

الخصائص البتروفيزيائية والإنموذج المكمني لتكوين المشرف في حقل طوبة جنوب العراق

فهد منصور النجم¹، موفق فاضل الشهوان¹ وفوزي مردان البياتي². ¹قسم علم الأرض، كلية العلوم، جامعة البصرة، بصرة، العراق. ²قسم المساحة، الكلية التقنية، كركوك، العراق.

الخلاصة:

جرى في البحث الحالي تحديد الخصائص البتروفيزيائية لتكوين المشرف في حقل طوبة من خلال تفسير بيانات المجسات البئرية لآبار الدراسة (Tu-2,3,4,5,6,12,24,25) والتي من خلالها جرى حساب المسامية الكلية (الفعالة) والثانوية والتشبعين المائي والنفطي بجزئية القابل للحركة والمتبقي وللنطاقين المكتسح وغير المكتسح . واعتماداً على الخصائص البتروفيزيائية المحسوبة قسمة تكوين المشرف في حقل طوبة الى ثلاث وحدات مكمنية (RU1,2,3)، تفصلها اربع وحدات عازلة(Bar1,2,3,4). جرى تمثيل المعطيات البتروفيزيائية المكمنية من خلال رسم إنموذج مكمني ثلاثي الابعاد للتشبع النفطي وذلك باستخدام برنامج(Petrel, 2009) لتوضيح توزيع تلك الخصائص البتروفيزيائية لكل وحدة مكمنية ضمن آبار الحقل. إذ بينت النتائج ان افضل الوحدات المكمنية هي الوحدة المكمنية الثانية والثالثة أخذين بنظر الأعتبار تغاير سماكة تلك الوحدات واتجاه زيادتها ويقصيانية والحمانها والتشبع النفطي وذلك باستخدام برنامج(Petrel, 2009)

الكلمات المفتاحية: الخصائص البتروفيزيائية ،الإنموذج المكمني

Petrophysical properties and Reservoir modeling of Mishrif Formation at Tuba Field, Southern Iraq

Fahad M. Al-Najm^{*1}, Muwafaq F. Al-Shahwan¹, Fawzi M. Al-Beyati²

¹Department of Geology, College of Science, Al-Basra University, Basra, Iraq. ²Department of Survey, College of Technical, Kirkuk, Iraq.

Abstract:

Petrophysical properties of Mishrif Formation at the Tuba field determined from interpretation of open log data of(Tu-2,3,4,5,6,12,24,and 25) wells. These properties include total (effected) and secondary porosity, as well as moveable and residual oil saturation into invaded and uninvaded zones. According to Petrophysical properties it is possible to divided Mishrif Formation into three reservoir units (RU1,2,and 3) separated by four cap rocks (Bar1,2,3,and 4). Three-dimension reservoir model is established by used (Petrel, 2009) Software for each reservoir units. Result shows that the second and third reservoir units represent important reservoir units of Mishrif Formation. Thickness and reservoir properties enhanced toward middle and north part of Tuba oil field, especially, around (Tu-12, 24,25) wells.

*Email:alnajm73@yahoo.com

المقدمة

يمثل تكوين المشرف احد تكوينات العصر الطباشيري المهمة لما يتميز به من صخارية وأمتداد جغرافي يجعله خازناً جيداً للهيدروكاربونات، فهو ثاني خزان نفطي بعد تكوين الزبير في جنوب العراق[1]، فضلاً عن هذه الأهمية فهو يمثل معمارية صخارية فريدة مشتقة من بيئات ترسيبية متعددة ضمن الرف الكاربوناتي.

يظهر النتابع الطباقي لآبار منطقة الدراسة تتابعات صخرية لتكوين المشرف يتراوح عمرها من السنومنيان المتأخر – التورونيان المبكر (Late Cenomanian-EarlyTuronian)، عرف تكوين المشرف لأول مرة من قبل[2] عند المقطع المثالي في بئر (3-2D) جنوب العراق، حيث ترسب هذا التكوين ضمن تدرج بيئي من الرف الخارجي المفتوح الى الضحل مع البيئات الترسيبية للبنائيات العضوية(Reef complex)، الى البيئة اللاغونية المفتوحة والرف الداخلى محدد الحركة[3].

