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Abstract

Let R be a commutative ring with non-zero identity element .For two fixed
positive integers m and n, a right R-module M is called strongly fully (m,n)- stable
relative to an ideal A of R"*™if @ (N\)€ N N M"A for each n- generated submodule
of M™ and R- homomorphism 6 :N— M™. In this paper | give some
characterizations theorems and properties of strongly fully (m,n) —stable modules
relative to an ideal A of R"*™.
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Introduction:

Throughout, R is commutative ring with non —zero identity and all modules are unitary right R-
modules. We use the notation R ™*" for the set of all m x n matrices over R. For G ¢ R ™*" .G" will
denote the transpose of G .In general ,for an R- module N ,we write N™*" for the set of all formal m x
n matrices whose entries are elements of N .Let M be a right R- module and N be a left R —module
Forx e M*™ s e R™"and y € N"**under the usual multiplication of matrices ,x s (resp.sy) is a well
defined element in M'*™ (resp.N"**).If Xe M'*™ 'S eR™*"and Ye N"*¥, define

' X"(S)= {ue M"*™ us =0 , v s€ S}
' (S)= {ve N"* vs=0,VseS}
™ (Y)={s e R" " sy=0 ,Vye Y }
rR""(X)={s € R™*": xs=0,v x€ X}
We will write N" = N*" Nn =N ™.
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Strongly fully stable module relative to an ideal A of R have been discussed in [ 1],an R —modul M is
called fully stable relative to an ideal A if 6 (N )E N N MA for each submodule N of M and R —
homomorphism 6: N—M.

It is an easy matter to see that M is strongly fully stable relative to an ideal A of R .if and only if
0(x R)€ x R N MA for each x in M and R-homomorphism. 6: xR —M .In this paper , for two fixed
positive integer m and n , we introduce the concepts of strongly fully (m, n) -stable module relative to
an ideal and strongly (m, n ) - Baer criterion relative to ideal and we prove that an R-module M is
strongly fully (m, n)-stable relative to an ideal A of R™™ if and only if any two m-element subsets {a
Ly eorennen Lo} and {B,........ Bm} of M"if BjeXT—; i RN M™A ,j=1,........,m implies
IRn {(X Lo vevneeen (Xm} oa I'rRn {Bl, ........ ,Bn}

Strongly fully (m, n) —stable module relative to ideal.

Definition 2.1:-An R-module M is called strongly fully (m, n) -stable relative to an ideal A of R n x
mif 8 (N) € N N Mn A for each n- generated submodule N of M m and R-homomorphism

: N — Mm. It is clear that M is strongly fully (1,1)- stable relative to Ideal ,if and only if M is
strongly fully stable relative to ideal .

It is an easy matter to see that an R-module .M is strongly fully (m, n) —stable relative to ideal if and
only if it is strongly fully (m, q) —stable relative to ideal for all 1< q < n ,if and only if it is strongly
fully (p,n) — stable relative to ideal for all 1 <p < m ,if and only if fully (p, g) —stable relative to ideal
forall I<p<mand 1<q<n.

In [2] an R-module M is called fully (m,n) —stable if 8 (N) < N for each n —generated submodule N
of Mm and R-homomorphism 0 :N — Mm. It is clear that every strongly fully (m, n ) —stable module
M relative to a non —zero ideal A of R n x mis fully (m, n) — stable .This follows from the fact N N
M"A < N for each n- generated submodule N of Mm.

Remark 2.2

1-Let M be anR-module and A be a a non —zero ideal A of R n x m. If M is fully (m,n)-stable and
Mm=MnA then M is strongly fully (m ,n) —stable relative to A ,since for each n-generated N of Mm
and R- homomorphism.f : N—M™ f(N) € N=N N Mm =N N M"A.

2-Note that the concepts fully (m, n) — stable R-module and strongly fully (m, n) —stable module
relative to an ideal A of Rn x mconsider for the ideal R n x min R™™, that is an R-module M is fully
(m, n)-stable if and only if M is strongly fully (m ,n)-stable module relative to ideal R™™ of R™"™.

The following proposition gives another characterization of strongly fully (m,n) — stable relative to
ideal .

