xdma                                                   

For all  Mx  and  . That is   

       ,0)(  xdMa  for all Mx . 

Since M is prime, either 0a   or d is zero    

  
Lemma3.2: Let M be a prime  -ring of 

characteristic not 2 and 21,dd be a derivation of 

M such that the iterate  21dd  is also a 

derivation, Then one at least of 21,dd  is zero. 

Proof: 

     We have  21dd  is a derivation of M that is,  

),()()( 212121 bddabaddbadd                   

f           for all Mba , and  . 
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           But  21,dd  are each derivation so,  

)(21 badd  )()()( 1221 bdadbadd     

                    )).(()()( 2121 bddabdad              

But, 

))(()()( 212121 bddabaddbadd          

So, 

)()( 12 bdad  ,0)()( 21  bdad                                                             

          for all for all Mba , and   )1...(  

Replace a in the last equation by )(1 cda    

 )())(()())(( 211112 bdcdadbdcdad            

,0 for all Mcba ,, and  . 
That is  

)())(())()((( 211112 bdcddbdcdda   = 0              

              for all Mcba ,, and  . 

Which is merely equation (1) with a replaced by 

)(1 cd , then we are left with  

)()()()()()( 211112 bdcdadbdcdad   =0, 

for all Mcba ,, and  . 

But,                      

)()()()( 1221 bdadbdad    by replacing a 

by c the last equation becomes,  

)()()()()()( 121112 bdcdadbdcdad   =0 

Factoring out  )(1 bda  on the right, we have  

,0)())()()()(( 12112  bdcdadcdad                

f             for all Mcba ,, and  . 

And by Lemma 3.1 unless 01 d   we have, 

0))()()()(( 2112  cdadcdad  ,  

for all Mca , and  . 

Replace b  by  c  in (1) then, 

0))()()()(( 2112  cdadcdad  , 

             for all Mca , and  . 

Adding these last two equations, we get  

,0)()(2 12 cdad   for all Mcba ,, and 

 . 
Since characteristic of M not equal 2, then 

,0)()( 12 cdad   or else 01 d  using Lemma 

3.1 again with a  replacing )(2 ad    we get, 

either 01 d  or 02 d                     

 

Lemma3.3:Let M be a prime   -ring of 

characteristic different from 2, U be Lie  ideal 

of M  and d be anon zero derivation of  M. 

Then if d is -centralizing on U and Uuu  , 

for all  Uu and  , then M is  -

commuting on U. 

Proof:   

     We have d  is  -centralizing on U 

i.e.                           

Zudu )](,[ , for all ,Uu and .  

Linearizing the above relation on, 

,uuuu  we get                                                                                                  

,])()(,[)](,[ Zuududuuuduu     

               for all ,Uu and .  

That is, 

,)](,[4 Zuudu   for all ,Uu and .  

Since characteristic of M not equal 2 and 

Zudu )](,[  then we get 

,0],[)](,[  muudu   for all 

UuMm  , and .,   

If for some Uu , 0)](,[ udu then we get  

0],[ mu , in particular 0)](,[ udu   

Hence,                                        

0)](,[ udu ,for all ,Uu and .        

 

Lemma3.4: Let M be a prime   -ring, U be a 

Lie ideal of M and d a nonzero derivation of M. 

If d is   -centralizing on  U then  

            ,],]),([[ Zuumd   

for all UuMm  , and .,   

Further, if d  is  -commuting on U  then, 

,0],]),([[  uumd  

for all UuMm  , and .,   

Proof:  

     Since U is Lie ideal then, 

,],[ Umu                                                 

for all MmUu  , and .  

So that, .)]],[(,],[[ Zmuudmuu    

That is,  

 ]]),([,[)](,],[[ muduudmu            

                  + ,])](,[,[ Zmduu                                       

for all UuMm  , and .,   

Now since, for any for all 

UuMm  , , , and by (*) we have  

 ]]),([,[)](,],[[ muduudmu   

= .]]),([,[ Zuudm   

By   -centralizing of d we get , 

.0]]),([,[)](,],[[   muduudmu  

Hence, 
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            ,],]),([[ Zuumd   

for all UuMm  , and .,    

The last part can be obtained similarly.          
 

Lemma3.5: Let M be a prime    -ring of 

characteristic not equal 2 and 3, and let U be a 

Lie ideal of  , if d is   -centralizing on U then d 

is  -commuting on U. 