يأخذ التكوين موقعه الطباقي بين تكويني الرميلة من الاسفل وتكوين الخصيب من الاعلى، وتكون حدود التماس بين تكويني المشرف والرميلة من الاسفل متدرجة ومتوافقة حيث يحدد الحد السفلي له عند تغير السحنة العميقة لصخور تكوين الرميلة والتي تحتوي على متحجرات (Oligostegina–Globigerina bearing Limestone) الى السحنة البحرية الضحلة التي تعلوها والمتمثلة بالحجر الجيري النريتي(Shallower–Water Neritic Limestone) والذي يحتوي على متحجرات (Rudist fragment) والذي يحتوي على متحجرات (Algaes) والمتمثلة بالحجر (Sediments) وقطع الرودست (Shallower) وقطع الرودست (Rudist fragment) لتمثل الترسبات الشعابية (Shallower) مذا فضلاً عن الطحالب (Sediments) وقطع الرودست (Shallower) ليمثل الترسبات الشعابية (Reef) ولدي الاروسة :

تهدف الدراسة الحالية الى تحديد الخواص البتروفيزيائية والمكمنية لتكوين المشرف في حقل طوبة واستعراض تفصيلي لأهم الخصائص البتروفيزيائية وتوضيح تغيراتها عمودياً وجانبياً ضمن آبار الحقل باستخدام برامج (Techlog and Petral). **منطقة الدراسة**

تتمثل منطقة الدراسة بثمانية آبار نفطية متموقعة ضمن حقل طوبة هي(25 Tu-2,3,4,5,6,12,24,and)، حيث يقع حقل طوبة في محافظة البصرة ويبعد حوالي(40) كم جنوب غرب المحافظة بين حقلي الزبير شرقاً والرميلة غرباً ويبعد حوالي(5) كم عن حقل الزبير وحوالي(2) كم عن حقل الرميلة ، ويمتد محور التركيب باتجاه شمال وشمال غرب – جنوب وجنوب شرق، اذ يبلغ طول التركيب حولي(26)كم وعرضه بحدود(9)كم. ان سفح التركيب في اعلى تكوين المشرف يبين أن ميل السفح الشرقي اكثر مما هو عليه عند السفح الغربي إذ تبلغ درجة ميل السفح الشرقي حوالي(1.27)وميل السفح الغربي(0.90) [4]، الشكل-1.

وقائع المؤتمر الثاني لدراسات نفط العراق، 11–12 كانون الأول 2013

الشكل 1- خارطة تركيبية لأعلى تكوين المشرف في منطقة الدراسة (حقل طوبة)

طرائق البحث

- Gamma Ray (GR), الخصائص البتروفيزيائية من خلال استخدام مجسات الآبار المفتوحة وهي (GR), . حساب الخصائص البتروفيزيائية من خلال استخدام مجسات الآبار المفتوحة وهي (Neutron(NPHI), Density (RHOB), Sonic ,Shallow and Deep Resistivity (Rxo and Rt) Logs
- تقسيم تكوين المشرف الى وحدات مكمنية واخرى عازلة معتمدين بذلك على تفسير نتائج حساب الخصائص البتروفيزيائية للمجسات (CPI) بإستخدام برنامج(Computer Processes Interpretation).
- رسم إنموذج مكمني لكل وحدة مكمنية بإستخدام برنامج(Petrel, 2009) لتوضيح اتجاه تحسن الخصائص المكمنية ضمن آبار الحقل.

النتائج والمناقشة

أولاً: حساب حجم السجيل

أستخدم مجس اشعة كاما الذي يعّد افضل أداة لتحديد وحساب حجم السجيل وذلك لاستجابته الحساسة للمواد المشعة التي تتركز في الصخور السجيلية ولتوفر هذا المجس لجميع آبار الدراسة ، وكما في المعادلة الآتية:

$$I_{GR} = \frac{GR_{log} - GR_{min}}{GR_{max} - GR_{min}}$$
(1)

حيث أن:

l_{GR}: معامل اشعة كاما. GR_{Log}: قراءة أشعة كاما للتكوين من المجس.