Proposition 2.3

An R- module M is strongly fully (m,n) — stable relative to a non —zero ideal A of R™" if and only
if any two m-element subsets {a 1, ........ o} and {By,........ Bm} of M if BjeXT, ai RN M™A |j=
| RO ,m implies

MRn {(X Ty vevnenen ,am} < Irn {Bl, ........ ,Bn} .

Proof: - Assume that M is strongly fully (m, n) —stable relative to an ideal A of R ™" and the exist two

m - element subsets {a 4, ........ ,mpand {Bs,........ B} of M " such that
B¢ Y-, ai RN M"A foreachj=1,...... ;mand 1z {0y, ........ 0} € 1R n{B1s- ... B}

Define f:Y", iR >M" by f( X, ai ri)=x7" Biri

Let ai = (i, ajp ....... ain). If Y, ai ri=0 then Zl caij ri =0, j=1,......... m implies that
a,—rT= Owherer=(ry.....ccoeevennnn. .)€ R"and hence r'e rp {ay, ........ ,an} By assumption B
=0 j=1,........ ,m 80 27, Bir; = 0. This shows that f is well define.lt is an easy matter to see

that f is R- homomorphism strongly fully (m,n) —stable relative to an ideal A of R™" implies that there
exist t€ R such that

f( Yiujai r)=2p_ Qi al ) tj=1,..c........ ,m

for each Y7L, ai ri€ Y-, ai R letr;=(0,0,........ 1,0,....... 0)e R ,where 1 in the ith position and 0
otherwise

Bi=f(Xl,ai )=Xr_;aitk e M™A thus i€ ¥I-; ai R N M™ A which is contradiction.

Thus TR n{a Lo covenenn ,m} < TR n{Bla ........ Bm}

Conversely assume that there exist n- generated submodule of M™ and R- homomorphism
Y, ai R >MTsuchthat® X, ai R)¢é Y-, ai RNM"A.
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Then there exists an element B= (=X, ai ri)€ Yi—; ai R such that
B)eX,ai R NM"A take Bj=B j=1,...... ,m .

Than we have m- element subset { (B ),......... 0 (B)} such that
0()¢Yr,ai RNM"A.

Letn =(ty,........ t) € {0, ........ Jntthenogm=0ie Y™ aijtji=0Vj,....... ,m.
0 =(Agjyeeninnennannnnnn app)and {O(B),......... 0(B)}n
=k=10 (BItXy=10 Uity @l 1i )t=Xk=1(0 (Biz; ai i t)=0
hence 1z ,{ay, ........ nt € Trafl 0(Bo),......... 0 (B.)} which is a contradiction .Thus M is strongly
fully (m, n)- stable relative to ideal .
Corollary 2.4

Let M be strongly fully (m, n)-stable module relative to an ideal A of
R™" | then for any two m- element subsets {a, ........ o} and {By,........ ,Bm} of M",
rrafa, ........ o} ETRa{Bs,........ ,m} implies
(R +.......... +a,R)NM"A=(BR+.......... +BnR )YNM"A

Corollary 2.5[1]

let M be a strongly fully stable module relative to an ideal A of R, then for each x,y in M )y & (X) ,
1R (X)=1% (Y) implies (X) " M A=(y) "M A .

Recall that a submodule N of an R — module M is (m, n)- pure submodule if for all CE R ™™ . N™N
M"C =N"C [3].

The following proposition gives a partial answer for the question: - When the submodule of strongly
fully (m, n)-stable module relative to ideal.
Proposition 2.6

let M be a strongly fully (m ,n)- stable module to a non —zero ideal A of R™™. Then every (m, n)-

pure submodule of M is strongly fully (m, n)-stable module relative to A.
Proof:- let N be (m, n)- pure submodule of M.For each n-generated submodule K of N and an R —
homomorphism f:K — N, put g=i 0 :K — M™(where i is the inclusion mapping of N™ to M™),then
by assumption f(K) = g(K) € M" A , and since f(K) € N™. Hence f (K) € K N M"A N N™. since N is
(m, n) —pure submodule of M then N™ N M"A =Nn A, for each ideal A of R™™, therefore f(K) € K N
N"A .

Thus N is strongly fully (m, n) stable module relative to A.

Corollary 2.7[1]

let M be a strongly fully stable R —module relative to anon -zero ideal A of R . Then every pure
submodule of M is strongly fully stable module relative to A.

