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Abstract 
   This paper deals with testing a numerical solution for the discrete classical optimal 

control problem governed by a linear hyperbolic boundary value problem with 

variable coefficients. When the discrete classical control is fixed, the proof of the 

existence and uniqueness theorem for the discrete solution of the discrete weak form 

is achieved. The existence theorem for the discrete classical optimal control and the 

necessary conditions for optimality of the problem are proved under suitable 

assumptions. The discrete classical optimal control problem (DCOCP) is solved by 

using the mixed Galerkin finite element method to find the solution of the discrete 

weak form (discrete state). Also, it is used to find the solution for the discrete adjoint 

weak form (discrete adjoint) with the Gradient Projection method (GPM) , the 

Gradient method (GM), or the Frank Wolfe method (FWM) to the DCOCP. Within 

each of these three methods, the Armijo step option (ARSO) or the optimal step 

option (OPSO) is used to improve (to accelerate the step) the solution of the discrete 

classical control problem. Finally, some illustrative numerical examples for the 

considered discrete control problem are provided. The results show that the GPM 

with ARSO method is better than GM or FWM with ARSO methods. On the other 

hand, the results show that the GPM and GM with OPSO methods are better than the 

FWM with the OPSO method. 

 
Keywords: Numerical classical optimal control, Galerkin finite element method, 

Gradient Projection method, Gradient method, Frank Wolfe method. 

 

تقليدية يحكمها مدألة لحل سيطرة امثلية  مدقط انحدار وفرانك فهلف ,انحدار  –مزج طريقة كاليركن 
 زائدية خطية ذات معاملات متغيرة قيم حدودية

 

*جميل امير علي الههاسي ،ايمان حدين مخلف الروضاني  
 قسن الرياضيات, كلية العلوم, الجاهعة الوستنصرية, بغداد, العراق

 الخلاصه
من الشسط السقدم يحكسها مدألة قيم  دألة سيظخة امثمية تقميجيةدراسة الحل العجدي لسيتشاول هحا البحث     

.  عشجما تكهن الديظخة التقميجية الشسط السقدم ثابتا, تم بخهان ذات السعاملات الستغيخة حجودية زائجية  خظية
بهجهد فخضيات مشاسبة, تم بخهان  لشسط السقدم.الستقظع لمريغة الزعيفة من ا لمحل نظخية الهجهد والهحجانية

امثمية  لديظخة امثمية تقميجية من الشسط السقدم وبخهان مبخهشة  الذخط الزخوري لسدألة سيظخة  الهجهد مبخهشة
طخيقة مدج تقميجية من الشسط السقدم . تم حل مدألة الديظخة الامثمية التقميجية من الشسط السقدم بهاسظة 
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من الشسط السقدم و الحل  ةالستقظعة لمريغة الزعيف الحل لسعادلة الحالة لإيجادصخ السشتهية كاليخكن لمعشا
او  فخانك فهلف او الانحجارأطخيقة  مع  لمحالةالسخافق من الشسط السقدم لمريغة السخافقة لمريغة الزعيفة 

ه الظخق الثلاث, تم استخجام سيظخة امثمية تقميجية من الشسط السقدم. ضسن هح لإيجاد جارحنالاطخيقة مدقط 
ديظخة التقميجية من الشسط السقدم. في لم  الحل )لتدخيع الخظهة (خظهة ارميجه او خظهة امثمية لتحدين 

مع وبيشت الشتائج ان طخيقة مدقط الانحجار التهضيحية لمسدألة العجدية الشهاية, تم إعظاء بعض الأمثمة 
خظهة ارميجه , ايزا الشتائج و الانحجار مع انك فهلف خاف ةاستخجام خظهة ارميجه افزل من كل من طخيق

مع استخجام خظهة امثمية افزل من طخيقة فخانك فهلف مع بيشت ان كل من طخيقة الانحجاراومدقط الانحجار 
 .استخجام خظهة امثمية 

Introduction 

     Optimal control problems (OCP) have various applications [1, 2]. These problems are usually 

governed by partial differential equations (PDEs) or ordinary differential equations (ODEs). 