GR_{min}: قراءة أشعة كاما الدنيا قبالة الطبقات الصخرية النظيفة. GR_{max}: قراءة أشعة كاما القصوى قبالة الطبقات السجيلية. ومن ثم يتم حساب حجم السجيل(V_{sh}) بإستخدام المعادلة الآتية:

$$V_{sh} = 0.33 [2^{2*I_{GR}} - 1]$$
(2)

واعتماداً على حجم السجيل المستخرج من المعادلة(2) لكل بئر تم التعرف على الانطقة الخالية من السجيل(Clean zone) التي يتمثل بنسبة حجم سجيلي اقل من(10%>Vsh والانطقة المحتوية على سجيل(Shaly Zone) التي يتمثل بنسبة حجم سجيلي أكبر من(10%≤Vsh).

ثانياً: حساب المسامية Porosity Calculation

تعرف المسامية أنها نسبة حجم الفراغات في الصخرة الى الحجم الكلي منها وهي نسبه مئوية، ويمكن تقسيم المسامية اعتماداً على وقت تكونها الى مساميه أولية(Primary Porosity) ومسامية ثانوية(Secondary Porosity). وهناك عدة طرائق يتم خلالها حساب المسامية، إذ بالإمكان حساب المسامية من خلال المجس الصوتي وكما في معادلة(Wyllie *et al.*, 1958).[5] التي تستخدم في الأعماق الخالية من السجيل(Clean Zone):

$$\phi_{\rm S} = \frac{\Delta t_{log} - \Delta t_{\rm ma}}{\Delta t_{\rm f} - \Delta t_{\rm ma}} \tag{3}$$

حيث:

S^Φ: المسامية المحسوبة من المجس الصوتي. Δt_{log}: فاصل إنتقال الموجة للتكوين ويقاس من تسجيل المجس مباشرة(مايكروثانية /قدم). Δt_{ma}: فاصل إنتقال الموجة خلال الملاط(47.5 مايكروثانية/قدم للحجر الجيري). Δt_f: فاصل إنتقال الموجة خلال السائل او المائع وتساوي(185مايكروثانية/قدم للطين المالح).

اما في الاعماق التي تزيد نسبة السجيل بها عن(10%) وهي الانطقة الحاملة للسجيل (Shaly zone) فتستخدم معادلة(Dresser Atlas,1979)[6] لإزالة تأثير السجيل وتصحيحها، كما جرى تصحيح تأثير الهيدروكاربونات من خلال استخدام معادلة(Hilchie,1978)[7].

وبالإمكان حساب المسامية من خلال استخدام مجس الكثافة وكما في معادلة(Wyllie et al., 1958)[5]:

$$\phi_{\rm D} = \frac{\rho_{\rm ma} - \rho_{\rm b}}{\rho_{\rm ma} - \rho_{\rm f}} \tag{4}$$

حيث:

: ρ_{f} كثافة المائع (1.1 غم/سم³ للطين المالح).

اما بالنسبة للأعماق المحتوية على سجيل فنستخدم معادلة(Dresser Atlas, 1979)[6] لازالة تأثير السجيل.

في حين ان مجس النيوترون يقيس المسامية مباشرة للأعماق الخالية من السجيل، اما بالنسبة للأعماق المحتوية على السجل فنستخدم معادلة(Tiab and Donaldson, 1996].

ثالثاً: حساب المسامية الكلية (المؤثرة) والمسامية الثانوية

المسامية الكلية أو ما يسمى المسامية المؤثرة(effective Porosity) تحسب من خلال إستخدام معادلة (Schlumberger, 1997)[9]:

$$\phi_{\mathbf{N},\mathbf{D}} = \frac{\phi_N + \phi_{\mathbf{D}}}{2} \tag{5}$$

حيث:

Ø_{N.D}: المسامية المؤثرة المسحوبة من مجسي الكثافة والنيوترون.

