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Abstract 

    Let R be a commutative ring with non-zero identity element .For two fixed 

positive integers m and n , a right R-module M is called strongly fully (m,n)- stable 

relative to an ideal A of R 
n x m

 if θ (N)⊆ N ∩ M
n 

A  for each n- generated submodule 

of M
m
 and R- homomorphism θ :N→ M

m
. In this paper I give some 

characterizations theorems and properties of strongly fully (m,n) –stable modules 

relative to an ideal A of R 
n x m

. 

 

Keywords: fully (m,n), stable, modules, ideal 

 

 بالنسبة الى مثالي بقوة  (m,n)نتائج حول المقاسات تامة الاستقرارية من النمط 
 

 عهود سعدي الحسني
 العراق-بغداد  ،جامعة بغذاد ،كلية العلومقسم الحاسبات، 

 

 :الخلاصة
فكرة المقاسات تامة الاستقرارية .  Rأحاديا على  أيمن مقاسا M. ذات عنصر محايد أبداليةحلقة R لتكن   

R لقةحفي ال  A بقوة بالنسبة الى مثالي( m، n) من النمط
nxm نقول ان المقاس .قدمت في هذا البحث M 

Rفي  A بقوة بالنسبة الى مثالي (m, n) الاستقرارية من النمطتام 
nxm اذا كان θ (N)⊆ N ∩ M

n 
A    لكل

Mالى  Nمن  θتشاكل مقاسي 
m حيث N مقاس جزئي متولد من النمط n  . في هذا البحث تم دراسة علاقة

مثل المقاسات  أخرى بأصنافبقوة بالنسبة الى مثالي   (m, n) النمطصنف المقاسات تامة الاستقرارية من 
 بالنسبة الى مثالي (m, n)    شبه اغمارية من النمط

 
 

Introduction: 

    Throughout, R is commutative ring with non –zero identity and all modules are unitary right R- 

modules. We use the notation R 
m x n

 for the set of all m x n matrices over R. For G ϵ R 
m x n

 ,G
T
 will 

denote the transpose of G .In general ,for an R- module N ,we write N
m x n

 for the set of all formal m x 

n matrices whose entries are elements of N .Let M be a right R- module and N be a left R –module 

.For x ∈ M
l x m 

,s ∈ R
m x n

 and y ∈ N
 n x k 

under the usual multiplication of matrices ,x s (resp.sy) is a well 

defined element in M
l x m 

(resp.N
n X K 

).If X∈ M
l x m 

, S ∈R
m x n

 and Y∈ N
n x k

, define   
  l

M
l x m

(S)= {u∈ M
l x m

: us =0 , ∀ s∈ S} 

rN
n x k

(S)= {v ∈ N
n x k

: vs=0 , ∀ s∈ S } 

lR
m xn

(Y)={s ∈ R
m xn

: sy=0 ,∀ y∈ Y } 

rR
m xn

(X)={s ∈ R
m x n

: xs=0,∀ x∈ X} 

We will write N
n
 = N

1xn
, Nn =N 

nx1
. 
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  Strongly fully stable module relative to an ideal A of R have been discussed in [ 1],an R –modul M is 

called fully stable relative to an ideal A  if  θ (N )⊑ N ∩ MA for each submodule N of M and R –

homomorphism θ: N→M. 

    It is an easy matter to see that M is strongly fully stable relative to an ideal A of R .if and only if         

θ(x R)⊆ x R ∩ MA for each x in M and R-homomorphism. θ: xR →M .In this paper , for two fixed 

positive integer m and n , we introduce the concepts of strongly fully (m, n) -stable module relative to 

an ideal and strongly (m, n ) - Baer criterion relative to ideal and we prove that an R-module M  is 

strongly fully (m, n)-stable relative to an ideal A of R
nxm

 if and only if any two  m-element subsets {  

1, …….., m} and { 1,…….., m} of M
n 
,if  j∈       

    M
m
A  , j = 1 ,……..,m implies  

rRn {  1, …….., m} ⊈  rRn { 1,…….., n} . 

Strongly fully (m, n) –stable module relative to ideal. 

