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Abstract:

In this paper, a discrete- time ratio-dependent prey- predator model is proposed
and analyzed. All possible fixed points have been obtained. The local stability
conditions for these fixed points have been established. The global stability of the
proposed system is investigated numerically. Bifurcation diagrams as a function of
growth rate of the prey species are drawn. It is observed that the proposed system

has rich dynamics including chaos.
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Introduction

Modern mathematical population dynamics
started with the famous Lotka-Volterra prey-
predator model. Since that time many
mathematical models, which describe the
population dynamics, have been proposed and
analyzed. These models may take many forms
depending on the time scale and space structure
of the problem [1]. Some of these forms are
represented by discrete-time dynamical models.
In fact, many researchers have mainly focused
on discrete- time prey-predator models and they
showed that these models may be produce a
much richer sets of patterns than those observed
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in continuous time models, see [2-6] and the
references their in. In particular Danca et al [3]
demonstrated the existence of the chaotic
dynamics in a simple discrete-time prey-
predator model with Holling type - I functional
response. Agiza et al [2] proposed and analyzed
a discrete-time prey-predator model with
Holling type- Il functional response, and they
observed that the proposed model has a complex
dynamic.

In all of the above mentioned studies the
functional response (which is known as prey-
dependent) depends entirely on the density of
prey species ignoring the effect of predator
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abundance. Although, these prey-dependent
prey-predator models are used extensity in
literatures, they suffer from two paradoxes
problems: the paradox of enrichment and that of
biological control.

Later, Ariditi and Ginzburg [7] proposed and
studied a new form of continuous time prey-
predator model, in which the functional response
depends on both the prey as well as predator
species, and they called a ratio-dependent prey-
predator system. They have shown that the ratio-
dependent model can solve the paradoxes
problems.

Therefore, in this paper, the discrete-time
prey-predator model given by Agiza et al [2] is
modified so that it involve the ratio-dependent
type of functional response instead of Holling
type-Il of functional response. The existence of
fixed points is discussed. The local, as well as,
global stability of the proposed model is
investigated analytically and numerically.

Mathematical Model

One of the possible ways to understand the
complex dynamical behavior between two
interacting species is the use of the discrete-time
model formulation. In the present work we study
the dynamics of prey-predator model with ratio-
dependent functional response that may be
describes by the following two difference
equations:

Xnyp =¥n{d=Xp) =Py, Y)Yy
Y1 =4p Y)Yy
where X, and Y, represents the number of the

prey and predator populations at certain iteration
bx

@

n (n=0,1,.). The terms p(xn,yn):yn+gxn and

q(xn,yn):ydr: represent the ratio-dependent
nten

functional  response and  ratio-dependent

numerical response, respectively.

The positive parameters a and & stand for
intrinsic growth rate of prey species and the
limitation of the growth velocity of the predator
species with increase in number of prey while
the positive parameters band d denoted to
maximum attack rate and conversion rate of
predator, respectively.

The Dynamical Behavior of The System (1)

In this section, the existence and local
stability conditions of all possible fixed points
are discussed, and the following results are
obtained:
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1- The axial fixed point p, = (2,0) exists

if and only if
a>1 @
2- The positive fixed point p,=x"y"),
where
o - d(a—l)a—db(d—a) a2
y =x (d-¢) 0)

exists under the following conditions:
d@@a-1) > b(d-¢) >0 @)

Now, in order to study the local stability of
the above fixed points the Jacobian matrix of the
system (1) is computed at each fixed point and
then the eigenvalues for the resulting matrix are
determined.

Since the Jacobian matrix of system (1)
at the point (x, y) may be written as:
by2 —bcaz
(y+sx)2 (y+a'x)2
dy2 dssz
(y+£x)2 (erax)2

So, the characteristic equation of J(x, y)is:
F(A4)=2>-A1+B=0 (6)

22
dee bz/ and
(y+ex)

a(1-2x)—

Jxy) =

®)

Where A=a(1-2x)+

B— aded®(1-2x)
(y+gx)2 '

Note that before we go further to discuss
the dynamical behavior near the above fixed
points, it is well known that the discrete-time
two dimensional dynamical system is said
to be area contracting (dissipative)
dynamical system provided that [B|<1 [8],
where B is the determinant of the Jacobian
matrix.

Hence system (1) is area contracting

if the following condition holds:

adadz(1—22x) <1

(y+ex)
.while it is conservative dynamical system
under the following condition

(7a)

aded?(1-2x)
(y+gx)2
Now, the following Theorems describe the
local dynamical behavior near the fixed points
p, and p, , respectively.

Theorem (1): The nature of the axial fixed point
-1 gy is:
pl_( a ,0) Is:

=1

(7b)
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1- Sinkifl1<a<3and d<e¢.