في حين يمكن استخدام معادلة(Bowen, 2003)[10] للحصول على المسامية المؤثرة المصححة من تأثير الغاز، إذ تستخدم هذه المعادلة في الاعماق التي تكون فيها(Ø_N<Ø_D).

$$\emptyset_{\mathbf{N}.\mathbf{D}} = \sqrt{\frac{(\phi_N)^2 + (\phi_D)^2}{2}}$$
(6)

أما المسامية الثانوية(Secondary Porosity) فيمكن حسابها من معادلة (Schlumberger,1997)[9]:

$$SPI = \emptyset_{N,D} - \emptyset_s \tag{7}$$

SPI: معامل المسامية الثانوية (secondary porosity index).

رابعاً: حساب درجة حرارة التكوين

تعد درجة حرارة التكوين(T) عاملاً مهماً في تحليل المجسات البئرية وذلك لان مقاومية طين الحفر (Rm) والراشح الطيني(Rm) وماء التكوين(Rw) تتغير مع تغير درجة الحرارة، ويمكن تحديد درجة حرارة التكوين من المعادلتين الاتيتين:

$$\mathbf{T_f} = (\mathbf{G}\mathbf{G} * \mathbf{d}) + \mathbf{T_s} \tag{8}$$

$$\mathbf{G.\,G.} = \frac{BHT - T_s}{T_D} \tag{9}$$

حيث:

خامساً : حساب معامل التكوين (Formation Factor (F)

يعد معامل التكوين عاملاً مهماً في الحسابات الجسية، إذ يرتبط هذا المعامل بعلاقة عكسية مع مقاومية ماء التكوين(Rw)، وعلاقة طردية مع مقاومية تكوين مشبع(100%) بالماء(Ro)، واظهرت التجارب آن معامل التكوين(F) يمكن أن يرتبط بالمسامية من خلال معادلة(Archie,1944)[11]:

$$\mathbf{F} = \frac{\mathbf{a}}{\mathbf{0}^{\mathrm{m}}} \tag{10}$$

حيث ان(m) هو اس التسميت ويعتمد على شكل المسام وتوزيعه (هندسة المسام) وكلما طال الطريق وتعقد امام التيار الكهربائي خلال الصخرة زادت قيمة(m) وبزيادة(m) تزداد قيمة(F)، في حين(a) يمثل عامل التشبيك ويعتمد على طول الممر الذي يأخذه السائل او التيار ليمر به عبر الصخرة وعادةً ما يعطى قيمة(1) (خيوكة، 1991)[12] . سادساً : حساب مقاومية ماء التكوين

إن مقاومة مياه تكوين المشرف(Rw) قد حددت اعتماداً على القيم المثبتة عند رؤوس المجسات وكذلك الحال بالنسبة لمقاومية الراشح الطيني(Rmf)، ثم جرى تصحيح(Rmf) لكل عمق حسب المعادلة الآتية:

$$R_{mf} @ T_{f} = R_{mf} @ T_{s} \left(\frac{T_{s} + 21.5}{T_{f} + 21.5} \right)$$
(11)

حيث:

R_w @ T_s: مقاومة ماء التكوين عند درجة الحرارة السطحية (اوم . متر). R_w @ T_f: مقاومة ماء التكوين عند درجة حرارة العمق (اوم . متر). سابعاً: حساب التشبع المائي والتشبع الهيدروكاربوني

التشبع المائي(Sw) هو النسبة بين حجم الفراغات المملوءة بالماء الى الحجم الكلي لفراغات الصخرة ويقاس كنسبة مئوية، اما التشبع الهيدروكربوني فهو ما تبقى من حجم الفراغات في الصخرة. يتم حساب كلاً من التشبع المائي في النطاق غير الملوث بالراشح الطيني(Sw)، والتشبع المائي في النطاق الملوث بالراشح الطيني(S_{xo}) وذلك لمعرفة حركة الهيدروكربونات والفضلة الهيدروكربونية حسب معادلتى(Archie,1944)[12]:

$$\mathbf{S}_{\mathbf{w}} = \left[(\mathbf{F} * \mathbf{R}_{\mathbf{w}}) / \mathbf{R}_{\mathbf{t}} \right]^{1/n} \tag{12}$$

$$S_{xo} = \left[\left(F * R_{mf} \right) / R_{xo} \right]^{1/n}$$
(13)