Proof:  

     Since d is    -centralizing then, 

by Lemma 3.4, we have  

,],]),([[ Zuumd   

         for all UuMm  , and .,   

By using the assumption (*) we get 

,)(2)()( Zumduuumdmduu     

for all UuMm  , and .,      )2...(  

Commuting with u , we have  

 )()(3 mduuuumduu   

uuumduumdu  )()(3              )3...(  

In (3) replace m  by u  and using d is              

 -centralizing, 

uuuududuuu  )()(                

uuuududu  ))()((3                 )4...(  

Furthermore, 

uuududu  ))()((2   

.)()( uuududuu                      )5...(      

Write  mmd )(  and then by replacing m by  

mu   in (4) , we get 

 muuuuuumuu 3  

 uuumuumuuu 3                  

 )()(3 udmuuuuumudu   

,0)()(3  uuumudumuduu   

for all UuMm  , and .,,    )6...(  

However, by assumption (*) and (4), we have   

 muuuuuumuu 3  

 uuumuumuuu 3  

 muuuuumuu  3(  

.0)3  uuumumuu   

Then equation (6) becomes, 

 )()(3 udmuuuuumudu   

,0)()(3  uuumudumuduu   

for all UuMm  , and .,,    )7...(   

Multiply (4) on the left by )(ud and then sub-

tract the results from (7) to get, 

 uumuududu  ))()((3                          

 muuuududuuu  ))()(                     

0))()((  umuuududuu      )8...(       

Using (5) and (6), we arrive at after dividing by 

3, 

 muuuumuuduu  ())()((   

,0)2  umu     for all UuMm  , and 

.,,                         

If , ,0)()((  uududu   for some 

Uu and . Then we have 

 muuuum   02  umu        )9...(     

Replace  m by mu  in (9) and using (*) we get, 

 umuumuuuuumu  2  

 muduuuumud  )()(  

0)(2 umudu                                 )10...(                        

By using (9) we get, 

,0)2(  umumuuuumu   

Then equation (10) becomes, 

muduuuumud  )()(   

.0)(2  umudu                             )11...(  

Now in (9) replace m  by u , and multiply this 

on the right by m , 

muduumuuud  )()(   

.0)(2  muudu                             )12...(  

Subtract (12) from (11), 

)()( muuuumud    

.0)()(2  muumudu            )13...(  

Replace m  by mu  and using assumption (*) 

)()( muuuumuud    

.0)()(2  muumuudu        )14...(  

Multiply (13) by  u from left and then subtract 

the results from (14), 

 )())()(( muuuumuududu   

.0)())()((2  muumuududuu   
Since, ,0)()(  uududu   for all Uu  

 and .  Then, 

,0)(2  muumumuuuum   

for all Mm  

So, ,02  umumuuuum  that is 

,)()( umuummuumu     

That is u  in the center  by Lemma 3.2 or else  
,0)()(  uududu   

Which in both cases  

0)](,[ udu for all Uu and .        

The following lemma may have some           

independent interest. 
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Lemma3.6: Let M be a prime  -ring of 

characteristic not 2, U be Jordan ideal of  M 

and d be a nonzero derivation of M. If                     

,0)()(  uududu  for all Uu , .   

Then .0U  

Proof:  

     Linearizing the relation 0)( udu  on  

wuu   where Uw  to get, 

          ,0)()(  udwwdu   

         for all Uwu , and .          )15...(  

For Uu and any ,,  Mm  

.)()( Uuummuummuu    

But,  )(2 muuuum   

 })()({ umuummuumu   

)}(){( muumuumuum        

As the first and second term on the right hand 

side are in U, 

         .)(2 Umuuuum     

Now since,  

Uuu 2  and .)(2 Umuuuum     

Then, muu 4 and uum 4 are in .U  

Replacing w by uum 4 in )15(   and using the 

hypothesis, we get  

             ,0)( uumdu   

  for all UuMm  , and .        )16...(  

Replace w by  muum   and using the 

hypothesis, we get    

 )()()( udmuumdumduu   

,0)( udmu  for all UuMm  , and 

.,   

 Multiply by u  on the right and using the 

assumption (*) together with equation )16(   we 

obtain  

              ,0)( umduu                                      

for all UuMm  , and .,      )17...(  

Again replace w by muu 4  in )15( , we get  

,0)( mduuu       for all 

UuMm  , and .         

Then by Lemma 3.1, we have  

,0uuu    for all Uu and .         

For UuMm  , and ,         

.)(2 Uuummuu                   

That is, 

 muuuummuu  (])[(2 23
 

,0) uum   for all UuMm  , and 

.         

