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Abstract
The aim of this paper

magnetohydrodynamic (MHD) flow of a second grade fluid

is to analyzed unsteady heat transfer

for
in a channel with

porous medium. The equations which was used to describe the flow are the
momentum and energy, these equations were written to get thier non dimentional
form. Homotopy analysis method (HAM) is employed to obtain a semi-analytical
solutions for velocity and heat transfer fields. The effect of each dimensionless
parameter upon the velocity and temperature distributions is analyzed and shown

graphically by using MATHEMATICA package.
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1. Introduction

Within the past fifty years, many problems
dealing with the flow of Newtonian and non-
Newtonian fluids through porous channels have
been studied by engineers and mathematicians.
The analysis of such flows finds important
applications in engineering practice, particularly
in chemical industries, investigations of such
fluids are desirable. A number of industrially
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important fluids including molten plastics,
polymers, pulps, foods and fossil fuels, which
may saturate in underground beds, display non-
Newtonian behavior. Examples, of such fluids,
second grade fluid is the simplest subclass for
which one can hope to gain an analytic solution.
The MHD phenomenon is characterized by an
interaction between the hydrodynamic and
boundary layer electromagnetic field. The study
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of MHD flow in a channel also has application
in many devices like MHD power generators,
MHD pumps, accelerators, etc. Some recent
contributions in the field may be mentioned in
[1,2,3 and 4]. The effect of wall porosity on the
two dimensional laminar flow of a viscous
incompressible fluid in a parallel-walled was
first studied theoretically by Berman[3].

Authors like Brady [5], Prodman [6], and many
others have extended Berman’s symmetric series
solution. The aim of this paper is to investigate
the heat transfer analysis for (MHD) flow in a
porous channel. The second grade fluid fills the
porous space inside the channel. In the next
section we had present the equations which are
used to describe the Magnetohydrodynamics
(MHD) flow and heat transfer effects in the
channel with porous medium. The third section
deals with the analytical solutions for velocity
and temperature fields by using powerful
technique Homotopy analysis method (HAM),
which was developed by Liao [7] is employed to
solve the problems for velocity and temperature
fields. The fourth section concerns with the
convergence of the solutions. In section 5, we
present the graphical results and discussion. In
the last section, we give concluding remarks on
the results.

2. Description of The Problem

We consider the unsteady, incompressible
(MHD) flow of a second grade fluid in a channel
of width H with porous medium. The x-axis is
along the centerline of the channel, parallel to
the channel surfaces and the y-axis is
perpendicular to it. The porous surfaces are
y=1H/2.The flow is symmetric about both x-and
y-axes. The fluid is either injected into the
channel or extracted out at a uniform velocity
V/2 (the velocity V =0 corresponds to the

suction and V=10 for injection). The

temperature at the centerline (y = 0) and the
upper wall (y=H/2) are T,.and Ty respectively.

A constant magnetic field BYis applied
perpendicular to the channel walls and the
electric field is taken zero. The induced
magnetic field is neglected for small magnetic
Reynolds number. It is assume that the pressure
gradient zero. Under these assumptions the
governing equations for MHD boundary layer
flow as the following:

Momentum Equation
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Where uand v are the velocities components in
x- and y- directions respectively, p is the
density, &£ is the dynamic viscosity, & is the
electrical conductivity, ¢ is the porosity of the
medium, k is the permeability of the
medium, [, is a constant magnetic field, v is
the kinematic viscosity, @ material parameter of
a second grade fluid. ¢, is a specific heat, ky is

the thermal conductivity.

We can write down the momentum and energy
equations in non-dimensional form, through
introducing the following new quantities:

= 1.--
W=vE&EXf.Q) n=57z,
{= :]_-e_t-,t$ = t% y‘?(ﬂ!Q = TT:—T"I[‘-IH
T=q(n, 948 +Ty, AB=T,, — Ty

substituting above quantities in Egs. (1) and (2)
respectively, we obtain:
Re(1—{)*[1/2n{ =3, f+

(23, f]+ {*Rex [(a,?f)z -
fOynf |+ 3§ %0y, f 321 %0,f —
{*M?%d,f — 1/2a(1—{)n=*
Oppanf — € * [Zﬁnf Opmnf —

f Opnmanf— [ananf}z]

=0 3)

with boundary conditions
f(0,8p)=0,8,, F(0,{;p) =0,
f(36p)=38,F(56p)=0
o, (1—- Q[ 1/2n8,q + 7= d;q]
+ ﬁmq — RePr{ = (f ﬂn q)+
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Pr Ec* (amsz — oy [1_ ()"‘
[anfamnf #n 10, f={* amff] o
o Pr Ec* [ﬂ,,l,f (8,,F)° —fo,.f an,n,nf)

=0 (4)
with boundary conditions

q(0,4;p)=1,4(3, sp) = 0

Where the respective values of Hartmann
number M, the Reynold  number Re, Prandtl
number Pr, Eckert number Ec, the
parameter ct,the porosity ~ parameter A
areM2= T Fe po _HV pp -

