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Abstract 

    Densely deployment of sensors is generally employed in wireless sensor networks 

(WSNs) to ensure energy-efficient covering of a target area. Many sensors 

scheduling techniques have been recently proposed for designing such energy-

efficient WSNs. Sensors scheduling has been modeled, in the literature, as a 

generalization of minimum set covering problem (MSCP) problem. MSCP is a well-

known NP-hard optimization problem used to model a large range of problems 

arising from scheduling, manufacturing, service planning, information retrieval, etc. 

In this paper, the MSCP is modeled to design an energy-efficient wireless sensor 

networks (WSNs) that can reliably cover a target area. Unlike other attempts in the 

literature, which consider only a simple disk sensing model, this paper addresses the 

problem of  scheduling the minimum number of sensors (i.e., finding the minimum 

set cover) while considering a more realistic sensing model to handle uncertainty 

into the sensors' target-coverage reliability. The paper investigates the development 

of a genetic algorithm (GA) whose main ingredient is to maintain scheduling of a 

minimum number of sensors and thus to support energy-efficient WSNs. With the 

aid of the remaining unassigned sensors, the reliability of the generated set cover 

provided by the GA, can further be enhanced by a post-heuristic step. Performance 

evaluations on solution quality in terms of both sensor cost and coverage reliability 

are measured through extensive simulations, showing the impact of number of 

targets, sensor density and sensing radius.  

 

Keywords: Coverage, energy efficiency, genetic algorithm, probabilistic sensing 

model, SCP, wireless sensor networks. 

 

موثوقة الفي شبكات الاستشعار اللاسلكية  تغطيةلل الادنى مجموعةالمشكلة لالخوارزمية الجينية 
 فعالةالو 

 

 براء علي عطيه، سراب مجيد حميد
 .قسم الحاسبات، كلية العلوم، جامعة بغداد، بغداد، العراق

 

 الخلاصة

لضمان  (WSNs) لاسلكيةفي شبكات الاستشعار ال بكثافة نشر أجهزة الاستشعارعادة يستخدم     
أجهزة تقنيات جدولة تم اقتراح العديد من حديثأ . المنطقة المستهدفة في  وأقتصاديةوءه تغطية كف

 شكلهمتعميم لوأصبحت هذه المشكل  استخدام الطاقة من ناحية  وءكف  WSNsالاستشعار لتصميم
 العديد من حلفي  والمطبقة NP-Hardمشكلة هي  MSCP .(MSCP) هتغطيلل الادنىلمجموعة ا

 .من المشاكل اع المعلومات، وما إلى ذلكتخطيط الخدمة، واسترجو  التصنيع، مثلالمشاكل الناجمة 
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التي يمكن و  (WSNs) لتصميم شبكات الاستشعار اللاسلكية  MSCPتم نمذجة ،  البحث في هذ
، هذا المجالي على عكس محاولات أخرى ف. وبطريقة أقتصادية بثقة أن تغطي المنطقة المستهدفة

غطاء إيجاد الحد الأدنى ل) دنى لعدد من أجهزة الاستشعار مشكلة جدولة الحد الأ البحث اول هذيتنا
أجهزة  موثوقية  ، في نموذج الاستشعار أكثر واقعية للتعامل مع حالة عدم اليقين في(مجموعة

لحفاظ على ل (GA) تطوير الخوارزمية الجينية تدارس هذا البحث. الهدف تغطية يالاستشعار ف
من  وبمساعدة. في استخدام الطاقة  وءكف WSNs لدعم لعدد أدنى من أجهزة الاستشعار، جدوله

 بعد  GA لتي تقدمهاامجموعة ال أجهزة الاستشعار غير المعينة المتبقية، يمكن زيادة موثوقية تغطية 
تكلفة من حيث ل م قياس تقييم الأداء على نوعية الحت. الكشف عن مجريات الأمور خطوة

كثافة لتي تبين أثر عدد الأهداف، و محاكاة واسعة النطاق، واموثوقية التغطية من خلال و الاستشعار 
 .الاستشعار عن بعد ونصف قطرالاستشعار اجهزة 

 
 