كما يمكن حساب التشبع الهيدروكربوني حسب المعادلة الآتية:

$$\mathbf{S_h} = \mathbf{1} - \mathbf{S_w} \tag{14}$$

ثامناً: حساب الحجم الكلى وحركة الهيدركربونات

يمكن حساب الحجم الكلي للماء في النطاق الملوث(BV_{xo}) وغير الملوث(BV_w) براشح طين الحفر من خلال المعادلتين ادناه:

$$\mathbf{BV}_{\mathbf{W}} = \mathbf{S}_{\mathbf{W}} * \boldsymbol{\emptyset}_{\mathbf{N}.\mathbf{D}} \tag{15}$$

$$BV_{XO} = S_{XO} * \emptyset_{N,D}$$
(16)

اذ كانت قيمة حجم الماء الكلي المحسوبة في النطاق غير الملوث عند أعماق مختلفة من التكوين ثابتة فإن ذلك يدل أن النطاق متجانس وفي حالة تشبع مائي غير قابل للإزاحة (Irreducible water saturation)، كما يمكن حساب حجم الهيدروكريونات الكلي، وهو يشمل حجم النفط القابل للحركة((Moveable Oil Saturation(MOS)) وحجم الفضلة النفطية غير القابلة للحركة((Residual Oil Saturation(ROS)) وحجم الفضلة النفطية غير القابلة الحركة((Residual Oil Saturation) من خلال المعادلة:

$$\mathbf{BV}_{\mathbf{0}} = \mathbf{S}_{\mathbf{h}} * \emptyset_{N.D} \tag{17}$$

فى حين يتم حساب التشبع النفطى القابل للحركة (MOS) من خلال المعادلة الآتية:

 $MOS = S_{XO} - S_W$ (18)

وأخيراً يمكن حساب التشبع النفطي غير القابل للحركة من خلال المعادلة الآتية:

$$ROS = 1 - S_{XO}$$
(19)

تاسعاً: تفسيرات منحنيات الجس البئري(CPI)

من خلال التحليل البتروفيزيائي للخصائص المكمنية بإستخدام المجسات البئرية آنفة الذكر لآبار منطقة الدراسة امكن تقسيم تكوين المشرف الى عدد من الوحدات المكمنية وغير المكمنية(وحدات عازلة) اعتماداً على تلك الخصائص وباستخدام برانامج(Techlog) كما في الاشكال من 2 الى 9. إذ أن المساحة المحصورة بين(Sw) و (MOS) تمثل التشبع الهيدركاربوني غير القابل للإزاحة(ROS).

الشكل 2- يبين التفسيرات المجسية(CPI) للبئر (Zu-2)

الشكل 3- يبين التفسيرات المجسية(CPI) للبئر (3-Tu)

الشكل 4- يبين التفسيرات المجسية(CPI) للبئر (Tu-4)

الشكل 5- يبين التفسيرات المجسية(CPI) للبئر (5-Tu)

الشكل 6- يبين التفسيرات المجسية (CPI) للبئر (Tu-6)

الشكل 7- يبين التفسيرات المجسية(CPI) للبئر (Tu-12)

الشكل 8- يبين التفسيرات المجسية(CPI) للبئر (Tu-24)

الشكل 9- يبين التفسيرات المجسية(CPI) للبئر (25-Tu)

عاشراً: الدراسة المكمنية

تتطلب الدراسة المكمنية التعرف وتمييز الخواص البتروفيزيائية وعلاقتها بالسحنات الصخرية لما لها من أهمية في تحديد مواقع خزن الموائع الهيدروكربونية وحركتها وانتاجها[13]. أن التنبأ بالموديل المكمني يجب أن يكون على أساس تشخيص الوحدات المكمنية التي يجري من خلالها تقسيم المكمن على أسس الخصائص البتروفيزيائية للصخور كالمسامية والنفاذية والتشبع النفطي، أن