Many researchers have been interested to study the numerical solution of optimal control problems 

described by nonlinear elliptic PDEs [3, 4],   by semilinear parabolic PDEs [5-7], or by one 

dimensional linear hyperbolic PDEs with constant coefficients (LHPDES) [8]. The researchers also 

include two dimensional linear and nonlinear hyperbolic PDEs with constant coefficients [9-12], or by 

nonlinear ODEs [13]. These works attracted our attention to focus our interest on studying OCP 

described by LHPDES but with variable coefficients (LHBVPVC). 

     This paper investigates the numerical solution of the DCCOCP that is described by the LHBVPVC. 

Here, the continuous classical optimal control problem (CCOCP) is described, which is discretized by 

applying the Galerkin finite element method (GFEM). The GFEM is applied for variable space and the 

implicit finite difference scheme (IFDS) which is employed for the time variable to obtain the discrete 

CCOCP(DCCOCP). The existence and the uniqueness theorem for the discrete solution (DS) of the 

discrete weak form (DWF) is stated and proved. The DCCOCP is found numerically by using the mix 

of the GFEM with the IFDS (GFEM-IFDS) [10] to find the DS of the DWF, while the DCOC is 

obtained through solving the optimization problem (finding the minimum of the cost function) by 

separately using one of the following optimization methods: the Gradient method (GM) , the Gradient 

projection method (GPM), and the Frank Wolfe method (FWM) [14]. Within each one of these three 

methods the Armijo step option (ARSO) or the optimal step option (OPSO) is used to improve the 

direction of the optimal search [14].  Some illustrative examples for this considered problem are given 

to show the accuracy and the efficiency of each of the three methods. 

1. The Statement of the CCOCP: Let      be a bounded open region,    be the boundary of   , 

and   ,   -  0<T<  be a time space,      . The CCOCP governed by the LHBVPVC is: 

     
     

  

   
0 ̅  ( ⃗  )

  

   
1   ̿( ⃗  )   ( ⃗  )      , in       ,  ⃗  (   ) ,              (1) 

with BC and ICs 

 ( ⃗  )   , in        ,   -                                                                                                        (2) 

 ( ⃗  )    ( ⃗), in  ,                                                                                                                       (3) 

  ( ⃗  )   
 ( ⃗), in  ,                                                                                                                       (4)  

where the control is symbolized by    ( ⃗  )    (  ) and its corresponding state is symbolized by 

    ( ⃗  )   
 (  ̅),  ̅  ( ⃗  )   while   ̿( ⃗  )    ( ) (        ) are positive arbitrary 

functions. The desired control is symbolized by      ( ⃗  )   
 ( ) and  ( ⃗  )    ( ) is a given 

function. 

The set of the admissible continuous classical controls is represented by    , where 

     *    
 ( )|  ( ⃗  )   , a.e. in  },with      is a convex and compact set . 

The cost functional [9] is given by 

  ( )=∫ ,
 

 

 

 
(    )

  
 

 
(    )

 -  ⃗   ,                                                                                  (5)  

where, the desired state is symbolized by       ( ⃗  )   
 ( ) . 

The CCOCP is to find       which minimizes (5). 

Now, the weak form (WF) of the problem (1-4) for     
 (  )  is  

〈     〉   (     )  ( ( ⃗  )  )  (   )  (    )        ,                                              (6) 

( ( )  )  (    ), in   ,                                                                                                                   (7) 
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(  ( )  )  ( 
   ), in  ,                                                                                                                  (8) 

where      ,      (  )  and  (     )   
     

 

( ̅  ( ⃗  )     )   ( ̿ ( ⃗  )   )  is a 

symmetric bilinear form. 

Assumptions A[9]:  For each       and     the following inequality is satisfied 

(I)  (     )            , where      
(II)   (     )        

 , where     . 
Now, suppose     , then (6-8) can be rewritten as 

〈 
 
  〉   (     )  ( ( ⃗  )  )   (   )  (    )        ,                                                 (9) 

〈    〉  〈   〉  ,                                                                                                                                 (10) 

 (    )  ( 
   ), in  ,                                                                                                                    (11) 

( 
 
  )  (    ), in                                                                                                                          (12) 

2. The DCCOCP[9]: The CCOCP is discretized by using the GFEM as follows:  

First, the region   can be divided into subregions (a polyhedron) for every integer (s),    
    

      be an admissible regular triangulation of   ̅ i.e.  ̅  ⋃   
  

   . Second, let   
  ,  

      
 -  be a 

subdivision of the interval   and for             , where each interval has same lengths ( 

   
 

 
 ). Let         

 (  ) be the space of continuous piecewise affine mapping (CPAM) in  . 