    Definition 2.1:-An R-module M is called strongly fully (m, n)  -stable relative to an ideal A of R n x 

m if   (N) ⊆ N   Mn A for each n- generated  submodule  N of M m and R-homomorphism  

 : N → Mm. It is clear that M is strongly fully (1,1)- stable relative to Ideal ,if and only if M is 

strongly fully stable relative to ideal . 

    It is an easy matter to see that an R-module .M is strongly fully (m, n) –stable relative to ideal if and 

only if it is strongly fully (m, q) –stable relative to ideal for all 1≤ q ≤ n ,if and only if it is strongly 

fully (p,n) – stable relative to ideal for all 1 ≤ p ≤ m ,if and only if fully (p, q) –stable relative to ideal 

for all 1 ≤ p ≤ m and 1≤ q ≤ n . 

    In [2] an R-module M is called fully (m,n) –stable if   (N) ⊆ N for each n –generated submodule N 

of Mm and R-homomorphism   :N → Mm. It is clear that every strongly  fully (m, n ) –stable module  

M relative to a non –zero ideal A of R n x m is fully (m, n) – stable .This follows from the fact  N   

M
n 
A ⊆ N for each n- generated submodule  N of Mm. 

Remark 2.2   

1-Let M be anR-module and A be a a non –zero ideal A of R n x m. If M is fully (m,n)-stable and 

Mm=MnA then M is strongly fully  (m ,n) –stable relative  to A ,since for each n-generated N of Mm 

and R- homomorphism.f : N→M
m
 ,f(N) ⊆ N=N ∩ Mm =N ∩ M

n
A. 

2-Note that the concepts fully (m, n) – stable R-module and strongly fully (m, n) –stable module 

relative to an ideal A of Rn x mconsider for the ideal R n x min R
nxm

, that is an R-module M is fully 

(m, n)-stable if and only if M is strongly fully (m ,n)-stable module relative to ideal R
nxm

 of R
nxm

. 

    The following proposition gives another characterization of strongly fully (m,n) – stable relative to 

ideal . 

Proposition 2.3 
    An R- module M is strongly fully (m,n) – stable relative to a non –zero ideal A of  R

mxn
 if and only 

if any two  m-element subsets {  1, …….., m} and { 1,…….., m} of M
n 
,if  j∈       

    M
m
A  , j = 

1 ,……..,m implies  

rRn {  1, …….., m} ⊈  rRn { 1,…….., n} . 

Proof: - Assume that M is strongly fully (m, n) –stable relative to an ideal A of R 
mxn

 and the exist two 

m - element subsets {  1, ……..,m} and { 1,…….., m} of M
 n
 such that 

  j ∉        
    M

m
A   for each j = 1,……,m and      {  1, …….., m} ⊆     { 1,…….., m}. 

    Define     f :       
     → M 

m 
by f (           

   =        
    

    Let    = (ai1, ai2 …….ain). If          
   =0  ,then          

    =0 , j=1,………m implies that           

  jr
T
= 0 where r = (r1……………..rn)∈ R

n
 and hence r

T      { 1, …….., m}  .By assumption          j 

r
T
 =0 ,j=1,………..,m   ,so    

 
        . This shows that f is well define.It is an easy matter to see 

that f is R- homomorphism strongly fully (m,n) –stable relative to an ideal A of R
mxn

 implies that there 

exist t∈ R such that  

 f(            
   =           

   
 
    tk ,j=1,………..,m 

  

for each         
   ∈         

   ,let r i =(0,0,……..,1,0,…….0)∈ R ,where 1 in the ith position and 0 

otherwise  

  i =f(       
     =    

 
   tk ∈ M 

m
 A ,thus  i ∈       

       M
m
 A which is contradiction. 

Thus     {  1, ……..,m} ⊈     { 1,…….., m}. 

     Conversely assume that there exist n- generated submodule of M
m
 and R- homomorphism                

:         
     → M 

m
 such that   (        

   ) ∉         
     M

n
 A . 
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Then there exists an element  = (=        
   )∈         

   such that  

(  ) ∉         
      M

n
 A ,take  j =   ,j=1,……,m . 

    Than we have m- element subset { (  ),………   ( )} such that  

   ( ) ∉         
     M

m
 A . 