2- Sourceif a>3 and d >¢
3- Non-hyperbolic if a=3 ord=¢
4- Saddle otherwise.
Proof: According to equation (6)it is easy to

verify that, A=“%2¢ and B=(2-a)d and
hence the eigenvalues of Jpy) are 4 =2-a
and 1, =4. Therefore, for 1<a<3 and d<e
then |4|<1 for all i=12and hence p, is sink.
While, for a>3with d>e& then |4|>1 for all
i =12 and hence p, is a source.

Further, for a=3and/or d=¢ then at least one
of |4/=1 for alli=12. Hence p, is a non-

hyperbolic point. Finally, for all other sets of
parameters p, is a saddle point.

Theorem (2): The nature of the positive fixed
point Py =(x*,y*) is:

1- Sinkif H, <a< H,; (8a)
2- Source if a< H, (8h)
3-Non-hyperbolic if a=H; (8¢)
4-Saddle point if a>H, (8d)
Where

H1 — 3d2+bd222(k;df;)35(d—bs) ,

_ 2bde—2be?+2de—d?
de '
Proof: By substituting the point p, in the

Jacobian matrix of system (1), and then compute

the characteristic equation. It is observed that
the characteristic equation can be written as:

F(A) =A2—A"+B* =0 ©)
Where A" = ad?+2bd(d-e)-2d? (a—1)-b(d—e)+de
d2
* de+2be(d—¢)—2de(a—1]
B* — ade+2be( dz) (a-1)
Now, according to the stability criterion [9], it is
well known that if F(1)>0then the two roots of

F(M(=0(the eigenvalues of J(p,)that denoted
by 4 and 4, ) satisfy the following:
[1] |4|<1 for all i=12 if and only if
F(-1)>0 and B" <1.
[2] |a|>1 for all i=12 if and only if
F(-1)>0 and B" >1.
[3] 4 =-1 and |3,|=#1 ifand only if F(-1)=0
and A" %02,

and H,

and
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[4] |4|<1 and |2,|>1 (or|4|>1 and |3,|<1)
if and only if F(-1) <0 and B" >1.

[5] 4, and 2, are complex and |4|=|4,|=1
if and only if A"2-4B" <0and B" =1.

Consequently by a straight forward
computation, it is easy to verity that:
=12 - A%+ B" = (d—s)[d(a;)—b(d—s)] (10)
Clearly, F@)>0 under the existence
condition (4) . Furthermore, we have that
F(_l):3d(d+e)—ad(d+ds;+b(d—e)(d+3s) 1)
and
1_B*:d2—2bg(d;52)+adg—2ds (12)
Therefore, according to condition(8a), it is easy
to verify that:

F(-1)>0 and 1-B" >0 and hence |%|<1 for all
i=12. Thus p, is sink.

Now, from condition (8b) , we have that F(-1) >0
while 1-B"<0.Thus |4|>1 for alli=1,2, and

hence p, is source.

Further, due to condition (8c) , it is observes that
F(-1)=0 and A" #0,2. Hence 4 =-1 and |4,|#1
and then p, is a non-hyperbolic point.

Finally, for condition(8d), it is observed
that F(-1) <0. Then |4|<1 and |i,|>1 (or|y|>1
and|4,| <1), and hence p, is a saddle point and
thus the proof is complete.

Numerical Simulations
In this section, the global dynamical behavior
of system (1) is investigated numerically. The

objectives of such study are: first confirm our
analytical results and second investigate the
existence of complex dynamics (such as chaos)
in system (1) .

The asymptotic behavior of the orbit of system
(1) is studied for different sets of parameter

values and for different sets of initial conditions.
In order to detect about the types of attracting
sets exist in system (1), numbers of bifurcation

diagrams and typical phase portraits with their
time-series are drawn as a parameters varying as
shown in the following:

Bifurcation diagrams as function of the growth
rate parameter of the prey are drawn with using
phaser scientific software in the following cases:
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Db=2, ¢=125 and d=2 while a in the
rang[4, 4.95],
2)b=3, =125 and d=15 while a in the

rang[3.7,4.5].
In first case, the bifurcation diagram between

the maximum value of prey population and its
growth rate is drawn in Figure 1.

0.8 =

06 b=

04 L

Maximum prey pop

0.2

4.5
Growth rate

Figure 1- Bifurcation diagram of system [1] as
a varied from 4 to 4.95.

Clearly Figure 1 shows the transent from
stable point to periodic and then to chaos as the
growth rate parameter increase in the
range [4, 4.95].