1.Introduction 

    Recently, many applications, ranging from remote harsh field monitoring to surveillance and smart 

homes, have been directed towards studying and building their backbones based on Wireless sensor 

networks (WSNs). The dense ad-hoc deployment of such sensors from an aircraft into the monitoring 

area can results in network configurations with adequate targets coverage level. However, recharging 

or replacing a sensor’s battery is generally infeasible. Hence, efficient utilization of the limited energy 

is one of the critical design considerations in WSNs. Energy-aware mechanism has been substantially 

pursued by the research community in order to form long lived WSNs. Energy saving techniques can 

generally be classified in the following categories: 

1. Energy-efficient data aggregation, gathering and routing; 

2. Power management by adjusting the transmission and/or sensing range of sensor nodes; and 

3. Sensor wake-up scheduling to alternate between active and idle state. 

    In this paper, we will consider the third approach to design energy-efficient WSNs while completely 

monitoring the targets. In this class of techniques, sensor activities are scheduled into disjoint set 

covers (DSC), and each set cover (hereinafter, interchangeably called, sensor cover) needs to satisfy 

the coverage constraints. At each interval of the whole WSN's lifetime, only one sensor cover (active 

sensor cover) is working to provide the required sensing functionality while the remaining sensor 

covers are in the low-energy sleep mode. Once the active sensor cover runs out of energy, another 

sensor cover will be selected to enter the active mode and provide the functionality continuously. It 

has been proven that this problem  is a generalization of the minimum set cover problem (MSCP) [1] 

and showing its NP-completeness in [2], [3]. 

    Many attempts in the literature have been proposed for solving disjoint sensor subsets problem in 

WSNs using either heuristic or meta-heuristic (like genetic algorithms) approaches [4]-[11].  

In [2], a heuristic approach called the “most constrained–minimally constraining covering (MCMCC)” 

is proposed to select and successively activate mutually exclusive sets of covers, where every set 

completely covers the entire area. Their method gives priority to sensors which cover a high number 

of uncovered fields, cover sparsely covered fields and do not cover fields redundantly. This method 

achieves energy savings by increasing the number of disjoint covers. The DSC problem has been 

solved in [12] using integer programming.  The DSC problem is reduced to a maximum flow problem 

and solved using mixed integer programming. By a branch and bound method, the maximum covers 

based on mixed integer programming algorithm (MC-MIP) acts as an implicit exhaustive search to 

guarantees finding the optimal solution.  

    The definition of DSC problem has also been re-formulated in [3], [13], and [14] to include 

additional coverage constraints. The definition of DSC problem has been generalized in [3] to a 

maximum non-disjoint set covers (MSC) problem and solved it using, linear programming, and greedy 

heuristics. The extended problem in MSC lets the sensors to participate in multiple sets. In [13], the 

DSC problem has been extended to include connectivity constraint as well. Then, the Connected Set 

Covers (CSC) problem has as objective finding a maximum number of set covers such that each 
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sensor to be activated should be connected to the base station. In [14], DSC problem has been 

extended to include sensor coverage-failure probability. Each sensor is associated with sensor's failure 

probability (comes from several facts, e.g., manufacture, weather in the monitoring area, interferences 

to the sensors, or unexpected accidents). The proposed Maximum Reliability Sensor Covers (MRSC) 

problem has been solved in [14] using a heuristic greedy algorithm to compute the maximal number of 

set covers that satisfy a user specified coverage-reliability threshold.  

    The work in [15] – [17] also provides solutions to the DSC problem in WSNs but using the meta-

heuristic framework of evolutionary and genetic algorithms.  Like the previous mentioned heuristic 

methods, the genetic algorithms (GAs) proposed in [15] – [17] assume simple and common isotropic 

(i.e., disc) sensing model. Each sensor in this definite range law approximation model is associated 

with a sensing area which is represented by a circle and it successfully detects anything falling only 

within its sensing range. In a more realistic scenario, the sensing region of a sensor could be irregular, 

resulting in imperfect sensor approximation model. The coverage in this case could be expressed in 

probabilistic terms [18] – [20]. In probabilistic sensing model, there is a measure of uncertainty in 

sensor signal-detection being expressed by a value from  to . For reliable coverage with certainty 

threshold , the detection uncertainty of each target should not exceed .  

