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Abstract

This research aims to study the behavior of solutions of second-order neutral
differential equations with periodic coefficients. Some necessary and sufficient
conditions have been obtained that classify all solutions of these equations into three
categories: either oscillatory, non-oscillatory, and convergent to zero, or non-
oscillatory and divergent. The extent to which periodic coefficients influence the
occurrence of oscillation, convergence, or divergence for each solution has been
explained. The equation under consideration contained a variable delay and a constant
delays in which the coefficients are periodic. Not much previous research has
discussed the oscillation of solutions of second-order neutral equations with periodic
coefficients. In each case, some illustrative examples have been provided that
illustrate the ease of achieving the conditions for the obtained results.

Keywords: Oscillation, Neutral differential equations, Periodic coefficients, Second
Order.
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1. Introduction
Consider the neutral equation with periodic coefficients (NEPC):
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PO - PO +) QOeE-a) =0 (1D
p € C[[ty,); RT], 7,Q; € C[[ty,); R],7(t) is increasing function and tll_)I'g T(t) = oo,

Q; are periodic of period o, 0; =m; 0, m; EN, i =1,2,---,n.
Omin = min{ai' [ = 1,2,"',11} > 0» Omax = max{ 0j, [ = 1;2;”‘,71}, Q(t) Zz0 fort >
0. Let

P(t) = o) — p®)e(z(®), t =t (1.2)

A function ¢@(t) is said to be a solution of eq.(1.1) if @(t) —p(®)e((t)) €
C?[[z(ty),); R] and ¢(t) satisfies eq.(1.1). A solution ¢(t) is said to be oscillate, if there
exists a sequence {t,,},t,, = o as m — oo such that ¢(t,,) = 0 [3]. As we indicated in the
abstract there is a paucity of published research on the topic of oscillation of solutions of neutral
equations with periodic coefficients. However, some papers that discussed this topic or similar
to it in somewhat will be presented. Barnes [1] obtained conditions on the coefficients that
ensure that all solutions of the differential equation are bounded, based on the well-known
result, which states that all solutions of the Hill equation y + p(t)y = 0 are bounded, if

p(t+T) =p(t) >0,andif fOTp(t)dt < % Cheng et al. [2] discussed a type of neutral second-

order differential equation with delay and variable coefficient: (x(t) — a(8)@ (6 — p(0)))" +
b(@)p(8) = f(0,p(6 —y(0))). They used Krasnoselsky's fixed point theorem and the
properties of the neutral factor (Ap)(0) := @(6) —a(t)e(6 — p(B)) and some sufficient
conditions for the existence of periodic solutions were reached. Ladas et al.[3] studied (NEPC)
and prove that the equation

[¢(®) —pep(t—D] + QM(t—0) =0, (E1)
oscillates, if and only if [w(t) —pw(t—1)]'+ w(t—0) =0 oscillates. Liu et al. [4]
investigated the existence of oscillatory solutions of forced second-order nonlinear differential
equations where @(v) = v is an increasing function 7 is the ratio of two positive odd integers.
Some sufficient conditions for the global existence of the oscillatory solution are obtained by
the Schauder—Tychonoff theorem. Mohamad et al.[5] studied the oscillation property of the
second order half linear dynamic equation, where some sufficient conditions were obtained to
ensure the oscillation of all solutions of that equation. Mohamad et al.[6] discussed the
oscillation criteria for nonlinear systems of neutral differential equations. Sufficient conditions
were obtained to ensure that all bounded solutions to this system either oscillate or converge to
zero as t— oo. Neghmish et al. [7] discussed the oscillation of solutions of neutral equations of
the first order with periodic coefficients of period g;. Sufficient conditions have been obtained
to ensure that all solutions of equations with periodic coefficients oscillate. Qaraada et al. [8]
standards for oscillation were obtained by studying the oscillatory behavior of solutions of
third-order equations of the form: (f(t)(y"(©))")’ + f:p(t, v)x¥ (s(t,v)) dv = 0, where
y(t) = x(t) + p(t)x(r(t)). Tung et al. [9] established some specific assumptions that
guarantee the asymptotic stability of a trivial solution of a neutral linear differential equation
with periodic coefficients, also they estimated the decay rate of the solutions of the equation
under consideration to reach the desired results. Li et al. [10] studied the oscillatory behavior
of a class of second-order neutral differential equations under the assumptions that allow
applications to differential equations with both delayed and advanced arguments. Yoshida [11]
showed that the characteristic criteria can be expressed precisely for a type of second-order
linear ordinary differential equation with periodic coefficients (Hill's equation) which appear
as covariant equations for some periodic solutions of dynamical systems. The main purpose of
this paper is to obtain sufficient conditions that guarantee the oscillation or convergence of all
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solutions of second-order neutral differential equations with periodic coefficients and to
demonstrate the effect of the periodicity of these coefficients on oscillation.

