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Abstract

This research aims to study the behavior of solutions of second-order neutral
differential equations with periodic coefficients. Some necessary and sufficient
conditions have been obtained that classify all solutions of these equations into three
categories: either oscillatory, non-oscillatory, and convergent to zero, or non-
oscillatory and divergent. The extent to which periodic coefficients influence the
occurrence of oscillation, convergence, or divergence for each solution has been
explained. The equation under consideration contained a variable delay and a
constant delays in which the coefficients are periodic. Not much previous research
has discussed the oscillation of solutions of second-order neutral equations with
periodic coefficients. In each case, some illustrative examples have been provided
that illustrate the ease of achieving the conditions for the obtained results.

Keywords: Oscillation, Neutral differential equations, Periodic coefficients, Second
Order.
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1. Introduction
Consider the neutral equation with periodic coefficients (NEPC):
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[0(©) - pOPEO]" + Y QO et—-c)=0.  (L1)

=1
p € C[[ty, ); R*], 7,0Q; € C[[ty, ©); R],7(t) is increasing function and gim 7(t) = oo,
Q; are periodic of period o, 0, =m; 0, m; €N, i =1,2,---,n.
Omin =Mmin{o;, i =1,2,-,n}>0, Opg, =max{o;, i = 1,2,---,n}, Q(t) £0 for t >
0. Let
P(t) = (1) — p(O9(2(1)), t = to. (1.2)

A function ¢(t) is said to be a solution of eq.(1.1) if @(t) —p(t)e(t(t)) €
C?[[t(ty),); R] and ¢(t) satisfies eq.(1.1). A solution ¢(t) is said to be oscillate, if there
exists a sequence {t,,},t,, = o as m — oo such that ¢(t,,) = 0 [3]. As we indicated in the
abstract there is a paucity of published research on the topic of oscillation of solutions of
neutral equations with periodic coefficients. However, some papers that discussed this topic
or similar to it in somewhat will be presented. Barnes [1] obtained conditions on the
coefficients that ensure that all solutions of the differential equation are bounded, based on the
well-known result, which states that all solutions of the Hill equation y + p(t)y = 0 are

bounded, if p(t + T) = p(t) > 0, and if fOTp(t)dt < %. Cheng et al. [2] discussed a type of

neutral second-order differential equation with delay and variable coefficient: (x(t) —
a(@)p0 —p(0)" +b(@)p(O) = f(6,9p(0 —y(0))). They used Krasnoselsky's fixed
point theorem and the properties of the neutral factor (A)(60) := @(6) —a(t)p(6 —
p(6)) and some sufficient conditions for the existence of periodic solutions were reached.
Ladas et al.[3] studied (NEPC) and prove that the equation

[¢(®) —pep(t—D)] + QMP(t—0) =0, (E1)
oscillates, if and only if [w(t)—pw(t—1)]'+ w(t—0) =0 oscillates. Liu et al. [4]
investigated the existence of oscillatory solutions of forced second-order nonlinear differential
equations where @(v) = v" is an increasing function 7 is the ratio of two positive odd
integers. Some sufficient conditions for the global existence of the oscillatory solution are
obtained by the Schauder—Tychonoff theorem. Mohamad et al.[5] studied the oscillation
property of the second order half linear dynamic equation, where some sufficient conditions
were obtained to ensure the oscillation of all solutions of that equation. Mohamad et al.[6]
discussed the oscillation criteria for nonlinear systems of neutral differential equations.
Sufficient conditions were obtained to ensure that all bounded solutions to this system either
oscillate or converge to zero as t— co. Neghmish et al. [7] discussed the oscillation of
solutions of neutral equations of the first order with periodic coefficients of period o;.
Sufficient conditions have been obtained to ensure that all solutions of equations with
periodic coefficients oscillate. Qaraada et al. [8] standards for oscillation were obtained by
studying the oscillatory behavior of solutions of third-order equations of the form:

(f(t)(y”(t))y)’ + f:p(t, v)x”(s(t, v)) dv =0, where y(t) = x(t) + p(t)x(r(t)). Tung et
al. [9] established some specific assumptions that guarantee the asymptotic stability of a
trivial solution of a neutral linear differential equation with periodic coefficients, also they
estimated the decay rate of the solutions of the equation under consideration to reach the
desired results. Li et al. [10] studied the oscillatory behavior of a class of second-order neutral
differential equations under the assumptions that allow applications to differential equations
with both delayed and advanced arguments. Yoshida [11] showed that the characteristic
criteria can be expressed precisely for a type of second-order linear ordinary differential
equation with periodic coefficients (Hill's equation) which appear as covariant equations for
some periodic solutions of dynamical systems. The main purpose of this paper is to obtain
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sufficient conditions that guarantee the oscillation or convergence of all solutions of second-
order neutral differential equations with periodic coefficients and to demonstrate the effect of
the periodicity of these coefficients on oscillation.