    Unlike other related works, this paper concerns with the applicability of the genetic algorithm for 

solving the MSCP problem while assuming a probabilistic sensing model to reflect the uncertainty in 

sensor readings. The main contributions of this paper are as follows: 

1. With the de-facto definition of the simple genetic algorithm, a set cover can be identified that should 

maintain low cost in terms of number of sensors to reliably cover the all the targets within the 

specified certainty threshold .     

2. With the incorporation of unassigned sensors, the coverage reliability of the network reliability can 

be further improved. A post-heuristic operator weighs each assigned and/or unassigned sensor to the 

membership of the constructed set cover.    

In what follow we first briefly describe the MSCP in WSNs and its related system model. Then, in 

section 3, we introduce the proposed genetic algorithm and a post-heuristic operator tailored for 

solving MSCP in WSNs. The results of the proposed genetic algorithm are then evaluated in Section 4. 

Finally, Section 5 concludes the current work and hints some further ramifications.            

 

2.Minimum Reliable Set Cover Problem (MRSCP) in WSNs 

    In order to model the system, we will assume that the investigated WSNs have 2D sensing area  

with known . We will also assume that  has a set  (i.e., target set) of  targets 

with known locations, i.e., . There are  homogenous 

sensors  having the same sensing range . All the sensors 

are dropped randomly in   ). Depending on the 

sensing range , each sensor will be responsible for sensing and covering a part of . We will 

consider a probabilistic sensing model [19], [20] to define the notion of the probabilistic coverage of a 

target  by a sensor . 

 

              (1) 

 

where  is a measure of the uncertainty in sensor detection.  is the Euclidean distance 

 between sensor  and target . , and  and  

are probabilistic detection parameters to measure detection strength when a target point lies within the 

interval . It causes coverage value to exponentially decrease as the distance 

increase. All points that lie within a distance of  from the sensor are said to be 1-covered. 

Beyond the distance , all the points have 0-coverage by this sensor (see Figure 1). 

 



Attea & Hameed                        Iraqi Journal of Science, 2014, Vol 55, No.1, pp:224-240 

227 

 
Figure 1 -Probabilistic sensing model. 

 

    To save energy, a subset of sensors from the sensor set  should be activated into a duty-cycling 

sensor cover subset, to cover all the interested targets in . In the literature and under the traditional 

Boolean sensing model, the definition of the sensor cover could be formulated as: 

Definition 1: (Sensor Cover - SC). Given a WSN consists of target set  and sensor set , where  

each sensor  can be represented as a subset , such that  if and only if 

.  Any subset  that can completely cover all the target set  is termed as a 

sensor cover.  

    However, considering probabilistic sensing model, the definition of the traditional sensor cover 

needs to be re-formulated, here, as: 

Definition 2 (Reliable Sensor Cover - RSC). Given a WSN consists of target set  and sensor set , 

where  each sensor  can be represented as a subset , such that  if and only if 

.  Any subset  that can satisfy a user coverage constraint  to cover all 

the targets in   is termed as a reliable sensor cover or reliable set cover. Formally speaking: 

      (2) 

    Now, the problem of finding the minimum number of sensors that reliably cover all the targets (here 

we called it minimum reliable set cover problem - MRSCP) can be formulated as: 

Definition 3 (Minimum Reliable Sensor Cover Problem - MRSCP). Given a collection  of 

sensors, find the minimum number of sensors that reliably covers . Every cover  is a subset of , 

, such that every element  of  belongs to at least one member of . A cover is said to 

contain a minimum number of sensors if for any other cover , . Formally speaking: 

                        (3) 

The proposed Genetic Algorithm 

    The GA simulates the biological processes of natural selection, reproduction, and mutation to 

iteratively evolve species of individual solutions to become more and more adapted to the problem 

environment. The proposed GA can be described as a process formulated in the following formula-

fashion. Let , be the process that iteratively evolve a population  of 

solutions, using genetic operators, toward the best set cover solution in terms of minimum number of 

sensors (i.e., sensor cost) that reliably cover all targets. Thus, the objective function  of GA can be 

formulated for the minimum set cover problem as: 

                  (4) 

The best set cover solution will show up both active and sleep sensor sets. 