The set of admissible discrete classical controls (DCC) is  

   
  * ̅   ̅     | ̅( ⃗  )   ̅     

        }
 
  where        

    
 . 

Now,       , and for            , the DWF (9)-(12) can be given by 

. 
   
   

 
   /

 
    (    

   )    ( (  
 )  )

 
   (  

   )
 

     (  (  
 ) 
   )   ,                 (13) 

(    
    

   )    (    
   )  ,                                                                                                     (14) 

(  
   )  (  

   ) ,                                                                                                                          (15) 

( 
 
   )  (  

   )  ,                                                                                                                          (16), 

where   
   (  

 ) ,  
 
   (  

 )       for          , and   
    and   

    ( ). 

The discrete cost functional (DCF)    
 (  ) is defined by 

  
 (  )     

   

   

∫  
 

 
,
 

 
(    
    (    

 ))  
 

 
(  
    (  

 )) -  ⃗                                            (17) 

Hence, the DCCOCP is to find a DCOC  ̅     
 , such that 

  
 ( ̅ )           

    
 (  )  

2.1 Theorem (existence and uniqueness of the DWF): The DWF (13-16) and for any fixed  , with 

fixed DCC        
 , has a unique solution    

     (  
    
      

 ), for sufficiently small   . 
Proof: To find the solution    (  

    
      

 ) for any fixed j (       ), let (  ( ⃗) , 

(       ) are CPAM in    with   ( ⃗)    on   ) being a span of    . Then for any         
and   

 ,  
 
 
 ,     
  , 

   
    , equations (13-16)  can be formed as: 

. 
   
   

 
    /

 
     (    

    )    ( (  
 )   ) 

   (  
    ) 

    (  (  
 ) 
    )  ,             (18) 

(    
    

    )    (    
    )  ,                                                                                                    (19) 

(  
    )  (  

    )  ,                                                                                                                       (20) 

( 
 
    )  (  

    )   ,                                                                                                                       (21) 

Substituting equation (19) in equation (18) yields: 

(    
    ) 

 (  )   (    
    ) 

 (  
    ) 

   . 
 
    /

 
 (  ) ( (  

 )   ) 
 (  ) (  

    ) 
 (  ) (   

 (  
 )   ) 

.         (22) 

Now by using the GFEM, we obtain 

   
     
   
  
 

 

  ,   
   
   

 

  
 
  ,     

   
   

 

  
   
  ,   

   
   

 

  
    ,   

   
   

 

  
 
    

and   
   
   

   

 

  
   
  , 

where   
 
   
 (  
 
) and   

 
   

 (  
 
) are unknown constants,  and            to be determined.  
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Substituting    
  ,   

  ,     
  ,  

 
 
,  
 
 
 and   

   
 

 into equations ((19)-(22)) yields the following linear 

algebraic system (LAGS) of 1
st
 ODEs  for (           )      

(  (  )  )                 (  )  ⃑  (  
 )  (  )  ⃑  (  

 ) ,                                              (23) 

     
       

  
  ,                                                                                                                                  (24) 

        ,                                                                                                                                          (25) 

      ,                                                                                                                                            (26) 

where   (   )   ,     (     ),   (   )   , 

      (       ),     
   
 (  

   
   
   
     

   
) ,     

   
 (  

   
   
   
     

   
) , (for      ), 

    (  
 )    ,     (  

 )   ,  
  (     )   

  (     ),     ( (  )   ), ⃑   (   )   , 

    (  
    (  

 )   ),            . 

From the Assumption A on the operator  (   ), the matrices   and   are positive definite (PD). 

Similarly for (  (  )  ), equations (23)-(26) has a unique solution. 

3. Existence of the DCCOCP: The following assumptions are useful to study the existence of the 

discrete control. 

Assumptions B: The cost functional is of Carathéodory type, and satisfies (for each          
 ) 

|
 

 
(    
    (    

 ))
 
 
 

 
(  
    (  

 ))
 
|    

 ( ⃗)    (  
 )  ,  

where   
 ( ⃗)    

 ( ⃗   )   
 ( ) and     . 

3.1 Theorem: The operator          
  is continuous on   ( ). 

Proof: Let    (  
    
        

 ),     (  
     

         
  ),    (  

    
        

 ), 

     (  
     

         
  ),    (  

   
 
     

   
 ), and      ( 

 
    
 
      

   
  ). 

