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Abstract: 

      In this paper, a discrete- time ratio-dependent prey- predator model is proposed 

and analyzed. All possible fixed points have been obtained. The local stability 

conditions for these fixed points have been established. The global stability of the 

proposed system is investigated numerically. Bifurcation diagrams as a function of 

growth rate of the prey species are drawn. It is observed that the proposed system 

has rich dynamics including chaos.  
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المفترس المتقطع ذو دالة الاستجابة الوظيفية النسبية-حول ديناميكية نظام الفريسة  
 

  علاء حسين لفته ,*رائد كامل ناجي  
 العراق ,بغداد ,بغداد قسم الرياضيات, كمية العموم, جامعة

 
 الخلاصة

. ة الوظيفية النسبيةالاستجابالمتقطع ذو دالة  مفترس  ال-لفريسة  ا نظام وتحميلتم اقتراحُ  , في هذا البحث      
 الاستقراركذلك, درسنا  . لها شروط الاستقرار المحمي   ناوجدو  النقاط الثابتة المحتممة, جميعتم الحصول عمى 

 لوحظ رسمتُ. الفريسة   في نمو المعدل ل كدالة    تشعيب  الطات طخم أنكما . اعددي لمنظام  المُقت ر ح   الشامل  
 .فوضى هانل هُ دينامكية متنوعة بضم لنظام  المُقت ر ح  ا أن

 
Introduction 

    Modern mathematical population dynamics 

started with the famous Lotka-Volterra prey-

predator model. Since that time many 

mathematical models, which describe the 

population dynamics, have been proposed and 

analyzed. These models may take many forms 

depending on the time scale and space structure 

of the problem [1]. Some of these forms are 

represented by discrete-time dynamical models. 

In fact, many researchers have mainly focused 

on discrete- time prey-predator models and they 

showed that these models may be produce a 

much richer sets of patterns than those observed 

in continuous time models, see [2-6] and the 

references their in. In particular Danca et al [3] 

demonstrated the existence of the chaotic 

dynamics in a simple discrete-time prey-

predator model with Holling type - I functional 

response. Agiza et al [2] proposed and analyzed 

a discrete-time prey-predator model with 

Holling type- II functional response, and they 

observed that the proposed model has a complex 

dynamic. 

     In all of the above mentioned studies the 

functional response (which is known as prey-

dependent) depends entirely on the density of 

prey species ignoring the effect of predator 
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abundance. Although, these prey-dependent 

prey-predator models are used extensity in 

literatures, they suffer from two paradoxes 

problems: the paradox of enrichment and that of 

biological control.       

     Later, Ariditi and Ginzburg [7] proposed and 

studied a new form of continuous time prey-

predator model, in which the functional response 

depends on both the   prey as well as predator 

species, and they called a ratio-dependent prey-

predator system. They have shown that the ratio-

dependent model can solve the paradoxes 

problems.  

     Therefore, in this paper, the discrete-time 

prey-predator model given by Agiza et al [2] is 

modified so that it involve the ratio-dependent 

type of functional response instead of Holling 

type-II of functional response. The existence of 

fixed points is discussed. The local, as well as, 

global stability of the proposed model is 

investigated analytically and numerically.   
 
Mathematical Model 

       One of the possible ways to understand the 

complex dynamical behavior between two 

interacting species is the use of the discrete-time 

model formulation. In the present work we study 

the dynamics of prey-predator model with ratio-

dependent functional response that may be 

describes by the following two difference 

equations: 
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  represent the ratio-dependent 

functional response and ratio-dependent 

numerical response, respectively. 

The positive parameters a  and   stand for 

intrinsic growth rate of prey species and the 

limitation of the growth velocity of the predator 

species with increase in number of prey while 

the positive parameters b and d denoted to 

maximum attack rate and conversion rate of 

predator, respectively. 

 

The Dynamical Behavior of The System )1( 

       In this section, the existence and local 

stability conditions of all possible fixed points 

are discussed, and the following results are 

obtained: 
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exists under the following conditions: 

0ε)b(d1)d(a                          (4)  

  

      Now, in order to study the local stability of 

the above fixed points the Jacobian matrix of the 

system (1)  is computed at each fixed point and 

then the eigenvalues for the resulting matrix are 

determined. 

    Since the Jacobian matrix of system (1)  

at the point y) (x,  may be written as: 
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So, the characteristic equation of J(x, y) is: 
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Note that before we go further to discuss 

 the dynamical behavior near the above fixed  

points, it is well known that the discrete-time 

 two dimensional dynamical system is said 

 to be area contracting (dissipative)  

dynamical system provided that 1B  [8], 

 where B  is the determinant of the Jacobian 

 matrix.  

Hence system (1)  is area contracting 

 if the following condition holds:   

   12
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



εx)(y
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.while it is conservative dynamical system 

under the following condition  
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     Now, the following Theorems describe the 

local dynamical behavior near the fixed points 

1p and 2p , respectively.  

Theorem (1): The nature of the axial fixed point 

,0)
a

1a(
1

p   is: 
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1- Sink if 31  a  and εd  . 

