Jabr and Abdulhadi Iragi Journal of Science, 2014, Vol 55, No.2B, pp:811-821

Iraqi
Journal of
Science

Influence of MHD on Steady State Newtonian Fluid Flow in A vertical
Channel With Porous Wall Using HAM

Khalid I. Jabr* ,Ahmed M. Abdulhadi
Department of Mathematic, College of Science, University of Baghdad, Baghdad, Irag.

Abstract

The aim of this paper is to analyses steady state three-dimensional
magnetohydrodynamic(MHD) flow of fluid injected uniformly into the vertical channel
with porous wall through one side of the channel. The equations which were used to
describe the flow are the momentum and energy equations, these equations were written
to get their non-dimensional form. It is found that these equations are controlled by
many dimensionless parameter, such as Hartmann number M, Reynolds number Re and
Peclet number Pe. The homotopy analysis method(HAM) is employed to obtain a
analytical solutions for velocity and heat transfer fields. The effect of each
dimensionless parameters upon the normal and tangential velocity, pressure and
temperature distributions are analyzed and shown about (15) graphs by using the
Mathematica package.
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Introduction

Fluid is that state of matter, which is capable of changing shape and is capable of flowing. Fluids may
be classified as real "viscous™" and ideal "perfect" according to whether the fluid is capable of exerting
shearing stress or not. Real fluid is called Newtonian if the relation between stress and rate of strain is
linear, otherwise is called non-Newtonian fluid. Within the past fifty years, many problems dealing with
the flow of Newtonian and non-Newtonian fluids through porous channels have been studied by engineers
and mathematicians. The analysis of such flows finds important applications in different scientific fields.
Examples of these applications are the boundary layer control, transpiration cooling, gaseous diffusion,
prevent corrosion, reactants addition and drag reduction. From a technological point of view, flows of this
type are always important, especially in transpiration cooling, which is very effective process to protect
certain structural elements in turbo jet and rocket engines, like combustion chamber walls, or gas turbine
blades from influence of hot gases. Examples, of such flow of fluid in vertical porous channel, is found in
[1] as the simplest subclass for which one can hope to gain an analytic solution.

The magnetohydrodynamic (MHD) phenomenon is characterized by an interaction between the
hydrodynamic and the electromagnetic field. The study of MHD flow in a channel with porous wall also
has applications in many devices like MHD power generators, MHD pumps, accelerators, etc. Some
recent contributions in the field may be mentioned in [2 - 6]. The flow of Newtonian and non- Newtonian
fluids through porous channel has been investigated by numerous authors.

The case of a two-dimensional, incompressible, steady, laminar suction flow of a Newtonian fluid in a
porous channel was studied by Berman[7]. He has solved the Navier-Stokes equations by using a
perturbation method for very low cross-flow Reynolds number. After his pioneering work, this problem
has been studied by many researchers considering various variations in the problem [8,9]. Wang and
Skalak[10] were the first persons who present the solution for a three-dimensional problem of fluid
injection through one side of a long vertical channel for Newtonian fluid. They have obtained a series
solution for small value of Reynolds number and numerical solution for both small and large Reynolds
number. Huang[11] re-examined Wang and Skalak problem using a method based upon
quasilinearization. Authors like Ascher[12], Baris[13], Sharma and Chaudhary[14] and many others have
extended Berman’s series solution and solve it by different techniques.

In the recent year Baris continued the last mentioned research by substituting thermodynamically
compaitible fluid instead of Newtonian fluid. the used analytical method by Baris was traditional
perturbation solution which was one of the old analytical methods. These scientific problems are modeled
by ordinary or partial differential equations and should be solved using special techniques, because in
most cases, analytical solutions can't be applied to these problems. In recent years, much attention has
been devoted to the newly developed methods to construct an analytical solution of these equations. One
of these techniques is Homotopy Analysis Method(HAM),which was introduced by Liao[15-17] and has
been successfully applied to solve many types of nonlinear problems[1,18-21].