Multiply from the right side by 0uuu   we 

get 

,0)(])[(2 33 muumuu   

for all UuMm  , and .         

If for some Uu and   , 0uu  then  

Muu  is a nonzero right ideal of M, then by 

Levitzki’s Theorem [13] M  would have a 

nilpotent ideal; which is impossible for prime 

 -ring, hence  

,0uu  for all Uu  and .         

By repeating the above argument we can show 

that ,0u  for all Uu                                 

 
4. The Main Theorems 

Theorem 4.1: Let M be a prime  -ring of 

characteristic different from 2 and 3. Let d be a 

nonzero derivation of M and U be a Lie ideal of 

M .If d is  -centralizing on U then .ZU    

Proof:  

     Since d is   -centralizing on U, then by 

using Lemma 3.5, we have 

,0)](,[ udu  for all Uu  and .         

Then by Lemma 3.4, we get  

,0],]),([[  uumd                                             

for all UuMm  , and .             )1...(  

In (1) replace u  by wu   where Uw , 

,0],]),([[],]),([[   uwmdwumd  

for all UwuMm  ,, and .,    )2...(                       

Suppose now, Uwu ,  are such that vw . 

Then by replacing w by vw in (2) we get after 

using (*), 

 vwumdvumdw   ],]),([[],]),([[                                       

 vuwmdvuwmd   ],]),([[],[]),([

.0]),([],[],]),([[ ,    vmduwuvmdw

In view of (2) the last equation reduces to , 

  ]),([],[],[]),([ vmduwvuwmd  =0.  

Replace v  by ],[ wt where Mt in above 

equation , we have 

      ],[],],[[]),([ uwuwtwmd   

              ,0]],[),([ wtmd              )3...(  

for all UwuMmt  ,,, and .,    

Putting wu   in (3), we have  

0],],[[]),([  wwtwmd              )4...(  

Replace t  by )(adt in )4(  where Ma  

yields on expansion and (*), 
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  ]),([],[2{]),([ wadwtwmd  

}],]),([[)(],],[[   wwadtadwwt   =0. 

By (4) the second term is zero, while by (1) the 

third term is zero .Hence  

,0]),([],[]),([   wadwtwmd  

for all UwMatm  ,,, and .    )5...(  

Put ],[ wtu    in (3), and linearization it s on 

)(adtt   where Ma   together with (1) 

yields ,0)](,]),([],],[[   mdwadwwt           

for all UwMatm  ,,, and .    )6...(  

Replace t  by ptd )( where Mp in (6) then 

by expanding we get , 

  )(],[]),([2{ tdwpwtd   

 }],]),([[],],[[ pwwtdwwp   

+ .0)](,]),([[  mdwad  

By (6) the second term is zero, while by (1) 

the third term is zero .Hence  

 ],[]),([ wpwtd  )](,]),([[ mdwad   

=0.In view of (5), the last equation reduces to, 

 ],[]),([ wpwtd ,0]),([)(  wadmd  

for all UwMap  ,, and .,   

In (5) replace t  by )(adt where Mp then 

by using the last equation, we get 

,0]),([]),([]),([   wadwpdMwmd  

for all UwMam  ,, and .,   

Since M  is prime either 0]),([ wmd or 

.0]),([]),([  wadwpd  

If for all UwMm  , and ,  

.0]),([ wmd That is, .0))(( mdIw


 

Then by Lemma 3.1, ,Zw for all Uw  

Thus assume there exists a  Uw  such that   

for some .0]),([,  wmdMm That is 

.Zw Then for all ,, Mpa    

       .0]),([]),([  wadwpd          )7...(  

Replace a  by  cb  where Mcb , then by 

expanding, we get 

  ]),([]),([]),([ wpdcwbdwpd   

   ]),([]),([],[)( wcdbwpdwcbd  

.0)(],[]),([ cdwbwpd    

Replace b  by ],[ wt  where .Mt  Then by 

(7) the first term is zero, by (5) the third term is 

zero and by (4) the fourth term is zero, thus 

.0],[)],([]),([   cwwtdwpd  

Since, ,)](,[]),([)],([  wdtwtdwtd  and 

using (3),  we get 

,0],[)](,[]),([   cwwdtwpd  

for all UwMptc  ,,, and .,   

Replace c  by cm where ,Mm then  

.0],[)](,[]),([   cwMwdtwpd  

Since M is prime and Zw , we get  

,0)](,[]),([  wdtwpd  

for all UwMpt  ,, and .  Thus 

     ,0)](,[]),([   wdtMwpd  

           for all UwMpt  ,, and .  

