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Abstract

This paper deals with the Magnetohydrodynyamic (Mill)) flow for a viscoclastic
fluid of the generalized Oldroyd-B model. The fractional calculus approach is used
to establish the constitutive relationship of the non-Newtonian fluid model. Exact
analytic solutions for the velocity and shear stress fields in terms of the Fox H-
function are obtained by using discrete Laplace transform. The effect of different
parameter that controlled the motion and shear stress equations are studied through
plotting using the MATHEMATICA-8 software.
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Introduction

In technological applications, it has generally known that non-Newtonian fluids (such as molten
plastic, paints, blood and other similar entities) are more appropriate and suitable that Newtonian
fluids. This is due to their wide area of their applications, such as exotic lubricants, food stuffs,
colloidal and suspension solution, slurry fuels and many others. Because of the complex of the non-
Newtonian fluids there is no model which can alone describe them all. Therefore, several constitutive
equations for non-Newtonian fluid have been proposed. One of them, the Oldroyd-B fluid viscoelastic
fluid model which can predict stress relaxation, has much attention. Fractional derivatives have been
found to be quite flexible in describing viscoelastic behavior, [1]. In general, the constitutive equations
for generalized non-Newtonian fluids arc modified from the well known models by replacing the time
derivative of an integer order with the so-called Riemann-Liouville fractional calculus operator, [2-3].

Haitao and Xu [4] investigated the Stokes problem for viscoelastic fluid with the generalized
Oldroyd-B fluid model. Khan et al. [5] discussed some accelerated flows for generalized Oldroyd-B
fluid. Hyder et al. [6] investigated the generalized Oldroyd-B fluid model with the fractional calculus
approach is used. They considered two types of flow namely, (i) flow due to impulsive motion in
present of constant pressure gradient and (ii) flow induced by an impulsive pressure gradient, obtained
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an exact analytic solution for the velocity and stress fields in terms of Fox H-function. Also, they
analyzed the influence of various parameters of interest on the velocity and shear stress through
several graphs, a comparison between Oldroyd-B fluid and generalized Oldroyd-B fluid is also given.
In this paper, the effect of magnatichyrodynamic (MHD) for a viscoelastic fluid with the generalized
Oldroyd-B model with fractional derivative is studied, also, the effect of different parameter that
controlled the motion and shear stress equations are analyzed through plotting using the
MATHEMATICA-8 software.

Formulation of the Problem

The fundamental equations governing the unsteady motion of an incompressible fluid are:

divV =0, 1)
pc;—\t/ =divT+ gb (2)

where V is the velocity field, p is the density, T is the Cauchy stress tensor, o is the electrical
conductivity of the fluid, b is the body force and % the material time derivative.

The Cauchy stress tensor T for a generalized Oldroyd-B fluid [4,7] is:
T=-pl+S,

D“ D# ©)
0{_ — a_
(1+/1 Dt“]s ,u£1+6? Dtﬁ]At

In which p is the pressure, | is the identity tensor, x the dynamic viscosity, S the extra stress
tensor, A and @ are relaxation and retardation tines respectively, « and g are fractional calculus
parameter such that 0 < o < <1, and first Rivlin-Ericksen tensor is given by:

Ai=L+L", L=gradV (4)
where T denoted the matrix transpose,
D“S o T
=Dy S+ (V.V)S-LS-LS, (5)
ta
DA _ s T
WZDt A+ (V.V) A —LS—LA (6)

In which D{" and Dtﬂ are the fractional differentiation operators of order « and g with respect to t,
respectively and may be defined as:
1 d j @) 4
I'(l—p) dt 0 @-2)

where T°(.) in the Gamma function.
For unidirectional flow, we consider the velocity and the stress of the form:

DP[f(t)] =

7,0<p<1

V = u(y,t)i, S = S(y,0) (7
where u is the velocity component in the x-direction and i is the unit vector in the x-direction.
Now, we have:
Uy Uy U Uy Vy Wy Sxx Xy Xz
— T_
L=|vx vy Vv, [,L=|u, vy w,[,S=/S, Sy Sy
Wy Wy W, u, Vv; W Szx Szy Szz
Since:

V =u(y,bi, S=S(y,1)
For the problem under consideration, equation (2) takes the form:
ou ap N asxy

i 8)

Pt " ax oy
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S(y,O) = atS(y,O) = 0, Syy = SZZ = SXZ = Syz == 0, Sxy = Syx
[Here S,, means the tangential stress on a phase whose normal is y and acting in the z direction, and so

on]. And:
- - i ou ] -
ou 0 — 0 ou
0 — 0 0 00 oy — S
% ou ou »
L=|0 O o,LT=—00,A=a— 0 0},LS= 0
0 0 0 y 0
0 00 0 0 O
_ _ B 2 O r 2 ]
a—“SXy 00 (a_u] 0 0 (6—uj 00
oy oy oy
LS' = 0 0 Of,LA= 0 0 0| AL"= 0 00
0 00 0 00 0 00
0 Z—“ 0
; Sy« Sy O 21 s y
(V.9)S=u—|S, 0 0[=0(.VA=u—|Z 0 0f=0
OX oX | oy
0 0 0 0 0
Since i .
a B
1427 2 |s—yl1407 P |,
Dt% Dt?

