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Abstract

This paper deals with testing a numerical solution for the discrete classical optimal
control problem governed by a linear hyperbolic boundary value problem with
variable coefficients. When the discrete classical control is fixed, the proof of the
existence and uniqueness theorem for the discrete solution of the discrete weak form
is achieved. The existence theorem for the discrete classical optimal control and the
necessary conditions for optimality of the problem are proved under suitable
assumptions. The discrete classical optimal control problem (DCOCP) is solved by
using the mixed Galerkin finite element method to find the solution of the discrete
weak form (discrete state). Also, it is used to find the solution for the discrete adjoint
weak form (discrete adjoint) with the Gradient Projection method (GPM) , the
Gradient method (GM), or the Frank Wolfe method (FWM) to the DCOCP. Within
each of these three methods, the Armijo step option (ARSO) or the optimal step
option (OPSO) is used to improve (to accelerate the step) the solution of the discrete
classical control problem. Finally, some illustrative numerical examples for the
considered discrete control problem are provided. The results show that the GPM
with ARSO method is better than GM or FWM with ARSO methods. On the other
hand, the results show that the GPM and GM with OPSO methods are better than the
FWM with the OPSO method.

Keywords: Numerical classical optimal control, Galerkin finite element method,
Gradient Projection method, Gradient method, Frank Wolfe method.
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Introduction

Optimal control problems (OCP) have various applications [1, 2]. These problems are usually

governed by partial differential equations (PDES) or ordinary differential equations (ODES).
Many researchers have been interested to study the numerical solution of optimal control problems
described by nonlinear elliptic PDEs [3, 4], by semilinear parabolic PDEs [5-7], or by one
dimensional linear hyperbolic PDEs with constant coefficients (LHPDES) [8]. The researchers also
include two dimensional linear and nonlinear hyperbolic PDEs with constant coefficients [9-12], or by
nonlinear ODEs [13]. These works attracted our attention to focus our interest on studying OCP
described by LHPDES but with variable coefficients (LHBVPVC).

This paper investigates the numerical solution of the DCCOCP that is described by the LHBVPVC.
Here, the continuous classical optimal control problem (CCOCP) is described, which is discretized by
applying the Galerkin finite element method (GFEM). The GFEM is applied for variable space and the
implicit finite difference scheme (IFDS) which is employed for the time variable to obtain the discrete
CCOCP(DCCOCP). The existence and the uniqueness theorem for the discrete solution (DS) of the
discrete weak form (DWF) is stated and proved. The DCCOCP is found numerically by using the mix
of the GFEM with the IFDS (GFEM-IFDS) [10] to find the DS of the DWF, while the DCOC is
obtained through solving the optimization problem (finding the minimum of the cost function) by
separately using one of the following optimization methods: the Gradient method (GM) , the Gradient
projection method (GPM), and the Frank Wolfe method (FWM) [14]. Within each one of these three
methods the Armijo step option (ARSO) or the optimal step option (OPSO) is used to improve the
direction of the optimal search [14]. Some illustrative examples for this considered problem are given
to show the accuracy and the efficiency of each of the three methods.

1. The Statement of the CCOCP: Let K ¢ R? be a bounded open region, 0K be the boundary of K ,

and E = [0, T], 0<T<co be a time space, p = K x E. The CCOCP governed by the LHBVPVC is:
2

Yoo — % o[ @ 0| +EE P = g(E 1) + 0 —wq, inp=KXE, % = (y,2), (1)
7,0=1%Ye 0z;
with BC and ICs
Y, t) =0,indp = 0K x[0,T] )
P(%,0) = (@), in | 3)
V(% 0) = Y@, inK, (4)

where the control is symbolized by w = w(X, t) € L?( p) and its corresponding state is symbolized by
P =1, (X, t) € C2(P), Gp (X, t), while a(#,t) € L*(K),(Vo,r=1,2) are positive arbitrary
functions. The desired control is symbolized by w,; = wy4(%,t) € L*(p) and g(%,t) € L*(p) is a given
function.
The set of the admissible continuous classical controls is represented by W, ;, where

Woq ={w € L*(p)| w(¥,t) € U, ae. in p}with U € R? is a convex and compact set .
The cost functional [9] is given by