2. Main results
In this section, some results were presented that guarantee either the oscillation of all solutions
of equation (1.1) or the convergence of non-oscillation solutions to zero or divergence.

Theorem 1. Assume that Q;(t) =0, 0 <p(t) <p,<1,t(t) < tand
o
ne>1 6= m_inf Q;(t)dt, i=1,.2,..,n. (2.1)
L
0

Then every solution ¢(t) of eq. (1.1) either oscillates or tends to zero or |@(t)| » © as t -
(o]

Proof. Suppose that ¢ (t) be a nonoscillatory solution of eq.(1.1), and let @ (t) > 0, @(t(t)) >
0, p(t —0;) >0, t > t, then

n

W (E) = _Z. QO9t-0)<0, t=1ty (2.2)

l:
Hence y'(t) is nonincreasing function, so either y'(t) < 0 or ¥'(t) >0 for t = t; = t,.
Case 1. If ¥'(t) <0, t = t,, then there is t, > t, such that y(t) < 0 and tlim Y(t) = —oo,
then from (1.2) yields
p(t) <p®)e(t(t)) < e(t(t)), t =t, thatis ¢(t) is positive decreasing, so it is bounded,
on the other side (1.2) leads to ¥ (t) = —p(De(z()) > —¢(z(t)) that is

o(z(®) > — ()

Hence tlim @(t) = oo, this leads to a contradiction, so case 1, cannot be occurred.

Case 2. Let y'(t) >0, t = t;, so either Y(t) < 0ory(t) >0,t =t, = t,, thus there are
two possible subcases to consider:
Case 2.1. Y(t) <0, t=t, =ty, let tlim Y(t) =L <0,we claim that L = 0, otherwise,

Y(t) < L <0, thenthereis t; > t, such that (1.2) leads to

P() = —p(D(()) = —p(z(t)), thatis —p(t) < Y(r71(1)),
—pt—0) <Y W t—0)), t=t;, i=12,..,n (2.3)
Therefore eq. (1.1) is reduced to

VO=-) a@et-m<y GOUEC-m) @h

n
W(t) < Lz' [AGHEEE (2.5)
=
Integrating inequality (2.5) from t to t + o yields

t+o n
Y'(t+o0)—Y'(t) < Lj Z'=1Qi(s) ds,

o
Y'(t) = —Lné, where 6 = miinf Q;(t)dt,i=1,2,..,n.
0

Integrating the last inequality from t; to t we get

P(&) —P(ts) = —Lnd(t - t3), (2.6)

Letting t — oo, one can conclude that (2.6) implies tlim Y(t) = oo, we get a contradiction.
Hence L =0, since ¥(t) <0 it follows that ¢(t) < p(De(z(®)) < p(z(D)), so p(t) is
decreasing function and positive, let tlim pt)=1=20, Y()=0¢()— p(t)(p(‘[(t)) >

o(t) = pog(z(1)),
letting t — oo, we obtain 0 = (1 — p,)L, which is possible only when [ = 0.
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Case 2.2. Y(t) > 0,y'(t) > 0, t =t; = t,, in this case there is k > 0 such that y(t) = k,
from (1.2)

Y) <o), t=t, =t (2.7)
then eq. (1.1) is reduced to

POS-) vt -o)s—k) Q. (28)
Integrating (2.8) from tto t + o to get
Vet -v©Os k| ) asds
Integrating from t, to t to get
PY(O) —P(t2) = kné(t - t3)

t+o

Y'(t) = kno

As t — oo one can get that
tlim Y(t) = oo, hence (2.7) implies tlim p(t) = oo. O

Theorem 2. Suppose that Q;(t) < 0,1 < p, < p(t) <k, t(t) > tand
g
noe>1 o= mjnj |Q;(®)|dt, i=1,..,n (2.9)
l
0

Then every solution ¢(t) of eq. (1.1) either oscillates or tends to zero or |@(t)| » o« as t —
(00}

Proof. Suppose that eq.(1.1) has non-oscillatory solution ¢(t), let @(t) > 0, (p(‘r(t)) >0,
p(t—0)>0,i=1,...,n,t >t, Then
n
HGEDY la®lp-a)20, (2.10)
1=

Hence y'(t) is nondecreasing function, so either ¥'(t) > 0 or Y'(t) < 0 for t > t; = t,.
Case 1. If ¥'(t) > 0, t = t,, then there is t, > t, such that y¥(t) > 0 and gim Y(t) = oo.