3.1 Space and Solution Configurations 

    The choice of a good solution representation is a critical issue for the applicability and performance 

of any evolutionary algorithm. Solution representation is highly problem dependent and related to the 

evolution operations. In our algorithm design, each individual solution   of  is represented as a 

fixed-length vector of size , where each  controls the active/sleep scheduling of the 

corresponding  sensor in . Thus, 

 

                     (5) 
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    Then, the whole configuration space  for the GA can be created by the Cartesian product of 

activation/inactivation of all  unassigned sensors: 

                                    (6) 

    where  means inactive (i.e., unassigned) sensor, while  means active (i.e., assigned) sensor. Let us 

to consider that  handles only  different individual solutions at a time. It starts with an initial 

random population  and continues until a maximum number of generations  

has been reached. Each generation  consists of four main operators: individual repair, parent 

selection, crossover, and mutation. Thus,  can be decomposed into: 

                    (7) 

 

3.2 Repair Operator and the Fitness Function 

    Before evaluating each individual, infeasible set cover solutions should be transformed into feasible 

ones by means of a problem-specific repair operator. Infeasible solutions are those which suffer from 

either the existence of coverage-holes or let the targets to be over-covered by more than need sensors. 

The main idea of the proposed repair operator is to make hole-free targets coverage with as less 

number of sensors as possible. The process of the proposed repair operator  is presented next (see 

Algorithm 1). 

                        (8)  

    It takes as input the individual  and the set of unassigned sensors . First, it 

check whether the active sensors set  selected by  (i.e.,  ) forms coverage-hole 

or dense-coverage under the user-specified reliability threshold . In case of coverage-hole,  

will randomly draw from  set one sensor at a time and collect it with  (i.e., 

 and ) until the new set form hole-free set cover. On the 

other hand, if forms dense-coverage,  will randomly deactivate one sensor at a time (i.e., 

 and ) until it can form complete coverage with less number of 

sensors.      

 

Algorithm 1: Repair Operator ( , , ) 

1: set  to the active sensors selected by  

  

2: if   /*  no coverage hole */ 

3:  while     

4:   select a random sensor  

5:   set  

6:   set   

7:  end while 

8:  set  /* now 1 */ 

9: else /* coverage holes exist after  using the 

sensors in  */ 

10:  while  0   

11:   select a random sensor  

12:   set  

13:   set   

14:  end while 

15: end if 

 

    Then, to evaluate each individual solution , the fitness function  simply sums the number of 

active sensors being selected by the corresponding solution.  
  

                          (9) 
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3.3 Selection, Crossover, and Mutation Operators  

    The remaining genetic operators follow the de-facto standard operators found in the simple genetic 

algorithms. The binary tournament selection operator is used to choose one of two random individuals 

 and . A proportion  of pairs of parents are then selected for crossover. Two cut points 

, are randomly selected, and the participating parent individuals,  are 

then swapped at . Each  in the new individuals is then mutated 

with small probability .  

  

                                 (10) 

  

       

         (11)  

             
  

   

                                                     (12) 

    The mechanisms of the genetic operators being defined by repair, fitness evaluation, selection, 

crossover and mutation transform a complete population of solutions into another complete population 

and after a specified number of generations , the best individual solution (in terms of 

minimum ) will be produced. The definition of the best individual can be formulated as: 

          (13) 

3.4 Post-heuristic Operator  

    The best solution  provided by the  can further be improved in terms of coverage 

reliability by forwarding it to a post-heuristic operator dedicated for this purpose. Algorithm 2 presents 

the steps of this heuristic. It operates by exploiting the existing unassigned sensors (being gathered in 

) and/or replacing the existing active sensors (being gathered in ).   

 

Algorithm 2: Post-Heuristic ( ) 

1:    /* a new cover  will be formed */ 

set  

2:  set  to the sensors from both and  

  

3:  set contributed sensors set  

4:  set  

5:  while  

6:   select a sensor  that contributes to the 

most reliable coverage to a target  7:   

8:   set ;  

9:  end while 

10:  remove  

11:  remove   

 

4 Performance Evaluations 

    In this section we will measure the performance of the proposed GA for solving MSCP in WSNs. 