Thus, using the above expressions, we obtain:

S+ A(DFS+(V.V)S—LS—SLT) = u(A + ¢ DE A+ (V. V)A—LA— ALT))
The second term in the L.H.S is given by:

DS+ (V.V)S—LS-SL

Sy Sy O
=D¥|S,x 0 0[+0
0 0 0

The R.H.S term is:

DA+ (V.V)A-LA-ALT

Mey 00| |Xs. 00
oy oy
- 0 0 0| - 0 00
0 00 0 00
L 8u_ L ]
D#s, -2&s  DEs, 0
ay y y
_ D{Sy, 0 0
0 0 0
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[ ou | i 2 T 7 2 1 ou ? ou
- 2| = s
o 5ol (@] oo [[2] o] [H5) 25 0
0 v v 0
:Dt'Ba—uOO+0— o oo|-| o ool=| DY 0o o0
y 0 00 0 00 %
0 0 O 0 0 0
.......... e (12)
By using equation (10) and (11), equation (9) can he written as:
"/ by -
DfS,, —2—S DS 0
Sxx Sxy 0 T ¥xx 6y Xy t Yxy
Syy 0 0]+24% D{"SXy 0
0 0 O 0 0 0
I 1 [ a? e ]
o & o —2(—} pf o
oy oy oy
=u CCR I Y D/ ] 0 0
oy oy
0O 0 O 0 0 0
From the last expression, one can_obtain: )
1+ 4D )5, -1+ ¢ DY)YS (12)
y
Eliminating S,, between equations (8) and (12). we obtain:
ou op ou
1+ 2°Df)— =1+ A°Df) = +u(1+ & D )— - B5(1L+ & D )u 13
e ) = ()5 *H ‘H)ayz B ( ) (13)
The governing equation, in the flow direction, is given by:
aao au anao ap azu a [24
(1+2Dff) = ==(1+2"D] )8_+v(1+95Df)—2—M(1+/1 DZ )u (14)
X
U . . . L . JBg . .
where v = = is the kinematics v of the viscosity fluid and M = — is the magnetic field parameter.
P P

It's clear that if M = 0, we obtain the corresponding equation for on an incompressible Oldroyd-B
fluid with fractional derivative as obtained by [6].
Calculation of the Velocity

Let us consider the flowing problem of the effect of MHD on an incompressible Oldroyd-B fluid
with fractional derivative model occupies plane y > 0 and x-axis is chosen as plane wall We will
assume that the system initially at rest and at t = 0 the fluid is suddenly set in motion due to a constant
pressure gradient and by the motion of the plane wall. In this case the governing partial differential
equation and the initial and the boun%ary conditions are of the form:
2
(1+;L“Dt0‘)‘2—LtJ =1+ 2 T _g) A+ V(1 + & Dtﬁ)zy—;J ~M(L+ A% Df)u (15)
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where A=(1/ p) Z—s is the constant pressure gradient.
0= 2 000y - 0 (16)
u@t)=U,t >0 (17)
u(y,t), aa—l: (y,t) 0,asy——0 (18)

To obtain an exact solution of the above initial value problem, the Laplace transform is used. Let
u(y,s) be the Laplace transform of u(y,t) defined by:

a(y,s)=[u(y,)e”dt,s > 0
0

Taking the Laplace transform of equations (15-18), we arrive at:
d°0  (s+M)A+4%s%) _ (@1+4%%) A

_ _n 19
dy2 v(l+ eﬁsﬁ) : v(l+ eﬂsﬂ) S 49
u(o,s) :U? (20)
U(y,s),%i(y,s)—> 0,asy—> © (21)

This is ordinary differential equation of second order. The solution of equation (19) that satisfying

the boundary conditions (20) and (21) is of the following form:
_[ (s+M )(1+z“s“)}1/2 , _[ (s+M )(1+z“s“)}1/2
BB B
0= H v(1+67s”) n A 1—e v(1+67s”) 22)
S s(s+M)

In the last equation if we set M is equal to zero we covering the same problem but in the absent of
the magnetic field as appears in [6] equation (20).

In order to avoid the complicated calculations of residues and contour integrals, we apply the
discrete inverse Laplace transform [1] to get the velocity distribution. Now, writing equation (22) in
series form as:

K K/2 M—k/2+m(_1)ml—-(m_kJ lak/Z—an(_l)nl—w(n_kj
WMME & 2) 2
Vk/2k| k k

- m=0 m!F(—j n=0 n!l"(—}
2 2

| k
: (1) r(|+2) .