A.M .Sharky in [4] ,has introduced the concepts of Baer , s Criterion relative to an ideal .

Let M be an R-module , A be an ideal of R and N be a submodule of M . She says that N satisfies
Baer' s Criterion relative to A if for each R-homomorphism f:N — M, there exist r € R such that f(n)-
nr € MA , for each n €N .M is said to satisfy Baers Criterion relative to A ,if each submodule of M
satisfies Baer s Criterion relative to A . We introduce the concept of strongly (m,n)Baer 's Criterion
relative to A .

Definition 2.8

For affixed positive integers n and m ,we say that an R —module M satisfies strongly (m, n)- Baer s
Criterion relative to an ideal A of R™™ , if for any n- generated submodule N of M™ and any R —
homomorphism @ :N — M™ there exists t € R™™ such that 0 (X)=xt € M"A foreachxinN.

It is clear that if M satisfies strongly (m, n) Bear' s Criterion relative to an ideal A then M satisfies
strongly (p ,q)- Bear s Criterion relativeto A |V I<p<mand 1 <q<n.

Proposition 2. 9

Let M be an R- module and A be a non zero ideal of R™™ .Then M satisfies strongly (m, n) Bear, s

Criterion relative to an ideal A ,if and only if

In™ rem(oR+.......... + a.R) S (a;R+........... + a,R) N M" A for any n- element subset  {
[+ ST ,a,) of M™,
Proof: -First assume that strongly (m, n) ) Bear ' s Criterion relative to an ideal A holds for n-
generated submodule of) M™, let a=( ai,............ ,aim) ,for each i=1,...... ,n and B={B,........ Br}e
IMm rRm((le+ ........... + anR)
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Define ® : quR+........... + o, R>M"by O(X  a; ri) =Y Birilf ¥, a; r; =0 then ¥, a;r=

0 ,this implies that ai(rT) =0 where r=(ry,...... ) € R™ hence r'e Mrem(Q, ... ... ,a ) .By assumption

Bir'=0,vi=1,.....n soxi, Bi ri =0 .This shows that f is well defined . It is an easy matter to se e that

0 is an R- homomorphism . By assumption there exists t € R such that 0(Xi-; a; ri)
=Y Ol i)t e MA L t=(ty, ... ,tn)€ R™ for each

roapri eyt a; R Letri= (0,....... 0,1,0,...... ,0) € R™ where 1 in the ith positive and 0

otherwise .
Bi =X7-; itk thus (o) =Xk, a;ty € M" A thus B € X1=; @; R N M" A which is contradiction

. This implies that Iy"™ rgm(aR+........... + a,R) S (aR+........... +a,R) N M"A.

Conversely, assume that Iy™ rgm(aR+........... + oR) € (R+........... + a,R) N M" A, for each
{ag, ... ,a,} of M™. Then for each R ~homomorphism f : a;R+........... + a,R— M™ and s
=TI ,Sn)€ Mrm(OuR+........... +oR) , Yro1 Qe a; ri)sq =0 for each
Yiciai i € XLy a; R hence Yy f(Xizq a; ri)sk =Xg=1 f(Eizq @i Ni S« ) =0,
thus fFQMR airi) € 1™ rrm (R+........... + oR) = (oR+........... + a,R) N M" A, then
FOEMa;ri)=f(a;r" )=f(a;) '€ (aR+........... + a,R) N M" A. Then M satisfies strongly (m,

n) - stable relative to A .
Corollary 2.10

An R-module is strongly fully (m,n) stable relative to an ideal A
of R ™™ if and only if Iy" rgm(aR+........... + aR) € (;R+........... + a,R) N M" A for any n-
element subset { ay,....... , o, }of M™,

Proposition 2.11

Let A be an ideal of R™™and M be an R —module such that

rr(N N K) = rg(N) +rr(K) for each two n-generated submodule of M™.If M satisfies strongly (m,1) —
Bear ' s criterion relative to A .Then M satisfies strongly (m, n) - Bear ' s criterion relative to A for
eachn>1.
Proof:-Let L= x; R +......... +x, R be n-generated submodule of M™ and fi1 — M™ an R —
homomorphism .We use induction on n . It is clear that M satisfies strongly (m, n) —Bear, s criterion, if
n=1 .Suppose that M satisfies strongly (m, n) — Bear, s criterion for all k-generated submodule of
M™ for k<n-1.