From (1.2) one can obtain ¢(t) = p()@(t(t)) = ¢(z(t)), so ¢(t) is nonincreasing, but on
the other side Y (t) < @(t) which implies tlim @(t) = oo, we get a contradiction. Therefore,

case 1 cannot occur.

Case 2. Let ¥'(t) <0, t =t,, so either Y(t) <O0ory(t) >0,t=>t, > ty,thus there are
two possible subcases to consider:

Case 2.1. Y(t) >0, t=>t, >ty let th_)ngo Y(t) =L =0,we claim that L =0, otherwise

Y(t) = L > 0, then there is t; > t, such that (1.2) yields

Y(6) < @(t), thatis Y(t — ;) < (t — 0y).
From equation (2.10) the following can be concluded

PO = 10@let-m =) 10@IwE-a), @1D

n
HCENNY 1ol tz6 (212)
1=
Integrating inequality (2.12) fromttot + o

Vet -wo=L[ D jalds

g
—y'(t) = Lnd where & = mjnJ |Q;(®)|dt, i=1,..,n
L
0

Y'(t) < —Lnd, t=ts. (2.13)
Integrating inequality (2.13) from t to t + & we get
Y(t+ &) —P(t) < —Lnd?
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Y(t) = Lnd?, t =ty > ts. (2.14)
Substituting (2.14) in (2.11) to obtain

n
Y''(t) = Ln&zz Qi(t), t=t3=t,.
i=1
Repeating this procedure m times to get
Y(t) = Ln™Fm*2, (2.15)
Letting m — oo, inequality (2.15) leads to tlim Y(t) = o a contradiction since Y(t) is
decreasing. Hence L = 0, since (t) > 0 it follows that ¢(t) = p(De(t(t)) > o(z(1)),
so ¢(t) is decreasing function, let tlim p(t)=1=0,
P(t) = (1) = p(O((1)) < 9(1) — pop(z(1)),
Letting t — oo, we obtain 0 < (1 — py)!, which is possible only when [ = 0.

Case 2.2. Y(t) <0, P'(t) <0, t =t, = ty, there exist b > 0, such that ¥ (t) < —b, from
(1.2)

Y(t) = —p®e (), t=t, =ty thatis p(z(t)) = —%, t>t, >ty 0r
-1
p(t) = —%, t=>t, > t. (2.16)
then eq. (2.10) is reduced to
" n l/)(T_l(t - O-l')) b n
VIOz-) 10O mrmoss =y 10l 217)

Integrating (2.17) from t to t + o to get
b t+o n
Vet -v©zg] Y 10@lds

S

Y'(t) < ——nd

w‘

Integrating from ¢, to t to get

b
YO = (L) < —3nB(t — )
As t — oo one can get tlim Y(t) = —oo. From (2.16) can be obtained

-1
p(t) = —M, t > t,, which implies tlim p(t) =o. 0O

Theorem 3. Assume that Q;(t) = 0,1 <p, <p(t) < k,t(t) < tand
H p(r(T)) < oo, T >t (2.18)
i=0

Then every solution ¢(t) of eq.(1.1) either oscillates or tends to zero or tlgg (t) = oo.
Proof. Suppose that ¢(t) be a non-oscillatory solution of eq.(1.1), and let ¢(t) >0,
p(t(t)) >0, o(t —a;) > 0 then
n