The evaluation is presented in terms of number of active sensors obtained (i.e., sensors cost), and 

coverage reliability. The results are obtained after setting WSNs and algorithm parameters into the 

following.  The simulation area is square-shaped with side length . The simulation is 

divided according to: 
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1. Five different settings for the number of targets .  

2. Three different settings of sensor density: .  

3. For each test instance group composed from 1 and 2, we will vary the sensing range of the sensor 

nodes to eight different values .  

    Thus, we have a total of  different test instances (composed from 1, 2 and 3). Each test instance 

 includes 10 random WSNs with different configurations. Thus the overall 

simulation examines a total of  random networks. Uncertainty level  is set to  units, 

both  and  are set to , and  is set to . The setting of the probabilistic coverage 

parameters also influences the overall network's coverage reliability. As studying the impact of 

varying these parameters is out of the scope of this paper, we fixed these parameters to one setting. 

Population size is set to  and will be allowed to evolve  times.  

4.1 Impact of WSN's  and  Parameters on Solution Quality  

    First, figures 2-6 depict the sensors cost percentage  while varying number of targets  and 

sensing range  for the three different settings of sensor density.  is defined as the ratio between 

the number of active sensors used in the generated best individual solution  and the total 

number of sensor nodes , i.e.,: 

               (14) 

    For further qualitative presentation, figures 6 and 7 depicts  for the three different settings of 

sensor density, i.e.,  and  and the eight settings of sensing range, while fixing target 

size to its extreme values, i.e.,  and . Figures 9 – 11 qualitatively depict the whole performance of 

the proposed GA for  WSNs, where results are projected in 3D space.  
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Figure 3- Percentage of sensors cost for  WSNs, where , 

 and . 
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Figure 4- Percentage of sensors cost for  WSNs, where , 

 and . 
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Figure 5-Percentage of sensors cost for  WSNs, where , 

 and . 

 

100 125 150
0

5

10

15

20

25

Sensor Density for Rs = 100, 200,..., 800

S
en

so
rs

 C
o

st
%

Number of Targets = 50

 
Figure 6- Percentage of sensors cost for  WSNs, where , 

 and . 
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Figure 7- Percentage of sensors cost for  WSNs, where , 
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Figure 8- Percentage of sensors cost for  WSNs, where , 
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Figure 9- 3D projection of  results. Coordinate ( : sensing range, : number of targets, : SC%). The 

simulation is experimented under  networks with  100. 
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Figure 10- 3D projection of  results. Coordinate ( : sensing range, : number of targets, : SC%). The 

simulation is experimented under  networks with  125. 
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Figure 11-  3D projection of  results. Coordinate ( : sensing range, : number of targets, : SC%). The 

simulation is experimented under  networks with  150. 

 

    Results in the previous figures reveal that the proposed GA can effectively find a minimum number 

of active sensors from the whole sensors set, and thus configuring an energy-efficient WSN. The 

characteristic components of the proposed GA (being specified mainly by the chromosome binary 

representation and the proposed repair operator) is found to be very suitable for solving MRSCP. As 

expected from the qualitative results depicted in figures 7 - 10, increasing sensor density and/or 

sensing range provides algorithms with more alternatives for constructing complete and reliable set 

cover with minimum number of active sensors. On the other hand, increasing target size lets the 

algorithm to consume more sensors.  

4.2 At Any-Time Performance of GA 

    Figures 12-14 depicts the any-time performance of the proposed GA while fixing target size and 

sensor density to their extremes, 50 and 150, respectively and varying sensing range  to three 

different values, .  
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Figure 12 Any-time evolution of sensors cost for  WSNs, where 

,  and . 
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Figure 13 Any-time evolution of sensors cost for  WSNs, where 

,  and . 
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Figure 14- Any-time evolution of sensors cost for  WSNs, where 

,  and . 

 

    The results in figures 11-13 show up that sensing radius increases, the convergence time towards the 

minimum number of sensors is also increased. When , we can see that the convergence 

occurs after 65 generations. Increasing  to , helps the algorithm to converge to the required 

solution after  generations. Moreover, letting  , further increases the convergence time to 

less than  generations.  