2- Source if 3a  and εd   

3- Non-hyperbolic if 3a  or εd   

4- Saddle otherwise.  

Proof: According to equation (6) it is easy to 

verify that, 
ε

da)ε(
A




2  and 
ε
da)(B  2  and 

hence the eigenvalues of )
1

J(p  are aλ  21  

and
ε
dλ 2 . Therefore, for 31  a  and εd   

then 1iλ  for all 21,i  and hence 1p  is sink. 

While, for 3a with εd   then 1iλ  for all 

21,i   and hence 1p  is a source. 

Further, for 3a  and/or d  then at least one 

of 1iλ  for all 21,i  . Hence 1p  is a non-

hyperbolic point. Finally, for all other sets of 

parameters 1p  is a saddle point. 

Theorem (2): The nature of the positive fixed 

point )*y ,*(x
2

p   is: 

1-  Sink if 12  HaH        (8a)  

2- Source if  2 H a   (8b)  

3-Non-hyperbolic if 1Ha    (8c)  

4-Saddle point if     Ha 1     (8d)  
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Proof: By substituting the point 2p  in the 

Jacobian matrix of system (1) , and then compute 

the characteristic equation. It is observed that 

the characteristic equation can be written as: 
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Now, according to the stability criterion [9], it is 

well known that if 0F(1)  then the two roots of 

0F(λ(  (the eigenvalues of )J(p 2 that denoted 

by 1λ and 2λ ) satisfy the following: 

[1] 1iλ  for all 21,i   if and only if 

0F(-1)   and 1*B . 

[2]  1iλ  for all 21,i   if and only if 

0F(-1)   and 1*B . 

[3] 11 -λ   and 12 λ  if and only if 0F(-1)   

and 20,A*  . 

[4] 11 λ  and 12 λ  (or 11 λ  and 12 λ ) 

if and only if 0F(-1)   and 1*B . 

 [5] 1  and 2  are complex and 121  λλ  

if and only if 042 ** B -A and 1*B . 

Consequently by a straight forward 

computation, it is easy to verity that: 
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Clearly, 0F(1)   under the existence 

condition (4) . Furthermore, we have that   
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Therefore, according to condition a)(8 , it is easy 

to verify that: 

0F(-1)   and 01 *-B  and hence 1iλ  for all 

21,i  . Thus 2p  is sink. 

Now, from condition (8b) , we have that 0F(-1)   

while 0B-1 *  .Thus  1i  for all 1,2i  , and 

hence 2p  is source. 

Further, due to condition (8c) , it is observes that 

0F(-1)   and 2,0* A . Hence -11   and 12   

and then 2p  is a non-hyperbolic point. 

Finally, for condition (8d) , it is observed 

that 0F(-1)  . Then 11 λ  and 12 λ  (or 11 λ  

and 12 λ ), and hence 2p  is a saddle point and 

thus the proof is complete.                                                                                                      

                                                             

Numerical Simulations 

          In this section, the global dynamical behavior 

of system (1)  is investigated numerically. The 

objectives of such study are: first confirm our 

analytical results and second investigate the 

existence of complex dynamics (such as chaos) 

in system (1) . 

                 The asymptotic behavior of the orbit of system  

(1)  is studied for different sets of parameter 

values and for different sets of initial conditions. 

In order to detect about the types of attracting 

sets exist in system (1) , numbers of bifurcation 

diagrams and typical phase portraits with their 

time-series are drawn as a parameters varying as 

shown in the following:   

 Bifurcation diagrams as function of the growth 

rate parameter of the prey are drawn with using 

phaser scientific software in the following cases:     
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1) 2b , 251.ε   and  d 2 while a   in the 

rang 4.95] [4, , 

2) 3b , 251.ε   and 51.d   while a  in the 

rang 4.5] [3.7, . 

 

  In first case, the bifurcation diagram between 

the maximum value of prey population and its 

growth rate is drawn in Figure 1. 

 
  

 

 

     Clearly Figure 1  shows the transent from 

stable point to periodic and then to chaos as the 

growth rate parameter increase in the 

range 4.95] [4, . 

Moreover, the phase portraits of system (1)  for 

parameter values in case (1)  with 2a , 54.a   

and 854.a  are shown in Figures 2a,3a,4a, 

respectively. While the time-series of the  

Figures 2a,3a,4a are drawn in Figures 2b,3b,4b, 

respectively. 

 

 
 

 

 

 

 

 

 
  

 

                                                                                

 

 

              Figure 1- Bifurcation diagram of system [1] as 

                                a varied from 4 to 4.95. 

      
      Figure 3-  (a) System [1] approaches  

                     asymptotically to periodic attractor  

                     in 
2

RInt  for a=4.5, (b) Time- 

                     series  diagram of Figure.3. 

 

    Figure 2- (a) System [1] approaches  asymptotically to 

positive fixed point in for the  2
RInt                     

                     a=2, (b)   Time-series  diagram of  

                     Figure.2a. 
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According to the above figures, system 

(1) approaches asymptotically to a positive point 

0.093) (0.125,p2  in a spiral pattern as shown in 

Figure 2a,b for 2a   with the rest of parameter 

values are fixed as given in case  (1) .  