2. Main results

In this section, some results were presented that guarantee either the oscillation of all
solutions of equation (1.1) or the convergence of non-oscillation solutions to zero or
divergence.

Theorem 1. Assume that Q;(t) =0, 0 <p(t) <p,<1,t(t) < tand
o
ne>1 6= m_inf Q;(t)dt, i=1,2,..,n. (2.1)
L
0

Then every solution ¢(t) of eq. (1.1) either oscillates or tends to zero or |p(t)| » © as t -
(00}

Proof. Suppose that ¢(t) be a nonoscillatory solution of eq.(1.1), and let ¢(t) >0,
() >0, ot —0,) >0, t >ty then

PO ==Y QOet-0)<0, £t (22)

=1
Hence y'(t) is nonincreasing function, so either y'(t) < 0 or ¥'(t) >0 for t = t; = t,.
Case 1. If ¥'(t) <0, t = t,, then there is t, > t, such that y(t) < 0 and tlim Y(t) = —oo,
then from (1.2) yields
p(t) <p®)e(t(t)) < e(t(t)), t =t, thatis @(t) is positive decreasing, so it is bounded,
on the other side (1.2) leads to ¥ (t) = —p(De(z()) > —¢(z(t)) that is
o(z(®) > — ()

Hence tlim @(t) = oo, this leads to a contradiction, so case 1, cannot be occurred.

Case 2. Let ¥'(t) >0, t =>t,, so either Y(t) < 0ory(t) >0,t >t, > t;, thus there are
two possible subcases to consider:
Case 2.1. Y(t) <0, t=t, =ty, let tlim Y(t) =L <0,we claim that L = 0, otherwise,

Y(t) < L <0, thenthereis t; > t, such that (1.2) leads to

P() = —p(D(()) = —p(z(t)), thatis —p(t) < Y(r71(1)),
—pt—0) <YW t—0)), t=t;, i=12,..,n (2.3)
Therefore eq. (1.1) is reduced to

VO=-) a@et-m<y GOUEC-m) @h

POSLY GO, t2t, (25)
i=1
Integrating inequality (2.5) from t to t + o yields
> s,
i=1

O RIGEN|
t
g
Y'(t) = —Lné, where 6 = mjnf Q;(t)dt,i=1,2,..,n.
L Jo

t+o

Integrating the last inequality from t; to t we get

P(6) —P(ts) = —Lnd(t - t3), (2.6)

Letting t — oo, one can conclude that (2.6) implies tlim Y(t) = oo, we get a contradiction.
Hence L =0, since ¥(t) <0 it follows that ¢(t) < p(De(z(®)) < p(z(D)), so p(t) is
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decreasing function and positive, let lim @(t) =120, %(t) = ¢(t) - p(®)e(t(t)) =

o) = poe(z(®)),
letting t — oo, we obtain 0 > (1 — py)l, which is possible only when [ = 0.
Case 2.2. Y(t) > 0,9'(t) >0, t =t; = to, in this case there is k > 0 such that ¥(t) =k,
from (1.2)

Yt) <opt), t=t, =ty (2.7)
then eq. (1.1) is reduced to

n

PO<-Y pt-o)<-ky  Q®. @8
i=1 =1
Zlei(s) ds,

PY(6) —P(ty) = kné(t —ty)

Integrating (2.8) from tto t + o to get

Wt +o)— (D) < —k f
t
Y'(t) = kno

t+o

Integrating from ¢, to t to get

As t — oo one can get that
tlim Y(t) = oo, hence (2.7) implies tlim @(t) = oo. m

Theorem 2. Suppose that Q;(t) < 0,1 < p, < p(t) <k, t(t) > tand
g
noe>1 o= mjnj |Q;(®)|dt, i=1,..,n (2.9)
l
0