. m 1 v ] k._ 1

_ Vi _wV 4 _ ¢H"
EC_EFH:.ﬂH ’ D:_E’A_ k

_,'JGFHV _ c:._VE'
M= Tk en

3. Solution of The Problems

To solve momentum and energy equations,
we choose initial guesses and linear operators in
the following form:

fo(m) = nC —2n%) (5)
qo(m) =1-2n (6)
"Ei( f ): ar,l,?;u?;l,?;l f (7)
I’E (q): an,nq (8)
with
L,(c1n* + c2n® + c3n7 + c4n) 9)
=0
L (cin+ c2) (10)
=0

In which ci [i=1-4]are constants

Upon making use above definitions, we first
construct the  zeroth - order deformation
problems:

(1'P)£1 [f(fh ¢ Pj - fl} (n)] = phl

Xy [f (. Gip)] (11)
f(0,8p)=0,8,, f(0.{;p) =0,
F(3p)=50,7(300)=0 @12
(1-p) £:[q(n ¢ p) — qo(m)]= phy

Xola(n. ¢ p), fF(n. &5 p)] (13)
q{ﬂ:(:P]=ﬂ,ﬂIGr(:P)=0 (14)

§% % B, f )+

{ = ammn f—{%2 a?’.'f
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+32Re« [(0,1)" -

famf] —{*M* =

a.f— 1/2 a(1—

N Oy pymnf —
¢ *[20,f dpnnf — F

Onamnl — (amf }2] (15)
q(n.{;p).
%[Frgim]
=aq(1-7) = (1."'2"?*
Iar||q;-:r1—1 + E"‘
ai;Qm—l) + a?;l,?;lqm—l -
RePr{ = [fanq) +
PrEc #
(8ynf) — (1 =0) %
(@f = 0yf *) 4
(6??)"*( * amtﬂ} -
aprEc (0,£(d,,f)’
_famfammf) (16)

Where p £[0,1] is an embedding parameter,
fiy and fi; are the auxiliary non zero parameters.
Obviously for p=0 and p=1,we have:

f(nr ';-': ﬂ] = fu(ﬂ),

fnG1)=f(n.) (17)
q(n.¢; 0) = q4(n),
q(n.¢:1) =q(n.{) (18)

Now as p increases from 0 to 1 then f(n,{;p)
varies from f3(17) to f(,), q(n,{:p) so does
varies from ggp(n) tog(n,{). Using Taylor’s
theorem and Egs. (17) and (18) we can write
frnGp) =Ff) + o=y frn(n. O™ (19)
a(n.Gp) =a(m) + En=1am(m. Op™ (20)
Where

1d™f(n.;
fo(n,0) = _IM

m! dp =0

1 d™g(n,q;
4,0, 0) = _IM

m! dp .

the convergence of two series is strongly
dependent upon fi;. Assume that fi; and #i;.

Assume that fi; and fiz are chosen that these
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series are convergent at p=1, we have from
Egs.(19) and (20) that:
F01.0)=fo() + 5=t fn(n.9)
(21)
a(1.9) = ao(n) +Zr=14m(0.6)
(22)
Differentiating Eq.(11) and (13) m times with
respect to p, then setting p=0, and finally
dividing (11) and (13) by m!we obtain the
following mth-order deformation problems:

-‘Cl [fm (TL (] - mem—l(n! (:]] :hl

Ry frn1(m O] (23)
Fn(0,0)=0,, Fin(0,0)=Fn (3.9 )=
3, fm (3.9 )=0 (24)
L[ (1:0) = XmGm-1(n. O] =Ry
Roym [@m-1(1. 0] (25)
4 (0,0)=a,, (3,7 )=0 (26)

‘:le [fm—lini '37 }] = RE(i - {} * (1-"{2
7?( *® ar;,?;lfm—l + qz
# By o frne1) + Rel%x

(Z:;lanfm—l_i ﬂn‘fi _
Z::fm_i‘f amr.-f:‘)

+{ ﬂ‘mﬂfm_l— M2
G‘!E * a?;lfm—l _*‘;qu ®
a?;lfm—l -1/2 '3-'(1 - q}

= a?;l,?;l,r;l,nfm—l - H{ *
m—1

(2

m—1
- fm—l—z’ an,n,n,nfm—l—i
E.:I::I:"Il‘l—l
_Zi:g anmfm—i—iamnﬁ) (27)

Qm—iiﬂﬂa])‘l
Rzm [fm—l(njq}]
o (1 —
O(1/2n «

% 3rGm-1)

a?‘,l'?m—l +
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+ 8 0m-1 T
E?;u(—RePr{ *
fm-1-:9,q; + PrEc+
O fm—1-i * O fi- 02
(1-3)= [anfm—k:‘an,nﬁ
0+ % Oy frn1-:0n7 i

E
—oPrEc * Z(ﬂnfm_l_i
k=0

a?;l,?;lﬁ:—k a?;l,?;lfk - fm—l—i
a?;l,?;uﬁ'—k ar,l,:*‘,l,r,l fk}}

. . 0O,m=1
Where i, is defined by {1 2 -1
Upon making use of MATHEMATICA, the
solution of EQs.(23) and (25) can be expressed
in the form:

(28)

fu,0) = TR ak ¥t
(29)