To prove that     
            

  as    , if       ,  the mathematical  induction is 

used. Firstly, from the projection theory and equations (20) and (21), one can have 

  
     

  , and  
 
    

 
 
 , as    . 

For any fixed j, suppose   
     

  and  
 
    

 
 
 as    , we want to prove that     

       
  as 

   . 

Suppose that     
   (  

  ,  
 
    
  ) and     

    (  
   ,  

 
     

  ), then 

     
       

   =  (  
     

 
     

  )   (  
    
 
    
 )          

      
     , 

therefore   
     

 , for any fixed  j, thus the operator          
  is continuous.      

3.2 Lemma: If the DCCs    , ̅  are bounded in   ( ), and the corresponding discrete state solutions 

to the DCCs   
  and  ̅ 

    
      

  are   
  ,  ̅ 

    
      

   respectively, then (           ): 

    
   
        

   
  and    

 
   
        

   
  

Or     
   
   ̅, and    

 
   
    ̅                                                                                                     (27)  

Proof: From the DWF of equations (13)-(16), and for            , we have  

.      
      

   /
 
     (      

   )    (    
   )

 
  ,                                                                 

(28) 

(      
      

   )    (     
   )  ,                                                                                             (29) 

   
      

    ,                                                                                                                                 (30) 

By substituting         
 

 into equation (38), we obtain 

        
   

       
   
         

      
   
       .      

        
 /  

          
   

         
   
                                                                                                          (31)                                 

Since 

 (      
      

        
      

 )  (  )  .      
        

 /, and  

and 

 (      
        

 )   (    
      

 )   (  )  .      
        

 / +2    .      
        

 /. 
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then 

     .      
        

 /  , (      
        

 )   (    
      

 ) 

                                            (      
      

        
      

 )- .                                                      (32) 

     By putting equation (32) into the LHS of equation (31), taking the summation for both sides of the 

obtained equation from     to       , then using equation (30), and then applying assumption 

B-I on  (   ), we get 

     
   
   
   

   

       
      

   
         

   
     

   

   

       
      

   
         

       
   

   

       
   

      
   

   

     
   
  .                                                                                       (33) 

Since   

        
   

          
      

   
         

   
 .                                                                             (34) 

 Substituting equation (34) into equation (33) gives 

      
   
  (   ̿  )  

   

   

       
      

   
          

   
     

   

   

       
      

   
   

    
   

   

     
   
     ̿  

   

   

(     
   
  )       

   
     ̿  

   

   

(      
   
   )                                  (35)                                   

Now, by choosing    
 

 ̿
, the second and the fourth terms in the LHS of equation (35) are positive. 

Applying  ̅      (    ), yields 

 ̅(     
   
       

   
 )        

   
         

   
        

   
     ̿  

   

   

(      
   
  ).              (36)               

Applying  ̌     ̅ and   ́   ̿  ̅ into equation (36) produces 

     
   
       

   
   ̌      

   
   ́    

   

   

(     
   
       

   
 )                                            (37)   

Using the discrete Grownwall's inequality (DGI) on equation (37) gives  

     
   
       

   
     ̿ ̌       

   
 , which gives 

     
   
        

   
  , and      

   
        

   
   .                                                                   (38) 

Finally, since    and  ̅  are bounded in   ( ), equation (27) is satisfied from equation (38).            

 

3.2 Theorem [10]: Suppose that    
    is convex and compact, and if   

 (  ) is coercive, there 

exists a DCOC. 

Proof: By using the same technique used in (Theorem 4 in [10]).                                                                                      

4. The Necessary conditions for DCCOCP 

     The following theorem deals with the state and proof for the necessary conditions of the DCCOCP 

4.1 Theorem: Assume that DCF of equation (17) is given and the DAWF (for the state equation)      
  

=    (  
    
        

 ) is given (for              ) by 

(    
    

   )
 
     (  

   )      (    
    

 (    
 )  )

 
                                                          (39) 

    
    

       
                                                                                                                                (40) 

  
    

                                                                                                                                         (41) 

where   
    
     (            )   

Then the Fréchet derivative (FD) of DCF can be written as  

(D  
 (  
 )   

     
 )     

   

   

.   
 