    Let   =(t1,……..tn)
T∈     { 1, …….., m} then  j   =0 i.e            

    ∀ j,……..,m . 

 j =( a1j,……………..,an j) and {  (  ),………   ( )}   

= θ      
   tk= θ          

      
   tk=  θ          

       
 
   =0 

hence     { 1, ……..,m} ⊆     {  ( 1),………   ( n)} which is a contradiction .Thus M is strongly 

fully (m, n)- stable relative to ideal . 

Corollary 2.4 
    Let M be strongly fully (m, n)-stable module relative to  an ideal A of  

R
mxn

   , then for any two m- element subsets { 1, …….., m} and { 1,…….., m} of M
n
, 

    { 1, ……..,m} ⊆     { 1,……..,m} implies  

( 1R  +……….+  mR ) ∩ M
m
A = ( 1 R +……….+  m R  ) ∩ M

m
A 

Corollary  2.5 [1] 

    let M be a strongly fully stable module relative to an ideal A of R , then for each x,y in M ,y ∉ (x) , 

   (x)=    (y) implies (x) ∩ M A=(y) ∩ M A . 

Recall that a submodule N of an R – module M is (m, n)- pure submodule if for all C∈ R 
nxm

 .    N
m
∩ 

M
n
C =N

n
C  [3]. 

    The following proposition gives a partial answer for the question: - When the submodule of strongly 

fully (m, n)-stable module relative to ideal. 

Proposition 2.6 

     let M be a strongly fully (m ,n)- stable module to a non –zero ideal A of R
nx m

. Then every (m, n)-

pure submodule of M is strongly fully (m, n)-stable module relative to A. 

Proof:- let N be (m, n)- pure submodule  of M.For each n-generated submodule K of N  and an R –

homomorphism f:K → N
m
, put g=i o f:K  → M

m
(where i is the inclusion mapping  of N

m
 to M

m
),then 

by assumption f(K) = g(K) ⊆ M
n
 A , and since f(K) ⊆ N

m
. Hence f (K) ⊆ K ∩ M

n
A ∩ N

m
. since N is 

(m, n) –pure submodule of M then N
m
 ∩ M

n
A =Nn A, for each ideal A of R

nxm
 , therefore  f(K) ⊆ K ∩ 

N
n
A  . 

    Thus N is strongly fully (m, n) stable module relative to A. 

Corollary  2.7[1] 

    let M be a strongly fully stable R –module  relative to anon  -zero ideal A of R . Then every pure 

submodule of M is strongly fully stable module relative to A. 

A.M .Sharky in [4] ,has introduced the concepts of Baer , s Criterion relative to an ideal . 

    Let M be an R-module , A be an ideal of R and N be a submodule  of M . She says that N satisfies 

Baer
 ,
 s Criterion relative to A if for each R-homomorphism  f:N → M, there exist r ∈ R such that f(n)-

n r ∈ MA , for each n ∈N .M is said to satisfy Baer
'
s Criterion relative to A ,if each submodule of M 

satisfies  Baer
,
 s Criterion relative to A . We introduce the concept of strongly (m,n)Baer 

,
s Criterion 

relative to A . 

Definition 2.8 

    For affixed positive integers n and m ,we say that an R –module M satisfies strongly (m, n)- Baer
,
 s 

Criterion relative to an ideal A of R
nxm

 , if for any n- generated submodule N of M
m
 and any R –

homomorphism   :N → M
m
 there exists t ∈ R

nxm
 such that               (x)=xt ∈ M

n
A  for each x in N . 

    It is clear that if M satisfies strongly (m, n) Bear
 ,
 s Criterion relative to an ideal A  then M satisfies  

strongly (p ,q)- Bear
,
 s Criterion relative to  A  ,∀ 1≤ p ≤ m and 1 ≤ q ≤ n. 

Proposition 2. 9 

    Let M be an R- module and A be a non zero ideal of R
nxm

 .Then M satisfies  strongly (m, n)  Bear , s 

Criterion relative to an ideal A  ,if and only if   

lM
m
  rRm( 1R+………..+  nR) ⊆ ( 1R+………..+  nR) ∩ M

n
 A for any n- element subset     { 

 1,……….., n) of M
m
 . 