Gm (1, 0) = BRZ5 * Nig ek, n<
(30)

Where al,; and ek, ; is a coefficient for m = 1

We obtain in fact the following explicit, totally
analytic solution of the momentum and energy
eqs.
f¢)=Zn=ofmln) =

limy, , .. 300 -0 ( X325 ° X3, ‘1:1,:' 7%{") (31)

q(n{)=Zm=0dmln) =

tm+lviIm _k

- M
limy, . m=[!l(zk=0 i=0 Bm,i

() (32)
4. Convergence of The HAM Solutions

As pointed out by Liao [7], the convergence
region and rate of approximations given by
homotopy analysis method are strongly
dependent upon h. Figure 1,2 portray the h-
curves of the velocity and temperature profiles
respectively. The range for admissible values of
h for the velocity is —10=h; =0 and for
temperature it is -5 = h; =5. We see that the
series given by Egs. (31) and (32) converges in
the whole region of 1 when h = —0.3. This
value of h lie in the admissible range of k.

5. Results and Discussion

Figures 3-16 have plotted in order to see the
effects of He, M, Pr, Ec, o, oy , @z, 4, and ¢
on the velocity components f and temperature
components g. Figs. 3-7 are sketched in order to
see the effects of Re, M, @ ,4 and { on the



Ridha and Abdulhadi

velocity component f. Figure 3, give the effect
of Reynolds number Re on the velocity
component f. It is found that f decreases
when Re increases. In Figure 4, it is found that f
increases when M increases. Figure 5 depict the
effect of o on f. It is found that f decreases as a
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increases. In Figure 6, it is found that f increases
when 4 increases. Figure 7, depict the effect of

on f. It is found that f initially decreases but it
increases as ¢ increases

as00f
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Figure 1- k14 - curve for velocity at fourth-order approximation
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Figure 3- Effect of Re on fourth approximation for
M=1,a=02,4=02,{=mw4,h=-03

|

Figure 4- Effect of M on fourth approximation for
Re=100,0=024=02 {=n/4,h =-03
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Figure 5- Effect of o on fourth approximation for
Re=100,M=1,4=02,{=n4, h =-03

Figure 7- Effect of £ on fourth approximation for
Re=100,M=1,@=02,4=02,h =-03
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Figure 6- Effect of 4 on fourth approximation tor
He =100, M=1,0= 0.2, {=n/4 ,h =-0.3

Fiqures 8-16 are sketched in order to see the
effects of Re, M, Pr, Ec, o, o , oz, 4, and
¢ on the temperature component . Figure 8,
give the effect of Reynolds number e on the
temperature component g. It is found that g
increases when Re increases. In Figure 9, it
is found that g increases when M increases.
Figures 10,11,12 have the same effect of Ec,
Prand a on q when compared with Figure.9.
In Figure 13, It is found that q is constant
when oy increases. Figures 14,15 have the
same effect of czand 4 on g when compared
with Figure 9. Figure 16, depict the effect of
¢on g. It is found that g initially increases but

it decreases as ¢ increases.
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Figure 8- Effect of Je on fourth approximation for
M=1Ec=03,Pr=03,a=02,0;=04,

0;=04,1=02, {=n/4,h=-03

Figure 9 -Effect of M on fourth approximation for
Re=100,Ec=0.3,Pr=0.3, o =0.2,0,=
0.4,0;=04,1=0.2,{=n/4,h=-03
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Figure 10- Effect of Ec on fourth approximation for
Re=100,M =1,Pr=0.3, @ =0.2,00;= 0.4,
a, =0.4,4=0.2,{=n/4,h=-03

Hl —=—a=10 \ 1
a=70
0;‘ e i: 0.0 0.1 0.2 03 04 05
00 01 02 03 04 M os Figure 12- Effect of o on fourth pproxima 7

Figure 11- Effect of Pr on fourth approximation tor
Re=100,M=1,Ec=0.3, @ =0.2,a;=
04,0,=04,4=02,{=n/4 h=-03

for Re = 100, M=1, Ec = 0.3, Pr =0.3
0y=04,0,=04,4=02 {=n/4h=-03

"’?
Figure 13- Effect of tt;yon fourth approximauon 1or Figure 14- Effect of c;on fourth approximation 1o
Re=100,M=1,Ec=0.3,Pr=3,a = 0.2 Re=100,M=1,Ec=0.3Pr=03,a,=
0=04,2=02,{=m4,h=-03 04,4=02 {=n/4h=-03
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Figure 15- Effect of A on fourth approximatiu
Re=100, M =1,Ec=0.3,Pr=0.3, oy =
04,0, =04, {=1/4h=-03

6. Concluding Remarks

In this article, the unsteady heat transfer is
analyzed for magnetohydrodynamic (MHD)
flow of a second grade fluid in a channel. The
governing non-linear are solved by using HAM.
The effect of each physical parameter upon the
velocity and temperature distributions are
analyzed and are shown graphically. The results
have been summarized as the following:
I. The variation of Re on velocity and

temperature distributions is opposite.

Il. The effects of M and 4 on velocity and

temperature distributions are similar.
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