 (  

      
    

    
 )    

 /
 

 

                                        
   

   

(  
   (  

    
 (  
 ))    

 )   ,                                                   (42) 

where   
     
     

 ,    
    

     
  for (         )  and    is called the Hamiltonian. 

Proof: By using equation (31) and set     
 , then summing over   (for      to      ), we get 

    
   

   .      
      

    
 /
 

  
    

   

   

 (      
    

 )     
   

   

(    
    
 )
 

 .                                               (43) 
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By setting         
  in equation (39), and summing over   (for     to      ), we obtain   

   
   

   .    
    

        
 /

 

  
     

   

   

 (  
        

 )     
   

   

 (    
    

 (    
 )       

 )
 

 ,              (44)                                                                  

then by subtracting equation (43) from equation (44), we get 

    
   

   .      
      

    
 /
 

  
    

   

   .    
    

        
 /

 

  
  

    
   

   

(    
    
 )
 
    

   

   

(    
    

 (    
 )       

 )
 

  .                                                      (45)                                                             

     Now, for any given values of   
  (            ) in a vector space, the following functions are 

defined almost everywhere on E: 

  
 ( )    

 ,     
 , for each        , 

  
 ( )      

 ,     
 , for each          , 

   
 (  
 )    

 ,             , where each function    
 (  
 )  is affine on each   

 . 

These notations are used for        
        

 in the LHS of equation (45), to get 

   
   

   

 
.      
      

    
 /
 

  
 ∫ ((    

 )    
 )
 
  

 

 
 ,                                                                                  (46a) 

and  

   
   

   .    
    

        
 /

 

  
 ∫ ((  

 )      
 )
 
  

 

 
  .                                                                            (46b) 

By using the discrete integration by parts twice to the RHS of equation (46a), then using equations 

(32), (41), (31) and (43), we get 

∫ ((    
 )    

 )
 
  

 

 
   ∫ (    

  (    
 ) )

 
  

 

 
 (    

    
 )  (    

    
 ) , 

                                  ∫ ((  
 )      

 )
 
  

 

 
 .                                                                                      (47)      

Substituting equation (47) in equation (45) gives 

   
   

   

(    
    

 (    
 )       

 )
 
    

   

   

(    
    
 )
 
  .                                                              (48) 

On the other hand, since the FD of the DCF exists, then 

  
 (  
     

 )    
 (  
 ) 

    
   

   

(    
    

 (    
 )       

 )
 
    

   

   

( (  
    

 (  
 ))     

 )
 
   (    

 )      
      (49) 

where   (    
 )    and      

      as     
   . 

By substituting equation (48) into equation (49), one can have           

  
 (  
     

 )    
 (  
 ) 

    
   

   

(    
    
 )
 
    

   

   

( (  
    

 (  
 ))     

 )
 
   (    

 )      
    ,                            (50) 

where   (    
 )    and      

      as     
   . 

Finally, the FD of the DCF is 

(   
 (  
 )   

     
 )     

   

   

(  
   (  

    
 (  
 ))    

 ) 

 

 .                                                         

4.1 Corollary: The inequality  

   
   

   

(  
   (  

    
 (  
 ))    

 ) 

 

       
     

                                                               (51) 

is equivalent with the minimum principle blockwise             

 (  
   (  

    
 (  
 ))   

 )
  
    
  
     

 
(  
   (  

    
 (  
 ))   

  )
  

                                   (52) 

Proof: It can be proved by using the same technique used in [9]. 

5. Optimization methods: The following algorithm shows the numerical calculation for the DCOC by 

using the mixed GFEM-IFDS with each of the methods of GM, FWM, or GPM (with ARSO and 
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OPSO). We will use the norm     with respect to the vector space  , where the vector space     a 

is a convex subset  and the functional        . 

5.1 ALGORITHIM: Let     (   ), *  + be a sequence with    (   ), or    (   -, for each  . 
   , and let       be an initial control. 

Step1: Set     . 
Step 2: Solve the DWF of equations (19-22) (the DAWF of equations (41-43)) by using GFEM-IFDS 

to get the state     (the adjoint solution    ). Then we calculate  (  ) and     (  ) from equation 

(17) and equation (44), respectively. 