Write N=x;R, K = Xx;R+........... +x, R, then for each wy € N and w, € k ,f/n(wq) =wyr=f/(W,)= WS
for somer ,s€eR.Itisclear r—s e rrR(N N K) =rr(N) +rr(K) ,suppose that r —s =u + v with u €
rr(N), v € rr(K) and let r —u = s+v . then for any w =c+w, € L with w;€ N and w, € K ,f(w)=wt
F(wy) +H(wz)=(wi+wo)t
f(Wl) —Wlt =W, t-f (W2)
f(wi)-wa(r —u ) =wa(s+v) — f(wy)
f(wy) - War +wal =w, s +W, v —f (,2)€ M" A,

Corollary 2.12[1]

Let M be an R — module and A be a non —zero ideal of R .Then a strongly Bear ' s criterion relative

to A holds for each cyclic submodule of M if and only if
Im(rr(X)) =Ry N MA foreachx € M .
Corollary 2.13

Let A be a non —zero ideal of R and M be an R —module such that
rR(N N K )= rr(N) +rz(K) for every finitely generated submodule N and K of M .Then M is strongly
fully stable relative to A if and only if M satisfies strongly Bear ' s criterion relative to A for finitely
generated submodules.

Corollary 2.14

An R-module M is strongly fully -(m, n) stable relative to A of R™™ | if and only if Iy
rR((osR+........... + oR) € (i R+........... + a,R) N M"A for any n-element subset {a,.....a.} of M.

Recall that an R- module M is (m, n) —quasi injective if for each R —homomorphism from an n-
generated submodule of M" to M extends to one from M™ to M [5].Now, we introduce the concept of
strongly (m, n) —quasi —injective relative to ideal.

Definition 2.15
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An R —module M is said to be strongly (m, n)- quasi —injective relative to a non —zero ideal A of
R™™if for each n- generated submodule N of M and R ~homomorphism f: N — M there exists an R-
homomorphism g: M™ —M such that
f(x) =g(x) € M"A vx € N.

It is clear an R-module M is strongly principally quasi injective relative to A if and only if strongly
(1, 1)-quasi —injective relative to A.

Proposition 2.16

Let M be an R- module and A a non zero ideal of R™™ . If M is a strongly fully (m, n)-stable
relative to A , then M is strongly (m, n)-quasi —injective relative to A .
Proof:-Let N =R +....... +a,R for each {ay,....... ,o,} € M™ (N is n- generated submodule of M™)
and f:N —M be an R- homomorphism then f(N) € N N M" A, thus there exist te R such that
fO ari) =YX Gl g ridty t=(ty,...... ,tn) € Rm.

Defineg: M™ M by g(a)) = & t;, i=1,....... ,nY aie M™. Itis clear that g is well defined R-
homomorphism and f(X7L,; a;ri) =g i, a;n) = Yr=1 (i, a;hi) t . Therefore M is strongly (m, n)-
quasi injective relative to A .

Corollary 2.17[1]

Let M be an R-module M and A a non —zero ideal of R . If M is a strongly fully -stable relative to
A, then M is strongly principally quasi —injective relative to A.

In [6] , a submodule N of an R-module M is said to be fully invariant if @( N) €N for each R-
endomorphism 0 of M . In case that each submodule of M is fully invariant, then M is called duo
module.

Theorem 2.18

Let M be an R- module and A be a non zero ideal of R™™. Then M is a strongly fully (m, n) -stable
relative to A and duo module .

Proof:-— by proposition (2.16),M is strongly (m, n) - quasi —injective module relative to A and it is
clear that M is duo module .

Conversely, let N be an n-generated submodule of M ™ and f:N— M be an R homomorphism since
M is strongly (m, n) — quasi injective relative to A ,then there exists an R — homomorphism
g:M ™ — M such that f(n)=g(n) € M"A for each n€ N . Now, since M is duo module ,then
g(N) € N, hence g(N) € N N M"A thenf(n) e NN M"A , for each n € N . Therefore
f(NNSNNM"A .

Corollary 2.19

Let M be an R —module, and A be anon —zero ideal of R. M is a strongly fully —stable module
relative to A if and only if M is strongly principally quasi —injective relative to A and duo module.
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