VO=-) aOet-0)<0  tzt
Hence y’(t) is nonincreasing function, so eithe;_z/)’(t) <0ory'(t)>0 fort=>t, >t,.
Case 1. If Y'(t) <0, t = t,, hencey'(t) <0, Y(t) <0and tlgg Y(t) = —oo, then there is
t, > t;and § > 0 such that ¥ (t) < -8, t = t,. From (1.2) it follows
p(ty) = P(ty) + p(tz)ﬁl’(f(tz)) < =6+ p(t)e((ty)
@(r71(t2)) < =8 +p(r7M(t))p(t) < =8 + p(r7(62))[—6 + p(t)p(7(¢))]
‘P(T_l(tz)) <-6(1+ p(T_l(tz)) +p (T_l(tz))P(tz)fp(T(tz)).
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‘P(T_Z(tz)) <-6[1+ p(T_Z(tz)) + P(T_Z(tz))P(T_l(tz))]
+ p(T_z(tz))p(f_l(tz))_p(tz)(P(T(tz))

o) -0+ ) T T" e ) + o) | prie) @19)

Asm — oo then it follows from (2.19), lim ¢(t™(t;)) = —oo, which is a contradiction.
m—oo

Case 2. Let ¥'(t) >0, t > t,, soeither Y(t) >0o0ry(t) <0, t =>t, >t;.
Case2.1y(t) > 0,t > t,, sothereisaconstant b > 0 suchthaty(t) = b, from (1.2) it follows
that
o) = p®e(z(®) > p(x(®), t =ty
Hence ¢(t) is increasing for t > t,, also from (1.2) we obtain
p(t) = Y(t), then eq. (1.1) is reduced to

V'O=-) @@et-m<-y a@pE-0). (220

i i=1

W' (8) < —b zlei(t),t >t >t (221)

z;Qi(S)ds

n o
W'(t) = b z j 0:(s)ds = nbé. (2.22)
i=1Jp
Where ¢ = min [, Q;(s)ds,i =1, ...,n. Integrating (2.22) from t5 to t to obtain
l

PY(t) — P(t3) = nbs(t —t3)
As t — oo one can find that ¥ (t) - oo, since ¢(t) = Y (t), hence ¢(t) — oo.
Case 2.2. Y(t) <0, t >ty let tlim Y(t) =L < 0,we claim that L = 0, otherwise ¥(t) <

L < 0, then there is t, > t; such that from (1.2) yields
. Y(r7HO)
P() =2 —p D) = —kp(z(D)), thatis —¢(t) < (T p ),
1/J(T_1(t - Ui))
k

Integrating (2.21) from t to t + o to get
W+ - @ <-b|
t

t+o

—p(t—o0;) < , t=>t,, =12, ..,n.

Then eq.(1.1) leads to
n n 10t — 4.
ro=-3" awec-msY ant¢=)

L n
Y''(t) < EZ-lei(t)’t > ty. (2.23)
Integrating (2.23) from t to t + o to get
L t+o n
Vs —vosg] ) eds
L n g LG
VICEES Z J 0,(s)ds > —"TG. (2.24)
i=1J9

Integrating (2.24) from t, to t to get

nlLé
Y(©) —P(t) = — (- t)
As t — oo one can get that gim Y(t) = oo, acontradiction, hence L = 0.

@) = Y(6) + p(Oe(t(1)) =2 (@) + pop(z(1)),
(@ () 2 P(r7H®) + pog (D). (2.25)
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Let lim sup @(t) =1 >0, so there exists a sequence {t,},t, » ©as n — oo such that

t—oo

lim ¢(t,) = [, hence (2.25) leads to
n—oo

@ (tn) Z P(r71(tn)) + Po (tn)-
As n — oo it follows that [ > pyl, that is (1 — py)l = 0, which is possible only when [ = 0.
Thus ltim p(t)=0. o

Theorem 4. Assume that Q;(t) <0, 0 <p(t) <p, <1, t(t) = tand

li " ! 1)6 T > 2.26
1r£_>so})1p <1_L=OM— (m+1) >< o, T = t,. (2.26)

Then every solution ¢(t) of eq.(1.1) either oscillates or tends to zero or tlim lo(t)| = oo.