Basic ideas of HAM:-
This method is proposed by Liao [15-17]. Below the outline of the HAM will be presented.

Consider a non-linear equation governed by

Au)+ f(r)=0 1
where Alis a non-linear operator, f(r)is a known function and u is an unknown function. By means of
homotopy analysis method, one first construct a family of equations

(1= p){Lv(r, p) —ug(r)]= ph{AV(r, p)] - f (N}, @
where /s an auxiliary linear operator, Ug (r) is an initial guess, h is an auxiliary parameter, p €[0,] is

an embedding parameter, v(r, p) is an unknown function of rand p. Liao [18,19] expanded v(r, p)in
Taylor series about the embedding parameter

V(r,p) = Ug () + XU (1) p™, ©)

m=1L
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where
4)

The convergence of the series (3) depends upon the auxiliary parameter h. If it is convergent at p =1,
one has

u(r) = up(r) + ilum(r) (5)

Differentiating the zeroth order deformation equation (2) m -time with respect to p and then dividing
them by m! and finally setting p =0 we obtain the following m -th order deformation problem:

U (1) = ZmUm-1 (D] = hRp, (), (6)
in which
B 0, m<l, .
Xm = 1, m >1’ ( )

(8)

1 amt % m
Rm(r) = (m_l)!{dpm—l AI:UO (r)+;um(r) p :|} -

There are many different ways to get the higher order deformation equation. However, according to the
fundamental theorem in calculus, the term u,, (r) in the series (3) is unique. Note that the HAM contains

an auxiliary parameter h, which provides us with a simple way to control and adjust the series solution
(5).
Governing equation:-

The steady three —dimensional flow of Newtonian, laminar, and incompressible fluid in a vertical
channel with porous wall is considered and the body force per unit mass is taken to be equal to the
gravitational acceleration. The channel is assumed to be infinite and uniform and figures-1 and 2 shows
the physical model and coordinate system. Through which the fluid is injected uniformly in to the channel
through one side. The fluid is injected through a vertical porous plate at y=D with uniform velocity U. The
fluid strikes another vertical impermeable plate at y=0. The fluid flows out through the opening of the
plates, due to the action of gravity along the z-axis. The distance between the walls is assumed D, is small
compared to the dimensions of the plates, i.e. L >> B >> D. Due to this assumption the edge effect can be
ignored and the isobars are parallel to the z-axis. Then, the basic equations of our problem can be given

by:

Continuity Equation ] + al + all =0 9)
oXx oy oz
2
N-S Equation u@_u+V6_u+W0_u:_£@+Uv2u_ﬂ (120)
OX oz P OX Jo,
u@+v@+wgz—£@+uvzv (11)
ox oy oz p oy
where p is the density, & is the viscosity and p is the pressure with the dimensionless quantities :
ux ., D?
U=="f'() , v=-Uf (1) , w=—"h(y) (12)
D U
where 7 = % , and with the boundary conditions:
f(0)=0, f(1)=0, f'(0)=0, f'(1)=0 (13)
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oT oT oT
Energy Equation U—+Vv—+w—) =kAT 14
gy Eq PC,U— Y o) (14)

where PC, is the heat capacity, k is the thermal conductivity and T is the temperature field is introduced

as below
T=T +(T,-T.)0@) (15)
where T, and T, are temperatures of the impermeable and porous plates respectively and with constant
value and with the boundary conditions
6(0)=0, 60 =1 (16)
Substituting the Eq.(12) into Egs (10) , (11) and (14) , we obtain following ordinary differential equations
with boundary conditions (5):

f"+Re[ff —f f']-Mf =0 17)
1 0en MU, 11U
X,n)=—=pUf°-—"—1f += f (0)+c, 18
p(X,7) 5P 5 > DO (0) (18)
. . . UDp . ’B* .
where C, is the constant of integration, Re = is Reynolds number and M = is called
H H
Hartmann number.
Energy equation with corresponding boundary conditions (8) reduces to:
0 +Pefd =0 (19)
pUDc,
where Pe = is called Peclet number.
-~ ) —»
— A > —
oA ~+
g —
=N S
—»_T:-. |—»
= = 1
L sl > >
e -+
_’—:’_-:-» —»
N =
+ VW >
}‘— D—’1 vy 2
Figure.1 -Sketch of the problem under discussion. Figure.2- Fluid flow in a vertical channel with
porous wall.
HAM solution:-