Proof: -First assume that strongly (m, n) ) Bear
 ,
 s Criterion relative to an ideal A  holds for n- 

generated submodule of)  M
m
, let  i=( ai1,…………,aim) ,for each i=1,……,n and  ={ 1,…….., n}∈ 

lM
m
  rRm( 1R+………..+  nR) 
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    Define   :  1R+………..+  nR→ M
m
 by  (      

 
   ri) =    

 
   ri If      

 
   ri  =0 ,then     

 
   ri = 

0 ,this implies that  i(r
T
 ) =0 where  r =(r1 ,……,rn) ∈ R

m
 ,hence r

T∈ rRm( 1,…….,  n) .By  assumption 

 i r
T
=0,∀i=1,…..,n    so    

 
   ri =0 .This shows that  f is well defined . It is an easy matter to se e that 

  is an R- homomorphism . By assumption there exists t ∈ R such that        
 
   ri) 

=       
 
   

 
   ri)tk  ∈ M

n
A    t=(t1,……..,tn)∈ R

m
 for each 

      
 
   ri ∈     

 
   R .Let ri= (0,…….0,1,0,……,0) ∈ R

m
 where 1 in the ith positive and 0 

otherwise . 

 i =   
 
   tk thus ( i) =   

 
   tk  ∈ M

n
 A thus  i ∈      

 
   R ∩ M

n
 A which is contradiction 

. This implies that lM
m
  rRm( 1R+………..+  nR) ⊆ ( 1R+………..+  nR) ∩ M

n
 A. 

     Conversely, assume that lM
m 

 rRm( 1R+………..+  nR) ⊆ ( 1R+………..+  nR) ∩ M
n
 A, for each     

{  1,……….., n} of M
m
. Then for each R –homomorphism f :  1R+………..+  nR→ M

m
 and         s 

=(s1,……..,sn)∈ rRm( 1R+………..+  nR) ,        
 
   

 
   ri)sk  =0 for each 

      
 
   ri  ∈      

 
   R  hence         

 
   

 
   ri)s k  =         

 
   

 
   ri  sk  ) =0, 

thus         
 
   ri ) ∈ lM

m
  rRm ( 1R+………..+  nR) = ( 1R+………..+  nR) ∩ M

n
 A, then 

       
 
   ri ) =      r

T
  )=        r

T ∈  ( 1R+………..+  nR) ∩ M
n
 A. Then M satisfies strongly  (m, 

n) - stable relative to A . 

Corollary 2.10 

    An R-module is strongly  fully (m ,n ) stable  relative to an ideal  A 

 of R 
nxm

 if and only if lM
m
  rRm( 1R+………..+  nR) ⊆ ( 1R+………..+  nR) ∩ M

n
 A for any n- 

element subset {  1,…….,  n } of M
m
.  

Proposition 2.11 

    Let A be an ideal of R
nxm 

and M be an R –module such that 

rR(N ∩ K) =  rR(N) +rR(K) for each two n-generated submodule  of M
m
.If  M satisfies strongly (m,1) –

Bear 
,
 s criterion relative to A .Then M satisfies strongly (m, n) - Bear

 ,
 s criterion relative to A for 

each n ≥ 1. 

Proof:-Let L= x1 R +………+xn R   be n-generated submodule of M
m
 and f:l → M

m
 an R –

homomorphism .We use induction on n . It is clear that M satisfies strongly (m, n) –Bear, s criterion, if 

n=1 .Suppose that M satisfies strongly (m, n) – Bear, s criterion for all k-generated submodule of 

M
m
,for  k ≤ n-1 . 

    Write N=x1R, k = x2R+………..+xn R, then for each w1 ∈ N and w2 ∈ k ,f N(w1) =w1r=f/K(w2)= w2s 

for  some r ,s ∈R . I t is clear   r – s ∈ rR(N ∩ K)  = rR(N) +rR(K) ,suppose that r –s =u + v with u ∈ 

rR(N) , v ∈ rR(K) and let r –u = s+v . then for any w =c+w2 ∈ L with w1∈ N and w2 ∈ K ,f(w)=wt 

f(w1)+f(w2)=(w1+w2)t   

f(w1) –w1t  = w2 t –f (w2) 

f(w1)-w1(r –u ) =w2(s+v) – f(w2) 

f(w1) - w1 r +w1u  =w2 s +w2 v –f (w2)∈ M
n
 A. 