Moreover, the phase portraits of system (1) for
parameter values in case (1) witha=2, a=45
and a=485are shown in Figures 2a,3a4a,
respectively. While the time-series of the
Figures 2a,3a,4a are drawn in Figures 2b,3b,4b,
respectively.
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Figure 2- (a) System [1] approaches asymptotically
positive fixed point in for the nt R, 2
a=2, (b) Time-series diagram of

Figure.2a.
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Figure 3- (a) System [1] approaches
asymptotically to periodic attractor

in int R, 2 for a=4.5, (b) Time-
series diagram of Figure.3.
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Figure 4- System[1]approaches to chaotic attracter
for a=4.85. (b) Time-series diagram of
Fiaure (4a).

According to the above figures, system

(1) approaches asymptotically to a positive point
p,(0.125,0.093) in a spiral pattern as shown in
Figure 2a,b for a=2 with the rest of parameter
values are fixed as given in case (1).
However, system (1) approaches asymptotically
to periodic dynamics as shown in Figure 3a,b
for the parameter values given in case(l)
witha=45 .Therefore, as a increases the
system loses its stability and approaches to
periodic dynamics. In fact, as shown in Figurel,
system (1) has a flip bifurcation occurs at the
bifurcation pointa=432. Finally, for a=485
with the rest of parameters fixed as in case (1),
system (1) has a chaotic attractor as given in
Figure 4a,b. Indeed, the trasition from stable
case to chaos in system (1) is occurring through
cascade of periodic doubling as shown in
Figurel.

In second case, the bifurcation diagram of
system (1) between the maximum value of prey
population and its growth rate is drawn in the
following figures.
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Clearly Figure 5 shows the transent from stable
point to chaos through cascade of periodic
doubling as the growth rate parameter
ncreasethe range[3.7,4.5].

Maximum prey population

39 4.0 41 42

Growth rate

43 44 45

Figure 5- Bifurcation diagram of system
(1)as a varied from 3.7 to 4.5.
Moreover, the phase portraits of system (1)

along with their time series for parameter values
in case (2) witha=3, a=4.2 and a=4502 are

drawn in Figures 6,7,8, respectively
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Figure 6- (a) System [1] approaches asymptotical

"_

2

to positive fixed point in the IntR+2
for a=3, (b) Time-series diagram of
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Figure 7- (a) System [1] approaches asymptot
periodic attractor in Int R+2 for
a=4.2, (b) Time-series diagram of
Figure.7a.
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Figure 8-System [1] approaches to chaotic attracter
for a=4.502. (b) Time-series diagram of
Figure.8a.

Again, due to the above figures, for the
parameter values given in case(2) witha=3,

system (1) approaches asymptotically to a
positive point p, as shown in Figure 6a,b.

While for the parameter values given in
case(2)witha=42, system(l) approaches
asymptotically to periodic dynamics as shown in
Figure 7a,b. Moreover, as in case (1), system (1)

has a flip bifurcation that occurs at the
bifurcation point a =395455 with the rest of
parameter values as given in case(2), see

Figure 5. Finally, for a=4502 with the rest of
parameters as in case(2) the system (1) has a
chaotic attractor as given in Figure 8a,b

Sensetive on Initial Conditions

It is well known that, for discrete-time
dynamical systems, if the successive iterates
approach a fixed point or limit cycle then the
difference between any two solutions, which
start with two initial conditions that differ from
each other by a small amount, will on average
grow smaller, with each iteration. However, if
the solution is chaotic the difference will tend to
grow larger, with each iteration. Therefore in
this section, sensitivity to initial conditions
criterion for detecting of chaotic dynamics in
system (1) is applied. Now, since the chaotic

attractors of system (1) given in Figure 4 and
Figure 8 are drawn with initial point(0.5,0.5),
then we choose the point (0.51,0.5) as another

initial point for chaotic attractor of system
(1) and then the time-series of system (1)

starting at these two different initial points are
drawn in the following figures
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Figure 10- Sensitive dependence on
initial conditions.

According to the above two figures it is clear
that the solution of system (1) is very sensitive

to small change in the initial condition and
hence chaotic dynamic is detected.

Discussion and Conclusions

In this paper, a discrete-time prey-predator
model with ratio-dependent functional response
is proposed and analyzed. It is observed that
system (1) has two nonnegative fixed points.

The local stability analysis for each of them is
investigated analytically. The global stability
analysis of system is investigated numerically. It
has been shown that, system (1) has a flip

bifurcation that occurs at the bifurcation
pointa=432. However, as the growth rate
parameter increases further, the system has
interesting dynamical behaviors, including
cascade of periodic-doubling and chaos. These
results show that the discrete time prey predator
models have richer dynamics compared with the
associated models in the continuous case.
Finally, in order to explore the existence of
chaotic attractors in system (1), the sensitivity of

typical attractors to small varying in the initial
conditions is studied.
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