Go(@)= [ W = Ya)? + 2 (@ — wg)?|dRdt (5)
where, the desired state is symbolized by ¥, = ¥4 (X,t) € L2(p) .
The CCOCP is to find w € W,,; which minimizes (5).
Now, the weak form (WF) of the problem (1-4) for ¢ € H}(K) is

W @) + B, 9) = (g%, 0), )k + (0, @)x—(wa, PIx VP €S, (6)
@(0),¢) = @° ¢),in K, ()
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W (0), ) = @', @), in , , 8
where % €S , '€ L?(K) and B(t,,9) = ¥ (Ge(X, )V, Vp)k + (@ & ), @)k is a
T,0=1

symmetric bilinear form.

Assumptions A[9]: For each ¢,y € Sand t € E the following inequality is satisfied
B Y, @)l <oz 1P ll1ll ¢ I, where o3 >0

(1) |B(t, @, )| = oy Il @ II?, where o, > 0.

Now, suppose Y, = (, then (6-8) can be rewritten as

(o) + Bt Y, @) = (g 1), o)k +(, P)k—(wa, Pk, VP ES, ©)
W, 0) =G o) , (10)
(l»bO' (P) = (lpo' (p)a in ) (11)
) = @), InK (12)

2. The DCCOCP[9]: The CCOCP is discretized by using the GFEM as follows:
First, the region K can be divided into subregions (a polyhedron) for every integer (s), Z},i =
1,...,n be an admissible regular triangulation of K, i.e. K = Uf, Z;. Second, let Ef = [t/,t7,,] be a
subdivision of the interval E and for j =0,1,...,m — 1, where each interval has same lengths (
At = % ). Let S, € S = H3(K) be the space of continuous piecewise affine mapping (CPAM) in K.
The set of admissible discrete classical controls (DCC) is

si={o=% € Wyl|lo® ) = aij € U® in p;;}, where p;j: = Z7 X E.

Now, V ¢ € S, and forj = 0,1, . — 1, the DWF (9)-(12) can be given by

(G —Co), + AB (Y11, 0) = At(g(tS) 0), +8t(wf,9)  —At(wa(t)), @)k | (13)
Wi — i )k = At(CJ.HJ(P)K , (14)
W5 ¥k = @° )k, (15)
o Pk = @H o)k (16),

where 1§ = (t}), (;j. ={(t]) €S, forj=0,1,..,m,and ° € Sand ' € L?(K).
The discrete cost functional (DCF) Gg(w*®) is defined by

m-—1

1 S
GE@) =At 3 fi LW —ha(ti))? + 2 (0f — wa(t)?]d% (17)

j=0
Hence, the DCCOCP is to find a DCOC w*® € W, such that
G§(@%) = mingseys, G§(w®)
2.1 Theorem (existence and uniqueness of the DWF): The DWF (13-16) and for any fixed j, with
fixed DCC w® € Wy, has a unique solution 1, s = ¥ = (Y5, Y3, ..., Py), for sufficiently small At.
Proof: To find the solution ¥* = (¥, ¥3, ..., ¥y) for any fixed j (0 <j<m—1), let (¢;(%X) ,
(i=1,...,n) are CPAM in K, with ¢;(¥) = 0 on 9K) being a span of S; . Then forany i =1,...,n
and ¥7, CS. i ,Cjﬂ € S, equations (13-16) can be formed as:

(C,+1 G, <pl) + At B(Yj 1 01) = At(g(87), @1), + A(w], 91) —At(wa (), @ik (18)
Wi — ¥, 0k = At(cj+1’§0i)1( , 19)
W5, 9k = W° 0k (20)
G 2k = @h ek (1)

Substituting equation (19) in equation (18) yields:
(’ubj?+1"Pi)K + (At)? B(lp}?+1! ‘Pi)

= (W] 90, + At (5, 00) + QO (9(6), 00) + @O (@], 01), — ADX(wa (5, 0)), (22)
Now by usmg the GFEM we obtain

n n .
Y5 = ka(pk! Yj = Z vk(pk1 Vi = Z v”l(pk, G = ki_:lw’(‘)(pk : Cj - ki_:lwli(pk

and §]+1 Z W]+1(pk,

where vk = Uk(t;]c) and w,{ = Wy (t,’;) are unknown constants, and vj = 0,1, ..., m to be determined.
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Substituting ¥§, ¥ , ¥i, G, Cj and Cjﬂ into equations ((19)-(22)) yields the following linear
algebraic system (LAGS) of 1* ODEs for (j = 0,1, ..., m — 1)