Corollary 2.12[1]  

    Let M be an R – module and A be a non –zero ideal of R .Then a strongly Bear 
,
 s criterion relative 

to A holds for each cyclic submodule  of M if and only if 

 lM(rR(x)) =Rx ∩ MA for each x ∈ M . 

Corollary 2.13 

    Let A be a non –zero ideal of R and M be an R –module such that 

 rR(N ∩ K )= rR(N) +rR(K) for every finitely generated submodule N and K of M .Then M is strongly 

fully stable relative to A if and only if M satisfies strongly  Bear 
,
 s criterion relative to A for finitely 

generated submodules. 

Corollary 2.14 

    An R-module M is strongly fully -(m, n)  stable relative to A of R
nxm

 , if and only if    lM 

rR(( 1R+………..+  nR) ⊆ ( 1R+………..+  nR) ∩ M
n
A for any n-element  subset { 1,….. n} of M . 

    Recall that an R- module M is (m, n) –quasi injective if for each R –homomorphism from an n- 

generated submodule of M
n
 to M extends to one from M

m
 to M [5].Now, we introduce the concept of 

strongly (m, n) –quasi –injective relative to ideal. 

Definition 2.15 
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    An R –module M is said to be strongly (m, n)- quasi –injective relative to a non –zero ideal A of 

R
nxm 

if for each  n- generated submodule N of M and R –homomorphism f: N → M there exists an R- 

homomorphism g: M
m
 →M such that 

 f(x) =g(x) ∈ M
n
A  ∀x ∈ N. 

    It is clear an R-module M is strongly principally quasi injective relative to A if and only if strongly 

(1, 1)-quasi –injective relative to A. 

Proposition 2.16 

     Let M be an R- module and A a non zero ideal of R
nxm

 . If M is a strongly fully (m, n)-stable 

relative to A , then M is strongly (m, n)-quasi –injective relative to A . 

Proof:-Let N = 1R +…….+ nR  for each { 1,……., n} ∈ M
m
 (N is n- generated submodule of M

m
) 

and f:N →M be an R- homomorphism then f(N) ⊆ N ∩ M
n
 A, thus there exist t∈ R such that 

f(   
 
   ri) =      

 
   

 
    ri)t k , t = (t1,……,tn) ∈ Rm. 

    Define g : M
m
 →M by g( i) =  i ti , i = 1,……., n ∀   i∈ M

m
 . It is clear that g is well defined R- 

homomorphism and f(   
 
   ri) =g (   

 
   ri) =      

 
   

 
   ri) tk . Therefore M is strongly (m, n)- 

quasi injective relative to A . 

Corollary 2.17[1] 
    Let M be an R-module M and  A a non –zero ideal of R . If M is a strongly fully -stable relative to 

A, then M is strongly principally quasi –injective relative to A. 

    In [6] , a submodule N of an R-module M  is said to be fully invariant if  ( N) ⊆N  for each R-

endomorphism   of M . In case that each submodule of M is fully invariant, then M is called duo 

module. 

Theorem 2.18 

    Let M  be an R- module and A be  a non zero ideal of R
nxm

. Then M is a strongly fully (m, n) -stable 

relative to A  and duo  module . 

Proof:-→ by proposition (2.16),M is strongly (m, n) - quasi –injective module  relative to A and it is 

clear that M is duo module .  

    Conversely, let N be an n-generated submodule  of M 
m
 and f:N→ M be an R homomorphism since 

M is strongly (m, n) – quasi injective relative to A ,then there exists an R – homomorphism  

g:M 
m
  → M such that f(n)=g(n) ∈  M

n
A  for each n∈ N . Now, since M is duo module ,then 

 g(N) ⊆ N , hence g(N) ⊆ N ∩ M
n
 A  then f(n) ∈  N ∩ M

n
 A  , for each n ∈ N . Therefore  

f(N) ⊆ N ∩ M
n
 A  . 

Corollary 2.19 
    Let M be an R –module, and A be anon –zero ideal of R. M is a strongly fully –stable module 

relative to A if and only if M is strongly principally quasi –injective relative to A and duo module. 
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