Then every solution ¢(t) of eq. (1.1) either oscillates or tends to zero or |@(t)| » «© as t —
0,
Proof. Suppose that eq.(1.1) has non-oscillatory solution ¢(t), let @(t) > 0, (p(‘r(t)) >0,
p(t—0;)>0,i=1,..,n,t=>t, Then
n
HGEDY 10®lp-a)20, (2.10)
l=
Hence y'(t) is nondecreasing function, so either ¥'(t) > 0 or Y'(t) < 0 for t > t; = t,.
Case 1. If ¥'(t) >0, t = ty, then there is t, > t; such that y¥(t) > 0 and gim Y(t) = oo.
From (1.2) one can obtain ¢(t) > p(t)(p(r(t)) > <p(r(t)), S0 @(t) is nonincreasing, but on
the other side Y (t) < @(t) which implies tlim @(t) = oo, we get a contradiction. Therefore,
case 1 cannot occur.
Case 2. Let ¥'(t) <0, t =t,, so either Y(t) <O0ory(t) >0,t=>t, > ty,thus there are
two possible subcases to consider:
Case 2.1. Y(t) >0, t=>t, =ty let tlim Y(t) =L =0,we claim that L =0, otherwise
Y(t) = L > 0, then there is t; > t, such that (1.2) yields
() < o(t), thatis Y(t — ;) < @(t — 0y).
From equation (2.10) the following can be concluded
n n
THGEDY lo®lp—0)2 > lOIye-0),  @11)
1= 1=

V(e = L211|Qi(t)|, t>t,.  (212)

> je®lds,
i=1

Integrating inequality (2.12) fromttot + o
Vet -p©O =1L
t

t+o

715



Neghmish and Mohamad Iraqi Journal of Science, 2025, Vol. 66, No. 2, pp: 712-720

o
—'(t) = Lnd where J = mjnf |Q;(®)|dt, i=1,..,n.
L
0

Y'(t) £ —Lnd, t=t;. (2.13)
Integrating inequality (2.13) from t to t + & we get

Y(t+ ) —P(t) < —Lnd?
Y(t) = Lnd?, t >ty > t,. (2.14)
Substituting (2.14) in (2.11) to obtain

V'O sty 0,

Repeating this procedure m times to get

P(t) = Ln™mFm*2, (2.15)
Letting m — oo, inequality (2.15) leads to tlim Y(t) = o a contradiction since Y(t) is
decreasing. Hence L = 0, since (t) > 0 it follows that ¢(t) = p(De(t(t)) > ¢(z(®)),
so ¢(t) is decreasing function, let tlim p(t)=1=0,

P(t) = (1) = p(O((1)) < 9(©) — poe(z(1)),

Letting t — oo, we obtain 0 < (1 — py)!l, which is possible only when [ = 0.

Case 2.2. Y(t) <0, Y¥'(t) <0, t = t, = tq, there exist b > 0, such that ¢ (t) < —b, from
(1.2)

Y(©) = —pDe(t(t)), t=t, =ty thatis (z(t)) = —% t>t, =ty 0r
Y(E®)
p(t) = ( =TO) t>t, >tg. (2.16)

then eq. (2.10) is reduced to

" " l/)(‘[_l(t B O-l))
VOz-Y 10OS oS0y el )

Integrating (2.17) from tto t + o to get

t+o

vern-vozg[ Y el
lp(t)s—%na

Integrating from t, to t to get
b
Y(©) (L) < — it — t3)
As t — oo one can get tlim Y(t) = —oo. From (2.16) can be obtained

_v(®) o _
p(t) = — , t = t,, which implies t11m<p(t) 0. O

Theorem 3. Assume that Q;(t) > 0,1 <p, <p(t) <k,t(t) <tand

1_[00 p(r7i(T)) <0, T > t,. (2.18)
Then every solution ¢(t) of eq.(1.1) eitherlzooscillates or tends to zero or tlgg p(t) = oo,
Proof. Suppose that ¢(t) be a non-oscillatory solution of eq.(1.1), and let ¢(t) >0,
@(t(t)) >0, o(t —0g;) >0 then