In this section, we attempt to obtain analytical solutions for the imposed problem. The HAM proposed
by Liao[15-17] is employed to solve the problem. Many types of nonlinear problems were solved with
HAM in the literatures [1] and [18-21] which verify the validity of the method.

Basic procedure
For the HAM solving procedure, we first select initial guess solutions as follows:

f.(n)=3n"-21° (20)
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0,(m) =n (21)
Then we define the linear operators
L(f)=f , L,(@)=6 (22)
Which have the property
L, (c, +C,n+C51° +¢,17°) =0, L,(cs +Cq77) =0 (23)

where ¢, (i =1—6) are constants
Further more, The nonlinear operators can be defined as
N [f@;p)=f +Re[ff —f f1-Mf =0 (24)
N,[6(7;p) =60 +Pe[f6']1=0 (25)
where p €[0,1] is an embedding parameter, as p increases from 0to 1, f(77; p) and &(77; p) vary from
the initial guess fy(77)and &, (77) to the exact solution f (77)and 6(77) , respectively.
We develop the so called zeroth-order deformation equations and corresponding boundary conditions:

A-pLLf @ p) - f, D)1= phN,[f (@7 p)] (26)

Q- p)L,[6(7; p) - 6,(m)] = ph,N,[6(77; p)] (27)
f(O;p)=0, f(O;p)=0, fLp)=1, f(Lp)=1 (28)
0(0;p)=0 , 0L p)=1 (29)

Differentiating the zeroth-order deformation Egs. (26) and (27) m-times with respect to p and then
dividing them by m!, finally setting p = 0, we obtain the following mth-order deformation equations as

L[ (17) = Zm T (1= DR (1) (30)
L, [0 (7) = O 1 (1)1 = ;R (1) (31)
fn(0) = f,(0)=f, (D)=, 1)=0 (32)
0,(0)=6,1)=0 (33)
for both boundary conations In which h, and h, are an auxiliary parameters.
m-1
R (1) = foy +Re Y [0y f = foy i fT1-MF (34)
i=0
m-1
Ro(m)=0,.,+ Pez frosi6; (35)

i=0
and
0 when m<1
Xm =

|1 whenm>1

We use the symbolic calculation software MATHEMATICA and solve the set of linear differential
Egs.(30) and (31) with boundary conditions (34) and (35) up to first few order of approximation. It is
found that f (77) and 6(77) can be written as

f(17) =Z f.(m) . 6(n) =Z<9m(f7)

And

4m+3

fro= D Anini??’ (36)

i=0
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0 m>0,i<1
where a,; is acoefficientof f () for m>1,and A, ,;=10 m=0,i>4m+3 (37)
1 otherwise
4Am+1 .
and em = Z:é‘m,ibm.inI (38)
i=0
0 m=x0,i=0
. - 0 m>0,i>4m+1
where b . is a coefficient of g, (7) for m>1,and ;= (39)

1

0 m>0,2<i<3

otherwise

To obtain the general solution for N-S equations we will differentiate Eq.(36) w.r.t 7 four times and

substitute the result into Egs.(30) &(34) and by using Eq.(32) and doing simple calculation the general
solution has the form

© ) 4D+3 4D
f :zfm :IImDaoo[Z( Zam,knk)] (40)
m=0 k=1 m=k-1

By the same way, to get the general solution of energy equation we will differentiate Eq.(38) w.r.t 7 twice

and substitute the result into Egs.(31) &(35) and by using Eq.(33) and doing simple calculation the general
solution has the form

4D+1 4D

0=, =limy [ (3 0,,n)]