(D + (A?F)v/*1 = Dv/ + At D w/ + (A)2by () + (A)2b, (L) (23)

witl = v”Alt—vi , 24)

Dv° = e°1 , (25)

Dw?° (26)
where D = (alk)nxm alkl (wuwlk) Fl (Blk){lxn’ . - . .
+ + o j+ + + + + +

lk_B(t(pk:(Pz) ,{Xl W v, v T, ,{Xl—( T Wl withT, (for 1=0,1),

e = (e))nx1 el = (ef )nxl’ (lpo v, ef = W 9;), by; = (9( ) (Pi):bz = (b20)nx1,

by = (Wi — wa(t)), 0, Vi,k=1,..

From the Assumption A on the operator B(.,.), the matrices D and F are positive definite (PD).

Similarly for (D + (At)?F), equations (23)-(26) has a unique solution.

3. Existence of the DCCOCP: The following assumptions are useful to study the existence of the

discrete control.

Assumptions B: The cost functional is of Carathéodory type, and satisfies (for eachj = 0,1, ..., m —

1

1) s s 2 | o s sv)2 S(z 52

|§(¢j+1 —Pq(tiy)) + ;(wj — wq(t))) | <y (@) +0;7)°,

where y7 (%) = y*(%,t;) € L*(K) and 6; > 0.

3.1 Theorem: The operator w® ~ s = 17 s is continuous on L2 (K).

Proof: Let w® = (wg, w3, ..., 0p—1), 05 = (‘Uo y 01 e, Wi 1), lps = (1/)0,1/)1, s Wm-1),

W= @Y, i), = (6,8 0 Gy ) and O = (GG G

To prove that Y, o =" — P° =9 s as r — o, if 0 — w* the mathematical induction is

used. Firstly, from the projection theory and equations (20) and (21), one can have
=Yg ,and gy — (5, asr — oo,

For any fixed j, suppose 15" — 7 and Cj’" — Cj as r — oo, we want to prove that y77, — ¥f,, as

T — o0,

Suppose that ¢7,; = L()§ ,CS wf)and il = LYi", Csr wi"), then

I ¢1$+1 ¢]+1 =l L(’ub Sr wrn) L(l/)] 'C ws) Ik = l/’1+1 lpf+1 k=0

therefore ;" — 17, for any flxed j, thus the operator w* - * = 17 s is continuous.

3.2 Lemma: If the DCCs w*® ,@* are bounded in L?(p), and the corresponding discrete state solutions

to the DCCs a)f and Ef = wf +A a)js are z/)f , 1/7]$ = 1/)]$ + Alpj, respectively, then (v j = 0,1, ..., m):

I AYS 13< ¢ Il Aw 1IZ and | A, IR< ¢ | A 112

Or Il Ay, I12< ¢, and || A, I1R< ¢ (27)

Proof: From the DWF of equations (13)-(16), and for j = 0,1, ..., m — 1, we have

(ag,, - g, (p)K + 8¢ B(A Y1, 9) = M(A wf, ) |

(28)
(Aj =AY}, 9)k = At(AL, 1, @)k (29)
AP =AM =0, (30)

L0 aes . .
By substituting ¢ = A §j+1 into equation (38), we obtain
IACS,, IZ—1 AL I+ ch.ﬂ AC W+ 200 B (A5, AC,,)

SACNAG,, Ikt At I Ao I (31)
Since

B(AYS, — AP AYS,, — Ays) = A28 (AL, AL, ), and

and

B(AWS1, AWSr) — B(AWS, AY5) = —(A0)2B (AL, A G, ) +24t B (A5, AL, ).
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then
20t B (A5, A8, ) = [B(AYS 1, APSL,) — B(AYS, A )

+B(A Y5y — MY, Ay, — AY)] (32)

By putting equation (32) into the LHS of equation (31), taking the summation for both sides of the

obtained equation from j = 0 toj = /£ — 1, then using equation (30), and then applying assumption
B-l1on B(.,.), we get