Which  in both cases .)( Zwd   

Now suppose that Uu  and Zu  then  

 )](,[]),([)],([0 aduaudaud   

and hence .)( Zud   Therefore, Zud )(  for 

all .Uu So that, Zawd )],([   for all 

Ma ,that is  

 thus Zadw )](,[ .In particular,  

  ],[)](,[)](,[ awwadwwadw      

Zwd )(                                          ).8...(                                         

By commuting (6) with w ,  we get 

,0)(]],[,[ wdaww   

for all UwMa  , and .,   

If 0)( wd and as its in the center Z,  

,0]],[,[ aww  for all Ma and .  

By sub- Lemma [14]  Zw a contradiction. 

Hence, .0)( wd  Thus by (8),  we have 

,)](,[ Zwadw  for all Ma and .   

That is,     ,0],[)](.[   bwadw  

for all Mba , and .,   

Replace b  by bc  where Mc , then 

.0],[]),([   bwMwad  

By primness of M we get, either  Zw  or 

,0]),([ wad  for all Ma and .   

Which us in both cases a contradiction Hence, 

Zw for all .Uw                                                               

      Now we should like to settle the problem 

when M has characteristic 3 .Hence we get the 

following result.  
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Theorem4.2: Let  M be a prime   -ring of 

characteristic 3, and d be a nonzero derivation of 

M. if d is   -centralizing on U and Uuu   

then  .ZU   

Proof: 

     Since d is   -centralizing on U then, 

By Lemma 3.3 we get d is   -commuting on U 

.Therefore , by similar way of the proof in  

Theorem 4.1 we can get  .ZU                       

     Now we show that the conclusion of 

Theorem 4.1 and Theorem 4.2 holds even if U is 

Jordan ideal of M. 

 
Theorem4.3: Let M be a prime  -ring of 

characteristic not 2. Let d be a nonzero 

derivation of M and U be a Jordan ideal of M if 

d is  -centralizing then .ZU   

Proof:  

Since  Uuu 2 , then by Lemma 3.3,  

,0)](,[ udu for all Uu and .  

Linearizing the relation  ,0)](,[ udu on  

vuu    where Uv , we get 

,0)](,[)](,[   udvvdu  

            for all Uvu , and .       )9...(  

In (9) ,replace  v by ummu    where  

Mm  then by expanding,  we get  

  ],[)()(,[)](,[ muudumdumduu    

  )](.[)](,[)(],[ udmudmuudmu 

.0u   i.e.              

 umududmu  )(2)(2                       

0)()(  uumdmduu               )10...(  

Replace m  by  mu in )10( , we get  

,0)()(  uummuuud   

for all UuMm  . and ,  . )11...(   

That is, ,0)()( mIud u

uu                                              

for all UuMm  . and , . 

Hence by Lemma 3.1 we have, either  Zuu   

or ,0)( ud  for all Uu  and  

, . 

For Uu and any  ,Mm , we have 

 .Uummu    But, 

 muummuuumu  ()({24     

}.22{}) uummuuuum      

The first and second term on the right are in U 

then,  Uumu 4 .Replace v  by umu 4    

in (9),  we get 

uuuumududmuu   )()(  

0)()(  uumduumdm       )12...(  

Replace m  by mu  in )12(  and then by using 

(12) we get, 

.0)()(  uumumuudu   

In view of (11) the last equation reduces to 

 .0)()(  ummuuudu   

That is , .0)()( mIuudu u

   

Then by Lemma 3.1, we have either 

0)( uudu  or ,ZU  for all Uu        

and .                                              )13...(  

In (11), replace u   by u+ v where Uv  then 

by using (11) , we get  

  ],[)}()({ muvuvvdud  

.0],[)(],[)(    muuvdmuvud  

Replace u  by u  then,  

  ],[)}()({ muvuvvdud      

.0],[)(],[)(    muuvdmuvud  

Adding the last two equations and dividing by 2, 

we have  

0],[)(],[)(    muuvdmuvuvud

for all UvuMm  ,, and .,   

By lemma 3.6 we get  ,0)( uudu   for some 

.0)(;,  udUu   

Hence by .),12( Zuu  The net results of this 

is   ,0],[)(   muvuvud     

for all UvuMm  ,, and .,   

That is , ,0)()(  mIud uvvu


  

for all UvuMm  ,, and .,   

By Lemma 3.1, ,Zuvuv   for all 

Uvu , and .,   

If  ,0uu  then  

uududuuud  )()()(0   

                     = ).(2 udu  

That is, 0)( udu  a contradiction hence    

,0uu  Now suppose that  ,0)( uudu   

then 0)( uduu   that is, 0)( ud  a 

contradiction hence ,0)( uudu     

So by (13) ZU    hence ;2 Zvu  that is 

Zvu 2 for all Uv  and .                                               

As 0u  we have Zv  for all Uv . 