=0 k=1 m=k-1
where a, ,and b, are the coefficients of the functions f and 6, respectively and we can obtain the

6, =l

m

(41)

3

values of it by equating the equal powers of 77.
Convergence of the solutions
The analytical expressions given by f (77)and @(77) contain the auxiliary parameter h,,h, respectively

which controls the convergence region and rate of approximation for the HAM. It is clear from figure-3
that 10th-order approximation is admissible for the N-S equations. While, figure-4 disclosed that for

energy equation, 10th-order approximation is proper. For h, =—0.6 and h, =—0.6 they are apparent from
the calculations that the series given in f(77)and €(77) converge in the whole region of 7. To show the

convergence of our solution explicitly, we have made table (1) and (2). It can be seen that the solution
converge as order of approximant increase and 10th-order approximation is enough to get a reasonable
result.

A :
—-=  10-th ord —1000 -..\ NG mams 10-th order 1200 ,
. Lyt 8-th ord §
8-th orde; _5000 A th order o ;
——  6-thorder Tyl ——  G-thoorder . '
. [ b i
—3000 1 800 :
1 i
_4000F i\ 600 :
H :
EY . g
_ 1 400 4
_si t
5000 iy L
' 200 7y
—6000 3
VA gle <
[ . - acd 2 n

1 1

Figure.3- 10th-order of approximation h, curve for f ' © of approximation h, curve

for 6 (0).

Figure.4 10th-order
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Table 1- The value of h;

THE VALUE OF h, 10™-ODER 8™-ORDER 6™"-ORDER
-0.2 3.40515 3.46737 3.54601
-0.4 3.29169 3.29817 3.33276
-0.6 3.28957 3.29202 3.28866
-0.8 3.29208 3.28598 3.29778
-1.0 3.26973 3.32564 3.22263
-1.2 3.46692 3.17748 3.16221
-1.4 4.2035 1.64254 3.54518
-1.6 -2.49731 -3.63785 5.05828
-1.8 -66.5057 -15.3632 8.40992

Table 2- The value of h,

THE VALUE OF h, 10™-ORDER 8™-ORDER 6™"-ORDER

-0.2 1.15437 114196 112323
-0.4 1.17571 1.1735 1.16717
-0.6 1.17696 1.17681 1.17604
-0.8 1.17695 1.17694 1.17709
-1.0 1.17705 1.17662 1.17839
-1.2 1.17277 1.18547 1.17524
-1.4 1.21732 1.22609 1.6533
-16 1.79421 1.33302 1.17242
-1.8 4.99284 159514 1.27876
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Figure.5 - Normal velocity distribution with

Re=10,h, =-0.6, M =0.001,1,515.

Figure.6 - Normal velocity distribution with

M =1,h, =-0.6,Re =-10,0,10,20
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Figure.9 - Tangential velocity distribution with

M =1h =-0.6,Re=0,510,20. Figure.10 - Tangential velocity contours for Re =10.
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Results and discussion

Utilizing the analytical solutions, calculations are performed to investigate the effect of MHD parameter
"M", Reynolds number "Re" and Peclet number "Pe" on fluid flow in a channel with porous wall. And we
get the following results:

e As Hartmann number increase, there is small decreasing in the normal velocity range see figure-5,
and have different behavior among 7 =0.4 tor =1 enhances the minimum of the tangential

velocity and moves away from porous wall, see figure-7 and 8. And pressure is increase in x-
direction see figure-14 and decrease in y-direction see figure-16.

o As Reynolds number increase, there is increasing in the normal velocity see figure-6, and
tangential velocity have different behavior i.e. enhances the maximum of tangential velocity and
moves it away from porous wall, see figure-9. Regarding to the figures-10 ,11 ,12 and 13 the
position of maximum tangential velocity gets closer to porous surface when Reynolds number has
a negative value. And if Reynolds number increase the pressure is decreasing see figures-15 and
17.

e As Peclet number increase, there is increasing in temperature range, see figures-18 and 19.
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