A—-1 A—1
IAC, IR+ go NAG,, —AG Ikt oz NAZE 1T+ 02 B 1IN AY), =AY IIE
A-1 = A-1 J=0
< Atjgo IAG,, I+ Atjgo A% (33)
Since
NAG, IRS2NAL,, —AG IR+21AC I (34)

Substituting equation (34) into equation (33) gives

N ! A-1

A N+ (1 - CAt)jg0 NAG,, —AG Ik +az 1 Y} IF+ azjgo I AYS,, — AP I3
A-1 _h—

SAt Y IlAw? g+ AtC Y,

j=0 j=0

1 _A—1
AT IE) I AW 13+ AC T (A IR ). (35)
j=0

Now, by choosing At < % the second and the fourth terms in the LHS of equation (35) are positive.
Applying 9 = max(1, g,), yields

_ _A-1
AL, IR+ AYE 19 < WAL I+ 0y I AYj I1E <II Awf I3+ AtC Y (1A %) (36)
- J=0
Applying A = 1/9 and € = C /9 into equation (36) produces
h-1
IAG, IR+ AY) I3< 1l AwS 13+ CAt zo (AGS Ig+IAps 1) (37)
]:

Using the discrete Grownwall's inequality (DGI) on equation (37) gives

IAGS IE+IAys 17 < kR Il Aw® 13, which gives

ITAG IR<cllAw’ I3, and 1A} IE<cllAws 112 . (38)
Finally, since w® and @® are bounded in L2(p), equation (27) is satisfied from equation (38).

3.2 Theorem [10]: Suppose that W}, # @ is convex and compact, and if G§(w®) is coercive, there
exists a DCOC.
Proof: By using the same technique used in (Theorem 4 in [10]).
4. The Necessary conditions for DCCOCP

The following theorem deals with the state and proof for the necessary conditions of the DCCOCP
4.1 Theorem: Assume that DCF of equation (17) is given and the DAWF (for the state equation) 7 s

=n° =M N5, - My—1) isgiven (forj =m—1,m -2, ...,0) by

(9741 — 7. 0), + 8t B(nj,9) = At (Vs —Ya(tia). @), (39)
M1 =1 = At ] )
Nm = $m = “h

where ni, ¢; € Sg (Vj =0,1,...,m).
Then the Fréchet derivative (FD) of DCF can be written as

m-—1
(DG§ (%), 0™ — w®) = At jgo (Hz)i(tis' Vs M) sz)'ijs)K

m-—1
= Aty M} + @(w] — wa(8)), Awf)k (42)
j:

where w, ws € S Aa)f =" — w® for (j =0,1,...,m), and HS is called the Hamiltonian.
Proof: By using equation (31) and set ¢ = 7}, then summing over j (for j = 0to j = m — 1), we get
mot (25,0 5n)

m-—1 m—1
At 120 m K+ At '20 B(Ay$,1,n5) = At '20 (Aws, nj.)K . (43)
Jj= J= J=
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By setting ¢ = A1)j,, in equation (39), and summing overj (for j = 0to j = m — 1), we obtain
m=1(¢%,,-¢5A%5,,)
ot g T At z B3, 8 P5,) = At z Wi = a(te) APFer), o (44)
then by subtracting equation (43) from equation (44), we get

m-1(ag,,- Agj'”j)K_Atm21(¢1+1 ¢jA ¢1+1)K

At ]EO At At

m-—1 m-—1
=t % (8wfnf), = At B (Yfer = Wa(tir) B¥), - (45)
J= J=

Now, for any given values of 7, ( j = 0,1,...,m) in a vector space, the following functions are
defined almost everywhere on E:
Yi(t): = 1,0]?, te Ejs, foreachj =0,..,m
Pi(t):= wfﬂ, te Ef, foreachj =0,..,m—1,
PA(t7):= ¥, vj = 0,1,...,m, where each function 3(t7) is affine on each E;.
These notations are used for ¥, {,n and ¢ in the LHS of equation (45), to get
m-1 (A4, -AGm5)

At Y = f (A& n2), dt, (46a)

j=0

j=0

$5r1=050 WSy ,
At z ' n e (@9, a93) dt . (46b)