Hence ZU                                                

We should like to settle the problem even when 

M has characteristic 2 .In this case Lie and 
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Jordan ideals will coincide. 

 

 

 

Theorem 4.4: Let M be a prime  -ring of 

characteristic 2 ,and let d be a nonzero 

derivation of M .Let U be Lie (Jordan )ideal and 

subring of M .If  d  is  -centralizing on U then 

U is commutative 

 

Proof:  

     Since d is  -centralizing on U then by 

Lemma 3.4     

Zmduuuumd  )()(              )14...(  

Commute(14) with )(md and uu respectively  

we get , 

uumdmdmdmduu  )()()()(  )15( a  

And , 

)()( mduuuuuuuumd      )15( b  

in (15a) replace m  by vuuv   and by using 

(15 a) we get , 

)()( vuuvdvuuvduu    

= .)()( uuvuuvdvuuvd    

For ,,  Uu  

.)()()( Zuududuuud    

So in view of (15b) the last equation reduces to  

 )()()()( vduuvdvduuvduu   

,0uu for all .,,  Uvu  

Since M is prime, and by using (14) we get, 

,)()( uuvdvduu    for all ,, Uvu    and 

                                        )16...(  

Replace u  by  wu   where  Uw  we get, 

)()()()( uwwuvdvduwwu    

Replace v  by wv   and by using (*) we have, 

 

,0))()(()(  uvdvduuwwu   

for all .,,,,  Uwvu           )17...(  

 

Linearize the last equation on  vvuu   

where Uv and put uv   then using (16) we 

get, 

0))()(()(  uududuvvwwvv   

for all .,,,,  Uwvu  

If ,0)](,[ udu for some Uu and .  

Then, 

,0)(  vvwwvv  for all Uwv , and 

.  So that, 

uuwmmwwmmwuu  )()( 

That is  

ummuuuummuuw   ()(   

.) vu   Replace m  by um then 

,0)()(  wuuwuummuu   

for all UwuMm  ,, and .  

Replace w by ],[ tu  we get, 

,0)()(  uuttuuuummuu   

for all UwuMtm  ,,, and .  

Replace t  by tp  where  Mp , then 

)()( uuttuuMuummuu    

=0. By primness of M we have, 

,Zuu  for all .Uu  Thus assume that 

0)](,[ udu , for all .,  Uu  

Then by lemma 3.4 we have, 

 .)()( uumdmduu    

Replace m by am  where Ma and using (*) 

we get, 

 )()( uuaauumd   

.0)()(  aduummuu   

For ,,  Uv   

.0)()()(  vvdvdvvvd   

Hence the last equation becomes, 

 )()( uuvvvvuumd   

.0)()(  vvduummuu   

Thus by lemma 3.4 we have, 

uuvvvvuu   .Therefore, 

uuvwwvvwwvuu  )()(   

 for all .,,,,  Uwvu  

Replace v by ],[ mw  then we have, 

,0)()(  uuwwuumI ww 
  

By using Lemma 3.1 we get, 

,Zww  for some Uw and .  

So that, uuwwuu    That is, 

,0],],[[  wvu  for all Uwu , and .  

Since,   ],],[[],],[[ vuwuwv  

.],],[[  wvu  

Replace in above equation v  by wv and  

expanding we get, 

,0],[],[  uwwv  

for all Uwu , and .  

Replace v by ],[ mw  and u by ],[ tw  we get,  

(  twwwwmmww  ()(                  

.0) wwt   

Replace t  by tp where Mp , then 
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.0],[],[    twwMmww  

By primness of M we have, Zww    a 

contradiction .Hence the conclusion is that, 

So in all possible cases, 

,Zww   for all .,  Uu So that, 

Zuvvu  )(  and Zuuvvu   )(  

If  )(UZu  where )(UZ denotes the center 

of, then ,0(  uvvu  for all Uv and 

)(UZu  

Hence   U  is commutative.                                             
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