Step 3: Find a new direction (new control)       (i.e. a direction      ), by using the following 

methods (separately): 

 (a) GM: Find      , such that:  

          
 

 
   (  ) 

(b) FWM: Find      , such that 

(   (  )      )     
   
(   (  )     

 ) 

(c) GPM: Find       , such that 

       (   (  )      )  
 

 
             

   
(   (  )     )  

 

 
        

Step 4: Solve the DWF (15-18) to find the state solution    corresponding to the new control    

Step 5: Calculate    (   (  )      ) , (     
 

 
    (  )    , in the GM).  

If     , stop. 

Step 6: Choose    by using one the following methods: 

ARSO: Assume the initial value    ,    )(or    ,   -). If    satisfies the inequality  

  ( 
 )   (     (     ))   (   )   

    , 
we set     ⁄  and choose the last     (   ) for  ,  which satisfies the above inequality. If not 

satisfied, we set      and choose for    the first     (   ) (or     (   - in GM). 

OPSO: Find an     ,   -, such that 

(   (  )      
 )     

   ,   - 
(   (  )     )  

Step 7: Set          (     ),        and we go to step 2. 

6. Numerical results for solving the DCOCP 

     This section contains some illustrative examples to show the activity of the methods which are 

given in algorithm (5.1).  Mat lab software is used to achieve the solution of the methods. The GFEM 

is used in step (2) to find the DS    (   ), with         , and        . In the GM, GPM and 

FWM, the parameters are taken the values of         and       . 
6.1 Application 1: Consider the following CCOCP governed by the LHBVPVC: 

    
 

  
0(     )

  

  
1  

 

  
0(     )

  

  
1         (  )   ( )( (     )      )  

        ( )(   (  )(   )         (  )(   ))  

(       (  )   ( )(   )           (  )   ( )(   ))(    )        (  )   ( )(   

 )      ,         in  , 

 ( ⃗  )   , in          ,   -.   
 ( ⃗  )         (  )(     ), and     ( ⃗  )        in                       

where   [0,1],   ,   -  ,   - ,   ⃗  (   ). 
The control constraint is   ,    - and the cost function in equation (5) with     is 

  ( ⃗  )     (   )    (  )    ( ),  ( ⃗  )    , and 

  ( ⃗  )  {
                              
                            

  

with the initial control   ( ⃗  )       (    ( )) ,  ( ⃗  )   . 

First, depending on the above initial control and its corresponding state, the following results are 

obtained according to the optimization methods with ARSO:  

(I) In the GM: the optimal control and corresponding state are obtained after    iterations, and the 

results are:   ( 
 )=1.4362e-06,    4.2e-03, and   =2.5438e-04 

where    and    are the discrete maximum errors for the state and control, respectively. 
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The optimal control and its corresponding state are shown at        by Figure- 1 and Figure-2. 

 
Figure 1-The optimal control at                  Figure 2-The corresponding state at        

 

 (II) In the FWM: the optimal control and corresponding state are shown after     iterations. The 

results are:   ( 
 )=1.4465e-06,    4.2e-03, and   =7.4935e-04  

Figures-(3 and 4) show the optimal control and its corresponding state at      . 

 
Figure 3-The optimal control at                     Figure 4- The corresponding state at        

 

(III) In the GPM: the optimal control and corresponding state are obtained after   iterations, and the 

results are:   ( 
 )=1.4339e-06,    4.2e-03, and   =1.7788e-04.  

Figures- 5 and 6 show the optimal control and its corresponding state at        : 

        
       Figure 5- The optimal control at                     Figure 6-The corresponding state at         
 

Second, the following results are obtained by using the optimization methods with OPSO: 

(I) In the GM and GPM: the optimal control and corresponding state are given after   iterations, and 

the results in this case are:   ( 
 )=1.4351e-06,    4.2e-03, and   =2.1289e-04 

The optimal control and its corresponding state are shown at        in figures 7 and 8. 