4.3 Impact of Post-heuristic Operator 

    The performance of the proposed GA is presented, here, before and after performing the post-

heuristic operator. Figures 15 –22 depict coverage reliability and sensors cost percentage  being 

resulted from the proposed GA before and after applying post-heuristic. As we stated before that 

probabilistic coverage parameters are fixed throughout all simulations, we evaluate, as reference 

values, the average coverage reliability  (i.e., the average signal strength being detected from all the 

targets) of all network configurations in each test instance. 
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Figure 15- Coverage reliability before applying heuristic operator for  WSNs: 

,  and }. 
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Figure 16- Coverage reliability after applying heuristic operator for  WSNs: 

,  and }. 
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Figure 17- Sensor cost before applying heuristic operator for  WSNs: 

,  and }. 
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Figure 18- Sensor cost after applying heuristic operator for  WSNs: 

,  and }. 
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Figure 19- Coverage reliability before applying heuristic operator for  WSNs: 

,  and }. 
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Figure 20- Coverage reliability after applying heuristic operator for  WSNs: 

,  and }. 
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Figure 21- Sensor cost before applying heuristic operator for  WSNs: 

,  and }. 
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Figure 22- Sensor cost after applying heuristic operator for  WSNs: 

,  and }. 

 

 

    We can see that the proposed post-heuristic operator can exploit the existence of the redundant 

sensors to improve its covers reliability. In almost all of the test instances, the proposed post-heuristic 

operator attains reliable coverage of  while consuming very few extra sensors. For example, in 

figures 16 and 20, we see that the coverage reliability reaches its full certainty when . Also, 

for , the post-heuristic operator achieves high coverage reliability with more than . 

Tables 1 and 2 quantitatively present the results of figures 16 and 20, respectively. The positive impact 

of the proposed post-heuristic operator can be returned back to its ability to select those sensors which 

lie near the targets such that their distances from the targets do not exceed . However, 

when lessening sensor density and/or sensing range to their low extremes (i.e.,  and 

), the chance of finding sensors nearby targets or finding sensing areas that cover targets also 

decreases. The results also demonstrate that there should be a tradeoff between the two contradictory 

criteria of getting minimum number of active sensors and high covers reliability.  
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Table 1-Comparison of coverage reliability and sensors cost before and after applying post-heuristic operator. 

Results are presented for 24 test instances ( 0) for  WSNs in each test instance with 

,  and . 

    

Before post-heuristic 

operator 
After post-heuristic operator 

Coverage 

reliability  
Coverage 

reliability  

 

 

 0.1628     0.1350     7.9     0.6037     9.5     

  0.1688     0.1297     3.2     0.9834     9.1     

  0.2539     0.2333     2.5     1.0 8.4     

  0.3317     0.4379     2.3     1.0 7.2     

  0.4102     0.4042     2.0     1.0 5.8     

  0.4794     0.5429     1.8     1.0 5.5     

  0.5396     0.4957     1.4     1.0 4.6     

  0.5917 0.5812 1.0 1.0 4.4 

 

 

 0.1539     0.1355     6.64     0.6051     7.76     

  0.1590     0.0807     2.64     0.9633     7.6     

  0.2510     0.2635     2.24     1.0 6.96     

  0.3374     0.3139     1.84     1.0 6.16     

  0.4199     0.4509     1.60     1.0 5.12     

  0.4816     0.4802     1.36     1.0 4.24     

  0.5358     0.6045     1.28     1.0 4.08     

  0.5863 0.5845 1.04 1.0 3.36 

 

 

 0.1582     0.2046     5.1333     0.7415     6.3333     

  0.1721     0.1513     2.2667     0.9908     5.9333     

  0.2687     0.1974     1.8667     1.0 5.3333     

  0.3532     0.3836     1.6000     1.0 4.8667     

  0.4163     0.4211     1.3333     1.0 4.2     

  0.4705     0.4636     1.1333     1.0 3.7333     

  0.5244     0.5048     0.8667     1.0 3.3333     

  0.5742 0.5800 0.7333 1.0 2.7333 

 
Table 2- Comparison of coverage reliability and sensors cost before and after applying post-heuristic operator. 