معدل الانتاج النفطي للمكمن دال على نوع النظام المسامي وأبعادة للوحدات المكمنية فضلاً عن الضغط المكمني ونسبة المسام وسمك تلك الوحدات المكمنية المنتجة. جرى في الدراسة الحالية تقسيم تكوين المشرف الى وحدات مكمنية اعتمادا على النتائج البتروفيزيائية المستحصلة من خلال تقسير المجسات البئرية وخاصة المسامية الفعالة، كما تم بيانه آنفاً حيث ينحصر الاهتمام في الصناعات النفطية بالمسامية الفعالة لان النفط القابل للاستخراج ينحصر تواجدة في شبكة المسامات المتصلة مع بعضها البعض، إذ قسم تكوين المشرف في حقل طوبة الى ثلاث وحدات مكمنية (Reservoir Units(RU1,2,and 3)) تفصلها أربع وحدات عازلة (Barrier Units(Bar1,2,3,and 4)).

وفيما يلي اهم الخطوات الخاصة بعمل الإنموذج المكمني، اذ استخدم البرنامج(Petrel,2009) لأعداد إنموذج مكمني ثلاثي الابعاد(I,J,K)، إذ أن(J) هو موازي للمحور الطولي للحقل، (I) يكون عمودياً على المحور الطولي للحقل والمحور الشاقولي(K) لمنطقة الدراسة الحالية، إذ جرى إعداد الخرائط الخاصة بالمسامية والتشبع النفطي لكل وحدة مكمنية وحسب الاجراءات الآتية.

أ- التوزيع المقطعى UP Scale

استخدمت الطرائق الرياضية المختلفة في عملية توزيع الخواص المكمنية وكان الغرض منها الحصول على قيمة واحدة مناسبة لكل خاصية بتروفيزيائية في الخلية الواحدة(one cell) لكل وحدة مكمنية علماً ان ابعاد الخلية هي(500*500).

ب- التوزيع البتروفيزيائي

جرى توزيع الانطقة البئرية للخواص البتروفيزيائية باتباع الطريقة الرياضية (algorithm) لايجاد قيم تلك الخواص البتروفيزيائية باتباع الطريقة الرياضية (algorithm) لايجاد قيم تلك الخواص بين المسافات في الآبار قيد الدراسة مع مراعاة سطوح اعالي الوحدات المكمنية. جرى من خلال إستخدام برنامج(Petrel, 2009) رسم موديل مكمني بثلاثة أبعاد لحساب التشبع النفطي، اذ أن معطيات المسامية والتشبع المائي هما المدخلات الاساسية في ذلك الموديل الذي بين توزيع التشبع النفطي ضمن الوحدات المكمنية.