Al-Rawdanee and Al-Hawasy                  Iraqi Journal of Science, 2020, Vol. 61, No. 9, pp: 2303-2314 

2311 
 

 

         
       Figure 7-The optimal control at                     Figure 8-The corresponding state at         
 

(II) In the FWM: the optimal control and corresponding state are given after    iterations, and the 

results are:   ( 
 )=1.4374e-06,    4.2e-03, and   =4.1159e-04  

Figures-(9 and 10) show the optimal control and its corresponding state at       : 

 
Figure 9-The optimal control at                     Figure 10-The corresponding state at        

 

Application 2: Consider the following CCOCP governed by the LHBVPVC: 

     
 

  
0(      )

  

  
1  

 

  
0(      )

  

  
1        

 

 
((     (  )   ( )(   ( )   ))  

(     (  )   ( )   ( )(   ( )   )(   ))  )(     )  ((    (  )   ( )   ( )(  
 ))    (       (  )   ( )   ( )(   ))  )(     )  (     (  )   ( )   ( ))   
(   (  )   ( )   ( )(    ))    (     (  )   ( )   ( )(    ))   
(     (  )   ( )(   ( )   )(   ))   (      (  )   ( )   ( )(   ))   
(     (   )   (  )   ( )   ( )(   ))        in  ,   [0,1],   ,   -  ,   - ,   ⃗  
(   )   
 ( ⃗  )   , in          ,   -.   
 ( ⃗  )   (    (  )   ( )(    ))  , and    ( ⃗  )   , in                       

The control constraint is   ,      - and the cost function (5) with     is 

  ( ⃗  )       (   )    (  )     ( )    ( ),  ( ⃗  )   , and 

  ( ⃗  )  {
                              
                            

   

with the initial control   ( ⃗  )           
  ,  ( ⃗  )   . 

First, depending on the above initial control and its corresponding state, the following results are 

obtained according to the optimization methods with ARSO: 

(I) In the GM: the optimal control and corresponding state are obtained after    iterations, and the 

results are:   ( 
 )=8.3096e-06,    8.7e-03, and   =3.6968e-04 

The optimal control and its corresponding state at       are shown by Figures-(11 and 12). 
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Figure 11- The optimal control at                     Figure 12 The corresponding state at        

 

(II) In the FWM: the optimal control and corresponding state are obtained after     iterations, and the 

results are :  ( 
 )=8.3219e-06,    8.7e-03, and   =6.7630e-04  

Figures 13 and 14 show the optimal control and its corresponding state. 

      
Figure 13- The optimal control at                     Figure 14- The corresponding state at        

 

(III) In the GPM : the optimal control and corresponding state are obtained after   iterations, and the 

results are:   ( 
 )=48.3079e-06,    8.7e-03, and   =3.2433e-04  

Figures 15 and 16 show the optimal control and its corresponding state. 

        
Figure 15-The optimal control at                     Figure 16-The corresponding state at        

 

Second, the following results are obtained by using the optimization methods with OPSO: 

(I) In the GM and GPM: the optimal control and corresponding state are given after   iterations, and 

the results in this case are:   ( 
 )=8.3044e-06,    8.7e-03, and   =5.2921e-04 

The optimal control and its corresponding state are shown by figures 17 and 18. 
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Figure 17-The optimal control at                     Figure 18- The corresponding state at        

 

(II) In the FWM: the optimal control and corresponding state are given after     iterations, and the 

results are:   ( 
 )=8.3190e-06,    8.7e-03, and   =5.7906e-04  

Figures-(19 and 20) show the optimal control and its corresponding state at      . 

 
Figure 19-The optimal control at                     Figure 20- The corresponding state at        

 

Conclusions  
     In this paper, the proof of the existence and uniqueness theorem for the DS of the DWF for the 

LHBVPVC is achieved. The existence theorem for the DCOC and the necessary conditions for 

optimality of the problem are proved under suitable assumptions. On the other hand, the DCOCP was 

solved numerically by using the mixed GFEM-IFDS to find the DS, the DWF and its adjoint of the 

DAWF, with step length of space variable         and step length of time        . While the 

DCOC is obtained by finding the minimum of the cost function by using each one of the optimization 

methods of GPM, GM and FWM with either ARSO or ORSO step options with parameters (       , 

      and       ). From the numerical solutions we concluded that; the GFEM was a suitable and 

fast method to solve the DWF and DAWF, beside this we saw from the results obtained using the 

GPM with ARSO method were better than those obtained using the GM or FWM with ARSO 

methods, on the other hand the results obtained using the GPM and GM with OPSO methods were 

better than those obtained using the FWM with the OPSO method. The OPSO method needed less or 

equal number of iterations than the ARSO method. This comparison happened when we had a 

quadratic cost function. Finally, when we had a more general function, the OPSM was not easy to be 

applicable, while the ARSO method can be considered as a general method to improve the direction 

search. 
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