Results are presented for 24 test instances ( ) for  WSNs in each test instance with 

,  and . 

    

Before post-heuristic 

operator 
After post-heuristic operator 

Coverage 

reliability  
Coverage 

reliability  

 

 

 0.1741     0.2496     23.2     0.6024     37.0    

  0.1682     0.2155     5.9     0.9612     32.6    

  0.2577     0.3099     4.1     0.9981 23.5    

  0.3447     0.4261     3.7     1.0 16.3    

  0.4226     0.5081     3.0     1.0 12.1     

  0.4869     0.6659     2.8     1.0 9.4     

  0.5384     0.6769     2.0     1.0 7.5     

  0.5832 0.7201 2.0 1.0 6.5 

 

 

 0.1722     0.2613     17.76     0.6957     30.0    

  0.1685     0.2084     4.48     0.9774 24.24    

  0.2595     0.3213     3.28     1.0 17.68    

  0.3472     0.4244     2.88     1.0 13.44    

  0.4261     0.5317     2.4     1.0 10.0     

  0.4887     0.6124     2.08     1.0 7.36     

  0.5437     0.6383     1.6     1.0 6.96     

  0.5862 0.7017 1.44 1.0 5.52 
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 0.1717     0.2442     15.6     0.7467     26.5333    

  0.1765     0.2086     3.9333     0.9942 21.2    

  0.2660     0.2869     2.9333     1.0 14.6667    

  0.3466     0.4144     2.5333     1.0 10.9333     

  0.4130     0.5240     2.1333     1.0 8.2     

  0.4713     0.6550     1.9333     1.0 6.4     

  0.5255     0.6047     1.3333     1.0 5.4667     

  0.5743 0.7189 1.3333 1.0 4.9333 

 

    Also from the tables, one can see that the collaboration between the proposed GA and post-heuristic 

operator consumes very few sensors from the whole sensor set  (in the worst case no more than  

in test instance ) to achieve reliable coverage higher than the average reliability  . 

4.4 Worst Case Time Complexity 
    Here we will compute the worst-case computational complexity of the proposed GA for solving 

minimum reliable set cover problem (MRSCP). Without loss of generality, the computational 

complexity of any single-objective genetic algorithms is  where  is the size of 

solutions to be evolved, via certain evolution operators, for  iterations.  

Now, let us consider the computation time needed for the most critical parts of the proposed algorithm 

when applied for solving MRSCP. The most critical part which represents the computation time 

bottleneck in the proposed GA is the proposed repair operator (Algorithm 1) which costs the most 

computation time and in the worst-case time it linearly related to the maximum number of sensors  

and targets . Thus, the worst-case time complexity of the proposed GA can formally be described as: 

                                             (15) 

5 Conclusions 

    In this paper, we have addressed designing energy-efficient WSNs with reliable coverage of the 

target area. The problem is modeled a minimum reliable set cover problem (MRSCP), which introduce 

the concept of probabilistic coverage as a more realistic coverage model for constructing the set cover. 

A genetic algorithm is proposed to construct a reliable set cover, where the total number of sensors 

used in the set is to be minimized. The result of the GA is then forwarded to a post-heuristic operator 

to improve the coverage reliability of the set cover. The performance of the proposed genetic 

algorithm is investigated in this paper under different simulation setting. The results of the simulations 

reveal that the number of active sensors used in the constructed set cover affected by the WSN design 

parameters including target size, sensor density, and sensor range. The results of this paper currently 

motivate us to investigate the possibility of applying multi-objective evolutionary algorithms (like 

MOEA/D, NSGA-II, and MOPSO [21]-[24]) to the combined optimization problem of both minimum 

set cover problem and cover reliability problem and handling both objective functions simultaneously 

instead of applying consecutive optimization mechanisms.  Also, as a scope of further work, another 

quality of service (QoS) merit could be used to constraint the defined MRSCP. For example, different 

targets may need different priority of sensing quality and thus the optimization problem should reflect 

this diversified QoS coverage constraint in its formulation. 
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