By usmg the discrete integration by parts twice to the RHS of equation (46a), then using equations
(32), (41), (31) and (43), we get

Jy (@Y m2) dt = — [3 (A3, (@%)) dt + (A5, Bk — (A5, D

= Jo (@D, a93),dt . (47)
Substituting equation (47) in equation (45) gives
m—1 m-—1
At (lpfﬂ —Pq(tq),A ¢;+1)K =At ) (a sz'rljs')K : (48)
Jj=0 j=0

On the other hand, since the FD of the DCF exists, then
G5 (w’ + Aw?®) — G§ (%)

m-1 m—1
= Atj;o (W41 = Ya i) Afsa) + Atjgo (@] —wa(), A wj) +e@w) IAw® I, (49)

where £ (A w®) — 0and || A w® Il,— 0 as A w® — 0.
By substituting equation (48) into equation (49), one can have
G5 (w’ + Aw?®) — G§ (W)

m-1 m-1
=AtY (A w3, n]s-)K + At ), (w(sz — wq(t)),A a)f)K +e(do’) 1AW, (50)
j=0 j=0

where € (A w®) — 0and || A w® Il,— 0 as A w® — 0.
Finally, the FD of the DCF is

m-—1
(DG§ (%), ws — wS) = At jgo (1} + @(@] — wg(t})), bwi)k -
4.1 Corollary: The inequality

m—1
At jgo (] + ©(w] — wa (), Awi)k = 0,Vw; € Wy (51)
is equivalent with the minimum principle blockwise Vj = 0,1,..m — 1
(nj + @ (w; — a)d(tjs)),wf)T_ = min (r]}9 + @ (w;j wd(t ), w ) (52)
i W EW 4

Proof: It can be proved by using the same technique used in [9].
5. Optimization methods: The following algorithm shows the numerical calculation for the DCOC by
using the mixed GFEM-IFDS with each of the methods of GM, FWM, or GPM (with ARSO and
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OPSO). We will use the norm ||| with respect to the vector space Q, where the vector space U c K a
is a convex subset and the functional G:K c Q — R.
5.1 ALGORITHIM: Let b, c € (0,1), {5°} be a sequence with §° € (0, ), or §° € (0,1], for each s.
u >0, and let w® € U be an initial control.
Stepl: Sets: = 0.
Step 2: Solve the DWF of equations (19-22) (the DAWF of equations (41-43)) by using GFEM-IFDS
to get the state * (the adjoint solution n®). Then we calculate G(w®) and DG (w®) from equation
(17) and equation (44), respectively.
Step 3: Find a new direction (new control) u® € U (i.e. a direction u® — w*), by using the following
methods (separately):
(a) GM: Find u® € U , such that:

u’ = w’ —iDG (w%)
(b) FWM: Find u® € U, such that
(DG (w®),u® — w®) = meilr]l(DG (%), u — w%)

u

(c) GPM: Find u® € U , such that

& = (DG (w%),u’ — w%) +§ | uS — s |12 = min(DG (), u — °) +§ Il u— ws |2
Step 4: Solve the DWF (15-18) to find the state solution y° corresponding to the new control u*®
Step 5: Calculate &5 = (DG (0%),u’ — 0°) , (&5 = —% Il DG (%) II?, in the GM).

If €5 =0, stop.

Step 6: Choose 6° by using one the following methods:

ARSO: Assume the initial value §° € [0, +)(or §° € [0,1]). If §° satisfies the inequality

Xs(8%) = G(w® + 65(u® — w%)) — G(w®) < §°bES,

we set § := §/c and choose the last§ € (0,) for§®, which satisfies the above inequality. If not
satisfied, we set § := &c and choose for §° the first §° € (0,) (or §° € (0,1] in GM).