Proof. Suppose that ¢(t) be a nonoscillatory solution of eq.(1.1), and let ¢(t) > 0, @(z(t) >
0, p(t —a;) >0,t > t, theneq.(1.1) reduce to
n

V'O=)  10Olet-0) 20, t2t

Hence 1’ (t) is nondecreasing function, so either ¥'(t) > 0 or Y'(t) < 0 for t > t; > t,.
Case 1. If Y'(t) > 0, t = t;, hence y(t) > 0 and gim Y(t) = oo, then there is t, = t; and

6 > 0, such thatt/)(t) >4, t = t,. From (5.2) it follows p(t,) <p(r(t2)) = @p(ty) — PY(ty)

1 1 1
‘P( (t 2)) (t ) [o (t2) — (L) = 1( 5 @(ty) — (tz) Y(t,) < (t ) @(ty) —
@(ty) < (T(t)) (p(T_l(tz))—S.
(P(T(tz)) = (t ) p(t;) =6,
1 -1
< (5 L?(T_l(tz)) (P(T (tz))—5
< 1 (z71(ty)) — 26
Pl @) I
2 S ——F—= () —26
o (@) < p(tz)p(r(tz))lq)(t )

(P(Tz (tz)) <

Repeating this procedure m times to get

<p(Tm(t2)) < (P(T 1(t2)) 1_[ p('l'l l(t ))

As m — oo, taking into account condition (2.26), it can be concluded that (5.27) implies
limsup ¢(t) < . On the other side, tlim Y(t) = oo implies that tlim @(t) = oo, we get a

t—oo

contradiction.

Case 2 If Y'(t) < 0,t = tq,s0 either Y(t) < 0or P(t) > 0,t > t, > t,, thus there are two
possible subcases to consider.

Case 2.1 y(t) < 0,t = t,, in this case, in similar way as pervious cases one can get

girzlo Y(t) = —oo, which implies L!I_)Ig p(t) = oo.

~1(t,))-36.
p(t)p(t(t))p(t1(t,)) p(t71(ty))

— (m+1)8. (2.27)

Case 2.2 Y(t) > 0, t = t,, this case is similar to case 2.1 in theorem 2, so it can be obtained
L!irn Y(t) = 0, which implies L!im p(t) = 0.
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3. Examples
In this section, some examples were given to illustrate the obtained results
Example 1. Consider the equation with periodic coefficient

[(p(t) - (1 - %sin2 t) o(t — 27'[)] + 10 cos?t (t — m) +2 sin®t (t —2m) = 0. (3.1)
1 5
Pt)=1- Esin2 t,Q.(t) =10 cos?t,Q,(t) = 5 sin?t,7(t) =t— 2mo0y =7
1
0, = 2T, 0=T, OSp(t)Sz, 0,0, =20,n=2,

g V3 o 5 o . Sn.
f Q:(t)dt = 10f cos? t dt = 5m, f Q(t)dt = —J sin?t dt = —.
0 0 0 2 0 4

. s .
Hence azf, né=-—>1

So all conditions of theorem 1 holds, hence according to theorem 1, every solution of eq.(3.1)
oscillates, for instance ¢(t) = 4 sin3 t is such an oscillatory solution.

Fl

3

~

Fig. 1: ¢(t) = 4sin’t oscillates and periodic of period 270

Example 2. Consider the second order neutral equation with periodic coefficients:
T
[p(t) = (1+ acos? 26)p(t + m)]" — 80a sin?2tg (t — =) — 20a cos? 2t (¢t — )

2
=0,(3.2)
p(t) =1+ acos?2t, a>0, Q.(t) =—80asin?2t,Q,(t) = —20a cos? 2t,

yis
)=t +mn o=, 0,=T, GZE' a>0, n=2 1<pt)<1l+a

NI

s Y
2 2
f Q. ()| dt = 80af sin? 2t dt = 20ar,
0 0
s

T
2 2
f |Q,(t)| dt = ZOaf cos? 2t dt = 5ar.
0 0

Thus & = 5amr, nd = 10ar > 1 if a > 0.032. Hence all conditions of theorem 2 hold.
According to theorem2, each solution of (3.2) oscillates, for instance ¢(t) = 3 cos® 2t is such
an oscillatory solution.



Neghmish and Mohamad Iragi Journal of Science, 2025, Vol. xx, No. X, pp: XX

s

Fig.2: ¢(t) = 3 cos® 2t, oscillates and periodic of period 7 on [to, ©0).

4. Conclusion

In this research, neutral second-order differential equations with periodic coefficients were
studied, and from this study some sufficient conditions were obtained to ensure the oscillation
of each solution of these equations or the convergence of non-oscillatory solutions to zero.
Through these conditions, it is shown the extent to which periodic coefficients affect oscillation
or convergence is revealed. The extracted conditions are easily applicable as shown in the
examples presented above.
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