n
Pp'O=-) Q®elt—-0)<0, t=t,.
=1
Hence y'(t) is nonincreasing function, so either ¥'(t) < 0 or ¥'(t) >0 for t > t; = t,.
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Case 1. If '(t) <0, t 2 t;, henceyp’(t) <0, p(t) <0and lim(t) = —oo, then there
ist, =t;and § > 0 such that Y (t) < —6, t = t,. From (1.2) it follows
P(tz) = P(t) + p(t)9(1(t3)) < =6 + p(t)p(x(t,)
‘P(T_l(tz)) <-4+ P(T_l(tz))‘P(tz) <-6+ P(T_l(tz))[_6 + P(tz)(P(T(tz))]
‘P(T_l(tz)) <-6(1+ P(T_l(tz)) +p (T_l(tz))P(tz)fp(T(tz)),
p(t72(t2) < =6[1+ p(r72(t) + p(r72(t) )p(r 71 (t2))]

+ p(T_z(tz))p(f_l(tz))_p(tz)(P(T(tz))

o) -0+ ) T T" e ) + o) | prie) @19)

As m — oo then it follows from (2.19), lim ¢(z ™ (¢,)) = —oo, which is a contradiction.
m—-oo

Case 2. Let ¥'(t) >0, t = t;, soeither ¥(t) >00ryY(t) <0, t>t, >t;.
Case 2.1 y(t) > 0,t = t,, so there is a constant b > 0 such that ¥(t) = b, from (1.2) it
follows that
o) 2 p(Oe(t(0) > p(z(®), t=t,.

Hence ¢(t) is increasing for t > t,, also from (1.2) we obtain
p(t) = P(t), theneq. (1.1) is reduced to

n n

PO=-) QWet-0)S-)  QOPE-0). (220
1=

i=1
n
W () < —bz 0t),t>ts>t,. (2.21)
i=1
Integrating (2.21) from tto t + o to get

t+o

/ —W'(t) < —b " 0u(s)d
G ICERT| ZQ (s)ds
¢'(t)zbz_ f 0,(s)ds = nbé. (2.22)
i=1Jg

Where ¢ = min [ Q;(s)ds,i =1, ...,n. Integrating (2.22) from t; to t to obtain
l

Y(©) — P(ts) = nb6(t — t3)
As t — oo one can find that y(t) — oo, since ¢(t) = y(t), hence ¢(t) — co.
Case 2.2. Y(t) <0, t >ty let tlim Y(t) =L < 0,we claim that L = 0, otherwise ¥(t) <

L < 0, then there is t, > t; such that from (1.2) yields

Y() = —p (D9 (t(t) = —ke(z(D), thatis —¢ (1) < 1"(’:“>),

—p(t—o) < . , t2ty, i=12,..,1n
Then eq.(1.1) leads to
" _ n n l/)(T_l(t - 0-1))
VO=-) eWet-0)<) o=
L n
Y'(t) < EZ-_lQ"(t)’t > t,. (2.23)
Integrating (2.23) from t to t + o to get
L t+o n
Vet —vosg] ) ads
L nore nlLé
Y'(t) = —E Zi=1L Qi(s)ds = —T. (2.24)

Integrating (2.24) from t, to t to get
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L5
PO —(t) =~ (t— )
As t — oo one can get that gl_)r?o Y(t) = oo, acontradiction, hence L = 0.
) =9(&) + p(Oe((t)) = P(t) + pop(z(t)),
1 () =2 (7)) + pop (D). (2.25)

Let lim sup ¢(t) =1 =0, so there exists a sequence {t,},t, = cas n —» o such that

t—ooo

lim ¢(t,) = [, hence (2.25) leads to
n—00

(T () 2 P(r7 () + Do (tn)-
As n — oo it follows that [ > pyl, that is (1 — py)l = 0, which is possible only when [ = 0.
Thus ltim p(t)=0. o

Theorem 4. Assume that Q;(t) <0, 0 <p(t) <p, <1, t(t) = tand

li " ! 1)6 = 2.2
lrgﬁsgp(ﬂi:()m_(m-l- ) ><00, T = t,. (2.26)

Then every solution ¢(t) of eq.(1.1) either oscillates or tends to zero or tlim lp(t)| = oo.