OPSO: Find an 6% € [0,1], such that

s S _ S = : S _ .S
(DG (0*),u® — w®) 5sr<?[‘or,‘1]_(DG (0%),u — w®)

Step 7: Set wst! = w® + §(u® — w®), s:= s + 1 and we go to step 2.
6. Numerical results for solving the DCOCP

This section contains some illustrative examples to show the activity of the methods which are
given in algorithm (5.1). Mat lab software is used to achieve the solution of the methods. The GFEM
is used in step (2) to find the DS ¥° (n®), withn =9, m = 20, and At = 0.05. In the GM, GPM and
FWM, the parameters are taken the valuesof b = c =0.5and u = 0.5.
6.1 Application 1: Consider the following CCOCP governed by the LHBVPVC:

Yee — aa_y [(y2 +1) %] — % [(z2 +1) %] + 1 = 2zsin(my)cos(t)(y(z — 1) + yz) +

2yz cos(t)(sin(ny)(z — 1)+ ny cos(ny)(z — 1)) +
(2nz cos(my)cos(t)(z — 1) — m?zy sin(my)cos(t)(z — 1)) (y?* + 1) + 2y sin(my)cos(t)(z* +
1)+ w—wg, inp,
Y(x,t) =0,indp =09K x [0,T].
Y(x,0) = —yzsin(ny)(z — 1),and ¢Y.(¥,0) =0 inK
where E =[0,1], K= [0,1] X [0,1], X = (¥, 2).
The control constraint is U = [—2,2] and the cost function in equation (5) with @ = 1 is
Yy (%,t) = yz(1 — z)sin(my)cos(t), V(X, t) € p, and
w0y t) = {—1.35 + et ,for0<t <05
’ 0.35 ,for05<t<1
with the initial control wy(X,t) = —0.4 + (tsin(t)), V(¥,t) € p.
First, depending on the above initial control and its corresponding state, the following results are
obtained according to the optimization methods with ARSO:
() In the GM: the optimal control and corresponding state are obtained after 12 iterations, and the
results are: G, (w5)=1.4362e-06, o, =4.2e-03, and £,=2.5438e-04
where g¢ and &, are the discrete maximum errors for the state and control, respectively.
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The optimal control and its corresponding state are shown at t = 0.5 by Figure- 1 and Figure-2.

Figure 1-The optimal control at t = 0.5 Figure 2-The corresponding state at t = 0.5

(1) In the FWM: the optimal control and corresponding state are shown after 121 iterations. The
results are: Go(w*®)=1.4465e-06, o, =4.2e-03, and &,=7.4935e-04
Figures-(3 and 4) show the optimal control and its corresponding state at t = 0.5.

Figure 3-The optimal control at t = 0.5 Figure 4- The corresponding stateatt = 0.5

(11 In the GPM: the optimal control and corresponding state are obtained after 5 iterations, and the
results are: G, (w*)=1.4339e-06, o, =4.2e-03, and &,=1.7788e-04.
Figures- 5 and 6 show the optimal control and its corresponding state at At = 0.5:

Figure 5- The optimal control att = 0.5 Figure 6-The corresponding state at t = 0.5

Second, the following results are obtained by using the optimization methods with OPSO:

() In the GM and GPM: the optimal control and corresponding state are given after 2 iterations, and
the results in this case are: G, (w®)=1.4351e-06, o, =4.2e-03, and &,=2.1289%-04

The optimal control and its corresponding state are shown at At = (.5 in figures 7 and 8.
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Figure 7-The optimal control at t = 0.5 Figure 8-The corresponding state at t = 0.5

(1) In the FWM: the optimal control and corresponding state are given after 46 iterations, and the
results are: Go(w*®)=1.4374e-06, o, =4.2e-03, and &,=4.1159¢-04
Figures-(9 and 10) show the optimal control and its corresponding state at At = 0.5:

Figure 9-The optimal control att = 0.5 Figure 10-The corresponding state at t = 0.5