ا**لشكل 1**0- يبين توزيع التثبيع النفطي على وحدات تكوين المشرف في حقل طوبة

ا**لشكل 11** – يبين توزيع النتشبع النفطي على وحدات تكوين المشرف في حقل طوبة

ا**لشكل 1**2– يبين توزيع التشبع النفطي على وحدات تكوين المشرف في حقل طوبة

تفسير نتائج الإنموذج المكمنى لحقل طوبة

- 1 الوحدة العازلة الاولى(Bar1): يترواح سمك هذه الوحدة بين(48) متر عند البئر (2-Tu) الواقع وسط شمال الحقل الى(78) متر عند البئر (2-Tu) الواقع وسط شمال الحقل وكمعدل(60) متر لجميع آبار الحقل . تتميز هذه الوحدة بمسامية رديئة جداً ومعدومة في جميع آبار الحقل عدا بعض المناطق القليلة والمحددة حيث تصل المسامية الى حوالي(0.1) وان معظم هذه المسامية هي من النوع الثانوية، إذ يتوقع سبب الزيادة ناتج من انكشاف الجزء العلوي للتكوين ووقوعة ضمن البيئة التحويرية المسامية هي من النوع الثانوية، إذ يتوقع سبب الزيادة ناتج من انكشاف الجزء العلوي للتكوين ووقوعة ضمن البيئة التحويرية الجوية مما سبب الى حدوث عملية اذابة لاجزاء من تلك الوحدة العازلة مسبب زيادة في نسبة المسامية الثانوية. في حين يتراوح التشيع النفطى لها بين(0-0) وهو يتباين من موقع الى الحد.
- 2 الوحدة المكمنية الاولى(RU1): يترواح سمك هذه الوحدة بين(4) متر عند البئر (Tu-12) الواقع وسط الحقل وسمك(29) متر عند البئر (Tu-2) الواقع وسط شمال الحقل وكمعدل(13) متر لجميع آبار الحقل. تتميز هذه الوحدة بمسامية جيدة متوسطة تتراوح بين(0.0-0.5) وخاصة في الآبار الوقعة في وسط الحقل. في حين يتراوح التشبع النفطي لهذه الوحدة بين(0.6-0.5) في معظم آبار الحقل.
- 3 الوحدة العازلة الثانية(Bar2): يترواح سمك هذه الوحدة بين(1) متر عند البئرين (Tu-12,and 25) الواقعين في وسط الحقل وسمك(13) متر عند البئر(6-Tu) الواقع شمال الحقل وكمعدل(5) متر لجميع آبار الحقل. تتميز هذه الوحدة بمسامية تتراوح بين(0.1 0.1) إذ تزداد المسامية في وسط الحقل عند الآبار (Tu-12,24,and 25). كما تتميز بتشبع نفطي يتراوح بين(0.1 0.1) إذ يزداد التشبع في الآبار الواقعة وسط وشمال الحقل.
- 4 الوحدة المكمنية الثانية(RU2): يترواح سمك هذه الوحدة بين(12) متر عند البئر (Tu-3) الواقع جنوب الحقل وسمك(22) متر عند البئر (Tu-25) الواقع وسط الحقل وكمعدل(22) متر لجميع آبار الحقل . تتميز هذه الوحدة بمسامية جيدة تتراوح بين (Tu-25) الواقع وسط الحقل وكمعدل(22) متر لجميع آبار الحقل . تتميز وفي الوحدة بمسامية جيدة تتراوح بين (0.15 0.25)، إذ يزداد التشبع (0.25 0.25)، إذ يزداد التشبع في الآبار الواقعة وسط الحقل كما تتميز الحقل. كما تتميز بتشبع نفطي يتراوح بين(0.25 0.25)، إذ يزداد التشبع في الآبار الواقعة وسط الحقل كما تتميز الحقل. كما تتميز بتشبع نفطي يتراوح بين(120 0.25)، إذ يزداد التشبع في وسط شرق الحقل. كما تتميز بتشبع نفطي يتراوح بين(120 0.25)، إذ يزداد التشبع في الآبار الواقعة وسط الحقل كما في الآبار (Tu-22,24,25 0.25))، إذ من المكمنية للتكوين.
- 5 الوحدة العازلة الثالثة(Bar3): يترواح سمك هذه الوحدة بين(2) متر عند البئر (2-Tu) الواقع وسط شمال الحقل وسمك(16) متر عند البئر (4-Tu) وكمعدل(6) متر لجميع آبار الحقل . تتميز هذه الوحدة بمسامية متوسطة نتراوح بين(0.2 0.15) . كما تتميز بتشبع نفطي يتراوح بين(0.3 0.2)، إذ يزداد التشبع في مواقع محددة من وسط الحقل، وتعتبر هذه الوحدة شبه عازلة بين الوحدتين المكمنيتين(3 RU2,and).
- 6 الوحدة المكمنية الثالثة(RU3): يترواح سمك هذه الوحدة بين(11) متر عند البئر (Tu-3) الواقع جنوب الحقل وسمك(36) متر عند البئر (Tu-25) الواقع وسط الحقل وكمعدل(22) متر لجميع آبار الحقل. تتميز هذه الوحدة بمسامية جيدة-متوسطة متر عند البئر (Tu-25) الواقع وسط الحقل وكمعدل(22) متر لجميع آبار الحقل. تتميز هذه الوحدة بمسامية جيدة-متوسطة نتراوح بين(0.5 0.1) الواقع وسط الحقل وكمعدل (20) متر لجميع آبار الحقل. تتميز هذه الوحدة بمسامية جيدة-متوسطة متر عند البئر (Tu-2.5) الواقع وسط الحقل وكمعدل (21) متر لحميع آبار الحقل. تتميز هذه الوحدة بمسامية جيدة-متوسطة بنتراوح بين(5.0 0.1) الواقع وسط الحقل وكمعدل (22) متر لجميع آبار الحقل. تتميز هذه الوحدة بمسامية جيدة-متوسطة بنتراوح بين(5.0 0.1) الواقع وسط الحقل وكمعدل (22) متر لحميع آبار الواقعة وسط وغربي الحقل. كما تتميز بتشبع نفطي يترواح بين(5.0 0.1) الواقع وسل المسامية باتجاه الآبار الواقعة وسط وغربي الحقل. كما تتميز بتشبع نفطي يترواح بين(5.0 0.1) الواقع الملحدة من وسط شمال الحقل كما في الآبار (Tu-2,6,and 12) وكذلك في جنوب الحقل قرب البئر (Tu-2,6,and 12).
- 7 الوحدة العازلة الرابعة (Bar4): يترواح سمك هذه الوحدة بين (5) متر عند البئرين (25 Tu-12, and) وسمك (26) متر عند البئر (5-Tu) وكمعدل (14) متر لجميع آبار الحقل. تتميز هذه الوحدة بمسامية متوسطة رديئة جداً حيث تتراوح بين (5.0-0) وكمعدل (14) متر لجميع آبار الحقل. تتميز هذه الوحدة بمسامية متوسطة رديئة جداً حيث تراوح بين (0.0-0) إذ تتباين المسامية من موقع الى آخر ضمن آبار الحقل. كما تتميز بتشبع نفطي يتراوح بين (0.0-0) ، إذ يزداد التشبع في الأبار الواقعة وسط شمال الحقل كما في الآبار (12 Tu-2,6,and).