However, system (1)  approaches asymptotically 

to periodic dynamics as shown in Figure 3a,b  

for the parameter values given in case (1)  

with 54.a  .Therefore, as a  increases the 

system loses its stability and approaches to 

periodic dynamics. In fact, as shown in Figure1, 

system (1)  has a flip bifurcation occurs at the 

bifurcation point 324.a  . Finally, for 854.a   

with the rest of parameters fixed as in case (1) , 

system (1)  has a chaotic attractor as given in 

Figure 4a,b. Indeed, the trasition from stable 

case to chaos in system (1) is occurring through 

cascade of periodic doubling as shown in 

Figure1.  

     In second case, the bifurcation diagram of 

system (1)  between the maximum value of prey 

population and its growth rate is drawn in the 

following figures. 

Clearly Figure 5 shows the transent from stable 

point to chaos through cascade of periodic 

doubling as the growth rate parameter 

ncreasethe range 4.5] [3.7, . 

 

 

 
 

 

 

Moreover, the phase portraits of system (1)  

along with their time series for parameter values 

in case )( 2  with 3a , 24.a   and 5024.a   are 

drawn in Figures 6,7,8, respectively 

 

 

 

 Figure 4- System[1]approaches to chaotic attracter 

                 for a=4.85. (b) Time-series diagram of  

                 Figure (4a). 

Figure 6-  (a) System [1] approaches asymptotically 

to positive fixed point in the  2RInt                  

                 for a=3, (b) Time-series diagram of 

Figure.6a. 

            Figure 5- Bifurcation diagram of system 

                             (1)as a varied from 3.7 to 4.5. 



Naji and Lafta                                                  Iraqi Journal of Science, 2013, Vol.54, No.1, Pp.157-164 

 

 
162 

 
 

 
 

 

                     

 

 

 

 
 

             

 

Again, due to the above figures, for the 

parameter values given in case )( 2  with 3a ,     

system (1) approaches asymptotically to a 

positive point 
2

p  as shown in Figure 6a,b. 

While for the parameter values given in 

case )( 2 with 24.a  , system (1)  approaches 

asymptotically to periodic dynamics as shown in 

Figure 7a,b. Moreover, as in case (1) , system (1)  

has a flip bifurcation that occurs at the 

bifurcation point 954553.a   with the rest of 

parameter values as given in case )( 2 , see 

Figure 5. Finally, for 5024.a   with the rest of 

parameters as in case (2)  the system (1)  has a 

chaotic attractor as given in Figure 8a,b  

 

   Sensetive on Initial Conditions 

     It is well known that, for discrete-time 

dynamical systems, if the successive iterates 

approach a fixed point or limit cycle then the 

difference between any two solutions, which 

start with two initial conditions that differ from 

each other by a small amount, will on average 

grow smaller, with each iteration. However, if 

the solution is chaotic the difference will tend to 

grow larger, with each iteration. Therefore in 

this section, sensitivity to initial conditions 

criterion for detecting of chaotic dynamics in 

system (1)  is applied. Now, since the chaotic 

attractors of system (1)  given in Figure 4 and 

Figure 8 are drawn with initial point ,0.5)(0.5 , 

then we choose the point 1,0.5)(0.5  as another 

initial point for chaotic attractor of system 

(1) and then the time-series of system (1)  

starting at these two different initial points are 

drawn in the following figures 

   Figure 7- (a) System [1] approaches asymptotically to 

periodic attractor in 
2

RInt                    for 

                   a=4.2, (b) Time-series diagram of 

                   Figure.7a. 

 Figure 8-System [1] approaches to chaotic attracter 

                 for a=4.502. (b) Time-series diagram of  

                 Figure.8a. 
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      According to the above two figures it is clear 

that the solution of system  (1)  is very sensitive 

to small change in the initial condition and 

hence chaotic dynamic is detected. 

 

Discussion and Conclusions  

     In this paper, a discrete-time prey-predator 

model with ratio-dependent functional response 

is proposed and analyzed. It is observed that 

system (1)  has two nonnegative fixed points. 

The local stability analysis for each of them is 

investigated analytically. The global stability 

analysis of system is investigated numerically. It 

has been shown that, system (1)  has a flip 

bifurcation that occurs at the bifurcation 

point 324.a  . However, as the growth rate 

parameter increases further, the system has 

interesting dynamical behaviors, including 

cascade of periodic-doubling and chaos. These 

results show that the discrete time prey predator 

models have richer dynamics compared with the 

associated models in the continuous case. 

Finally, in order to explore the existence of 

chaotic attractors in system (1) , the sensitivity of 

typical attractors to small varying in the initial 

conditions is studied. 

    

 

 

 

 

 

 

 

 

 

                                                                         

   Figure  9-Sensitive dependence on  

                    Initial condition 

       Figure 10-  Sensitive dependence on  

                           initial conditions.  
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