Proof. Suppose that ¢(t) be a nonoscillatory solution of eq.(1.1), and let ¢(t) > 0,
p(t(t) >0, p(t—0;) > 0,t > t, then eq.(1.1) reduce to
n

VO=)  10Olet-a) 20, t2t

Hence 1’ (t) is nondecreasing function, so either ¥'(t) > 0 or Y'(t) < 0 for t > t; > t,.
Case 1. If Y'(t) > 0, t = t;, hence y(t) > 0 and gim Y(t) = oo, then there is t, = t; and

8 > 0, such thatl/)(t) > §, t > t,. From (5.2) it follows p(tz) o(t(ty) = <p(t2) — Y(ty)

1
(T(tz)) ) @ (t3) —P(ty) = ( ) p(ty) — (tz) Y(ty) < (t ) p(ty) —
p(ty) < m p(t71(t))-6.
(P(T(tz)) = (t ) (t;) =6,

p(tz) [p(’f_l(tz)) <P(T_1(t2))‘5 0

<p(1"1(t2)) 28,

p(tz)p(T_l(tz))

1
4 (T(T(tz))) < m p(t,) — 26

1
p(t?(t2)) <
) = )
Repeating this procedure m times to get

@(Tm(tz)) < QD(T l(tz)) 1_[ m

As m — oo, taking into account condition (2.26), it can be concluded that (5.27) implies
limsup ¢(t) < . On the other side, tlim Y(t) = oo implies that thm @(t) = oo, we get a

t—oo

contradiction.

Case 2 If Y'(t) < 0,t > tq, s0 either Y(t) < 0or P(t) > 0,t >t, > t,, thus there are two
possible subcases to consider.

Case 2.1 Y(t) < 0,t = t,, in this case, in similar way as pervious cases one can get

o(t71(t,))-36.

— (m+1)8. (2.27)
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tlim Y(t) = —oo, which implies tlim p(t) = oo.
Case 2.2 Y(t) > 0, t = t,, this case is similar to case 2.1 in theorem 2, so it can be obtained
tlim Y(t) = 0, which implies tlim o(t) =0.

3. Examples
In this section, some examples were given to illustrate the obtained results
Example 1. Consider the equation with periodic coefficient

[(p(t) — (1 — %sin2 t) p(t — 271)] + 10 cos?t p(t — m) +§ sin?t@(t —2m) = 0. (3.1)
1 5
P(t)=1- Esinz t,0Q,(t) =10 cos?t,Q,(t) = 5 sin?t,7(t) =t— 2m,o0,=m
1
0, =2m, 0 =T, OSp(t)SE, Q.,0, =20,n=2,

g Vi g 5 o 57.[
f Q.(t)dt = 10[ cos? tdt = 5m, f Q,(t) dt = —f sint dt = —.
0 0 0 2 0 4

A~

Hence 6=%”, na=5?n>1
So all conditions of theorem 1 holds, hence according to theorem 1, every solution of eq.(3.1)
oscillates, for instance ¢ (t) = 4 sin3 ¢ is such an oscillatory solution.

a4

3

~

Fig. 1: ¢(t) = 4sin® ¢ oscillates and periodic of period 27

Example 2. Consider the second order neutral equation with periodic coefficients:
T
[p(t) — (1 + acos?2t)e(t+ m)]" — 80a sin?2te (t - E) —20a cos? 2t p(t —m)

=0,(3.2)
p(t) =1+ acos?2t, a>0, Q,(t) =—80asin?2t,Q,(t) = —20a cos? 2t,

T
()=t +mn o0=—=, 0,=T, 0=§, a>0, n=2 1<plt)<l+a

NI

T

NE)

2
|Q,(®)| dt = SOaJ sin? 2t dt = 20ar,
0 0
VA

T
2 2

f |Q,(t)| dt = ZOaf cos? 2t dt = 5ar.
0 0

Thus & = 5am, nd = 10ar > 1 if a > 0.032. Hence all conditions of theorem 2 hold.
According to theorem2, each solution of (3.2) oscillates, for instance ¢(t) = 3 cos® 2t is
such an oscillatory solution.
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s

Fig.2: ¢(t) = 3 cos® 2t, oscillates and periodic of period 7 on [to, ©0).

4. Conclusion

In this research, neutral second-order differential equations with periodic coefficients were
studied, and from this study some sufficient conditions were obtained to ensure the oscillation
of each solution of these equations or the convergence of non-oscillatory solutions to zero.
Through these conditions, it is shown the extent to which periodic coefficients affect
oscillation or convergence is revealed. The extracted conditions are easily applicable as
shown in the examples presented above.
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