=01 (kj gPK!2+p! gk/2(f-a-1)+mtantfl+l
2

M k/2—1(_M )rs—rr(r _(1_k)j iak/Z—an (_1)nr(n _kj

5 (5 5 )

a=24u > -
S k=1

o (_\\K k/2-1
FAY ( y)k;\g
k=1 Vo k!
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k
. (—1)'r(| +)
> . - (23

1=0] !r(g Pk 2+ sk/2(B-a-D+rvan+fl+2

The application of the discrete inverse Laplace transform to equation (23) gives:
M—k/2+m(_1)mr m_E lak/Z—an(_l)nr n_E
u_U+Z(y)Mk/z—li Zi 2
- NIEN k k
m=0 m!l“(—zj n=0 n!l“(—zj

k
i (—1)|F(I +2j tk/2(ﬁ—a—1)+m+an+ﬂl 0 (_y)k M K/2-1
1=0 | !F(kjeﬂklzwl Tkki2(B—a-D+r+an+pl+1) & vk’
2

M r+k’2‘1(—1)rr(r —1+';) L, Ack/zan (—1)”r(n—;j

> >
r=0 r!l"(k— ] n=0 n!l“(—k]
2 2
k
. F(' +2) (KI2(B-a-D)+r+an+ fl+1
> (24)

.ZOHF(kjeﬂk,w. rk/2(B-a-D+r+an+pl+2)
2

Equation (24) can be written in simpler form ion terms of H-Fox function and as follows:
k/2 —k/2 k/2—
u _ U + z ( y) M ! - M f2+m (_1)m Z AY o (_1)n tk/2(ﬂ—a—1)+m+an

21 2 2

m=0 m! n=0 n!

(1—5,1},[1—n+5,0j,(1—m+5)
HL3 U2 2 2

35
0’ (0,1),(1+g,o),(ug,o),(l—g,oj,(k/2(a+1—ﬂ)—r—an,ﬂ)

+

Z( y)kmk/22 5 M HRI2 gy iz“k’z D" kr2p-a-tyrrann
k/2
k! r=0 r! n!
(1 k 1j (1 ne X oj,(z_r_kj
13| t# 2 2 2

35 ‘ (25)

(0,1),(1—§,Oj,(1+g,0j,(2—;,0),(k/2(a+1—ﬂ)—r—an+1,/3’)

where the H-Fox function [8] is defined as follows:
HEP |y -2, A, (I-ap, Ap) & T(ag+AK)..I(a, + Agk)
P T0,1), A—by, By),.... 1=by, By) | ko K!T(by + Bk)...0(by + Byk)

By similar procedure the shear stress equation (12) can be solved. It is found the shear stress is of the
form:

o

( y) M(k+1)/2 0 M—((k+1)/2)+m(_l)m
Sxy = —Up kZ: (k 1)/2k|

m=0 m!
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ﬂa((k_l) /2)-an (_1) " tk 12(f—-a-1)+m+an-1

>

n=0 n!

(1552 ) (105500 (1-m- 31
| 2 2 2

35| 7 +
0" (0,1),(1—%_1,0}{1+k7_1,0],(1+k7+1,0),(k/2(a+1—ﬁ)—m—an+1,ﬂ)

tk/2(,8—a—1)+m+an

YEMED2 o g (DI2em _qym i 2a((D12-an _pyn

0 (_
Ap
kz:l vkD2r = m! = n!

1552 (1055 0 (1-ms K]
13] t¥ 2 2 2

35| 8
0" (O,l),(l—kT_l,Oj,(l+kT_l,OJ,(l+kT_1,Oj,(k/2(a+1—,8)—m—an,,b’)

Results and Discussion

This section displays the graphical illustration velocity field for the flows analyzed in this
investigation. We interpret these results with respect to the variation of emerging parameters of
interest. The exact analytical solutions for accelerated flows have been obtained for the fractional
Oldroyd-B fluid. The following results are made:
e As Aincreases there is decreasing in velocity, seen in figurer-1.

e As Aincreases there is decreasing in velocity, seen in figure-2.
e As M increases there is decreasing in velocity, seen in figure-3.
e As @increases there is increasing in velocity. seen in figure-4.
e As aincreases there is decreasing in velocity, seen in figure-5.
e As gincreases there is increasing in velocity, seen in figure-6.
e Astincreases there is decreasing in velocity, seen in figure-7.
e As U increases there is increasing in velocity, seen in figure-8.
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Figure.1- Velocity distribution for 2=8, M=5, 6=10, Figure.2- Velocity distribution for A=1, M=5, 6=10,
0=0.2, $=0.9, V=1, U=1, A (--,-.-,~-)=0,0.1,1.2. 0=0.2, =0.9, V=1, U=1, & (-—---.,---)=1/4,8.
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Figure.3- Velocity distribution for A=1, A=8, 6=10,

a=0.2, B=0.9, t=1, V=1, U=l, M (.-,
)=4,4.55.5.
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Figure.5- Velocity distribution for A=1, A=8, M=5.5,
0=10,=0.9, t=1, V=1, U=l, o (-,
)=0.2,0.3,0.4.
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Figure.7- Velocity distribution for A=1, A=8, M=5.5,

0=10,0=0.2, p=0.9, V=1, U=1, t(---,.-.,~---)=0.9,1,1.1.
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Figure.6- Velocity distribution for A=1, A=8, M=5.5,
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6=10,0=0.2, p=0.9, t=1,V=1, U (---,-.-.,----)=1,2,3.
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