يتضح مما سبق ان افضل الآبار في الانتاج النفطي ضمن حقل طوبة هي الآبار (Tu-12,24,and 25) الواقعة في وسط ووسط شمال الحقل. في حين ان افضل الوحدات المكمنية من ناحية التشبع النفطي هي الوحدة المكمنية الثانية والثالثة على التوالي اخذين بنظر الاعتبار تغاير سماكات الوحدتين بين آبار الحقل.

References:

- 1- Al-Naqib, K.M., 1967, Geology of the Arabian Peninsula, Southwestern Iraq, U.S. Geol. Survey *Prof.* paper, 560-G, pp: 54.
- 2- Rabanit, P. M. V., 1952, Rock units of Basrah area, BPC, unpublished report .
- **3-** Razoian, A.M., **1995.** Stratigraphic succession of Cretaceous period in southern Iraq and surrounded area (in Arabic), Internal Report(unpublished), South Oil Company, pp: 151.
- 4- South Oil Company, **1988**, Geological Evaluation study of Mishrif and Zubair Formation at Tuba Oil field, unpublished report, pp: 21.
- 5- Wyllie, M. R. J. Gregory, A. R., and Gardner, H. F., **1958**, an experimental investigation of the factors affecting elastic wave velocities in porous media. Geophysical, Vol. 23, pp: 459-493.
- 6- Dresser Atlas, 1979, Long Interpretation Charts: Houston, Dresser Industries, Inc., pp: 107.
- 7- Hilchie, D. W., 1978, Applied openhole log interpretation. Golden, Colorado, pp: 161.
- 8- Tiab, D. and Donaldson, E. C., 1996, *Petrophysical Theory and practice of Measuring Reservoir Rock and Fluid Transport properties*; Houston, Texas, pp: 706.
- 9- Schlumberger, 1997, Log interpretation charts, Houston, Schlumberger wireline testing pp:193
- 10- Bowen, D.G., 2003, Formation evaluation and Petrophysics, Jakarta, Indonesia, pp: 273.
- 11- Archie, G. E., 1944, the electrical resistivity log as an aid in determining some reservoir characteristics. Petroleum Technology, Vol. 5, pp: 54-62.
- 12- Khyuikh, M.H.,1991, *Well Logs Interpretation* (in Arabic), College of Science, Baghdad University, Al-Musal press pp: 218.
- 13- Lucia, F. J., 2007, *Carbonate Reservoir Characterization*. An Integrated Approach, Second Edition. Springer-Verlag Berlin, Heidelberg, pp: 336.