Application 2: Consider the following CCOCP governed by the LHBVPVC:
Yo — % [( 1+y+2) g—ﬂ - :—Z [( 1+y-—2) Z—f] +e VY = %((y sin(my)cos(t)(tan(z)? + 1)) +
(y sin(my)cos(t)tan(z)(tan(z)? + 1)(z — 1))/2)(y — z + 1) + ((ncos(mwy)cos(t)tan(z)(z —
1))/2 — (7%y sin(my)cos(t)tan(z)(z — 1))/4)(y + z + 1) — (y sin(mwy)cos(t)tan(z)) /4 +
(sin(my)cos(t)tan(z)(z — 1))/4 + (y sin(my)cos(t)tan(z)(z — 1))/4 —
(y sin(my)cos(t)(tan(z)? + 1)(z — 1)) /4 + (my cos(my)cos(t)tan(z)(z — 1)) /4 —
(v exp(—yz)sin(my)cos(t)tan(z)(z — 1)) /4 + w — wq in p, E =[0,1], K = [0,1] x [0,1], ¥
. 2)
Y(x,t) =0,indp =K x [0,T].
Y(x,0) = —(ysin(my)tan(z)(z — 1))/4,and Y.(¥,0) =0,inK
The control constraint is U = [—1,1.5] and the cost function (5) with @ = 1 is
Yy(%,t) = 0.25y(1 — z) sin(my) tan(z)cos(t), V(X, t) € p, and
wg(Et) = {1.5 —2et (for0<t<0.6

’ 0.55 for06<t<1
with the initial control w,(%,t) = —0.8 + 2.5t% , V(X,t) € p.
First, depending on the above initial control and its corresponding state, the following results are
obtained according to the optimization methods with ARSO:
() In the GM: the optimal control and corresponding state are obtained after 10 iterations, and the
results are: G, (w*®)=8.3096e-06, o, =8.7e-03, and £,=3.6968e-04
The optimal control and its corresponding state at ¢ = 0.5 are shown by Figures-(11 and 12).
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Figure 11- The optimal control at t = 0.5 Figure 12 The corresponding state at t = 0.5

(1) In the FWM: the optimal control and corresponding state are obtained after 331 iterations, and the
results are :G,(w*®)=8.3219e-06, o, =8.7e-03, and £,=6.7630e-04
Figures 13 and 14 show the optimal control and its corresponding state.

Figure 13- The optimal control at t = 0.5 Figure 14- The corresponding state at t = 0.5

(1) In the GPM : the optimal control and corresponding state are obtained after 8 iterations, and the
results are: G, (w*)=48.3079e-06, o, =8.7e-03, and £,=3.2433e-04
Figures 15 and 16 show the optimal control and its corresponding state.

Figure 15-The optimal control at t = 0.5 Figure 16-The corresponding state at t = 0.5

Second, the following results are obtained by using the optimization methods with OPSO:

() In the GM and GPM: the optimal control and corresponding state are given after 2 iterations, and
the results in this case are: G, (w*®)=8.3044e-06, o, =8.7e-03, and &,=5.2921e-04

The optimal control and its corresponding state are shown by figures 17 and 18.
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Figure 17-The optimal control at t = 0.5 Figure 18- The corresponding state at t = 0.5

(1) In the FWM: the optimal control and corresponding state are given after 261 iterations, and the
results are: [1,(1")=8.3190e-06, [, =8.7e-03, and [/ ,,=5.7906e-04
Figures-(19 and 20) show the optimal control and its corresponding state at [ = 0.5.

[ ]

Figure 19-The optimal control at t = 0.5 Figure 20- The corresponding state at t = 0.5

Conclusions

In this paper, the proof of the existence and uniqueness theorem for the DS of the DWF for the
LHBVPVC is achieved. The existence theorem for the DCOC and the necessary conditions for
optimality of the problem are proved under suitable assumptions. On the other hand, the DCOCP was
solved numerically by using the mixed GFEM-IFDS to find the DS, the DWF and its adjoint of the
DAWEF, with step length of space variable 4 = 0./ and step length of time At = 0.05. While the
DCOC is obtained by finding the minimum of the cost function by using each one of the optimization
methods of GPM, GM and FWM with either ARSO or ORSO step options with parameters (b = 0.5 ,
u= 0.5 and c = 0.5). From the numerical solutions we concluded that; the GFEM was a suitable and
fast method to solve the DWF and DAWF, beside this we saw from the results obtained using the
GPM with ARSO method were better than those obtained using the GM or FWM with ARSO
methods, on the other hand the results obtained using the GPM and GM with OPSO methods were
better than those obtained using the FWM with the OPSO method. The OPSO method needed less or
equal number of iterations than the ARSO method. This comparison happened when we had a
quadratic cost function. Finally, when we had a more general function, the OPSM was not easy to be
applicable, while the ARSO method can be considered as a general method to improve the direction
search.
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