

Determination of Heavy Metals in Imported Canned Fish that Sold in Baghdad Markets

Mohammed. N. Al-Azzawi, Liqaa. H. Al-Ani^{*}

Department of Biology, College of Science, University of Baghdad, Baghdad. Iraq.

Abstract

The concentrations of Pb, Zn, Hg and Cu were determined in twenty sample of canned fish, samples were collected with different origin with two meals from local markets at Baghdad city for the period (October 2012-February 2013), results of study were appeared variation in mercury concentration of canned fish between November and February .The highest concentration of mercury (0.1 mg/kg) was observed in "Hawesta" brand and "Ocean wave" " brand , the lowest average concentration for mercury 0.01ppm in "Habar", "Durra" and "Sayad" brand during(Nov.2012-Feb.2013) and have not recorded any concentration for mercury in "Yasmine" brand during (Nov. 2012-Feb. 2013).The maximum level of zinc reached in November. rather than in Febreuary ,Zn concentration varied from (6.46-18.6 mg/kg) and the lowest concentration of Zn in canned fish from (0.010 - 0.370mg/kg). The results findings acceptable limit with Iraq standard. In this study we showed the concentration of copper varied from (0.073-10.216 mg/kg). The highest concentration of copper (10.216 mg/kg) was observed in "Habar" brand the lowest concentration of copper (0.073mg/kg) was observed in "Durra" brand, "Founty" and "Herring fillets" were recorded 0.19 mg/kg and 0.16 mg/kg.

Keywords: heavy metals ,canned fish ,Baghdad

تحديد المعادن الثقيلة في الأسماك المعلبة المستوردة التي تباع في أسواق بغداد محمد نافع العزاوي ، لقاء حازم العاني قسم علوم الحياة ، كلية العلوم ، جامعة بغداد ، بغداد ، العراق

الخلاصة

حددت تراكيز كل من الرصاص والزنك والزئبق والنحاس في عشرين عينة من الأسماك المعلبة، تم جمع عينات مختلفة المنشأ على وجبتين من الاسواق المحلية في مدينة بغداد للفترة ما بين (تشرين الاول 2012-كانون الاثاني 2013)..اظهرت نتائج الدراسةاختلاف في تركيز الزئبق في الأسماك المعلبة بين تشرين الثاني وشباط حيث لوحظ أعلى تركيز لعنصر الزئبق(0.1 ملغ /كلغ) في Ocean wave,Hawesta واقل تركيز لعنصر الزئبق (0.01 ملغ/كلغ) في Sayad", "Durra", "Durra" الفترة ما بين تشرين الثاني وشباط ولم يسجل اي تركيز للزئبق في علبة السردين "ياسمين".الحد الأعلى لتركيز الزنك الذي تم التوصل إليه في تشرين الثاني بدلا من شباط، وتركيز الزئبق في المردين "ياسمين".الحد الأعلى لتركيز الزنك الذي تم التوصل اليه في تشرين الثاني بدلا من تراوح من(0.00 –0.300ملغم/كلغ) وكانت نتائج الدراسة موافقة للحدود المسموح بها في المواصفة العراقية.وفي

^{*}Email: lek_alani@yahoo.com

هذه الدراسة أظهر تركيز النحاس اختلاف من (0.73-10،216 ملغ / كلغ). وقد لوحظ أعلى تركيز لعنصر النحاس(10.216ملغ/كلغ) في علبة".حبار". اما. Durra" حيث سجلت اقل تركيز لعنصر النحاس 0.073 ملغ/كلغ ،بينما لوحظ في Founty و "Herring Fillets" حيث سجل تركيز النحاس 0.16 ملغ/كلغ و0.19 ملغ/كلغ.

Introduction

Food safety is a major public concern worldwide, during the last decades, the increasing demand of food safety has stimulated research regarding the risk associated with consumption of food stuffs contaminated by pesticides, heavy metals and toxins [1].

Heavy metals, in general are not biodegradable, having long biological half-lives and having the potential for accumulation in the different body organs leading to unwanted side effects [2-4].

The widespread of contamination with heavy metals in the last decades has raised public and scientific interest due to their dangerous effects on human health [5], this has led researchers all over the world to study the pollution with heavy metals in air, water, and foods to avoid their harmful effects and to determine their permissibility for human consumption[6,7].

Fish is widely consumed in many parts of the world because it has high protein content ,low saturated fat and also contain omega fatty acids known to support good health [8]. Degradation of lipids in fatty fish produces rancid odors [9]. The risk of heavy metals contamination in meat represent with great concern for both food safety and human health ,because the toxicity nature of these metals at relatively minute concentration[10,11]. Instances of heavy metals contamination in meat products during processing have been reported [11,12].

Material and Methods

Samples of study

10 samples of canned fish were collected randomly with two groups from super stores and local markets in the city of Baghdad areas during October 2012 to January 2013 table-1.

NO	Brand name	Batch no.	Production data	Expire data	Net weight	Note
1.	Sayad	480779	8/8/2011	8/8/2013	125GM	-Spiced sardine in vegetable oil(oil,spice,salt) -Product of Indonesia
2.	Durra		20/12/2011	20/2/2013	200GM	-Tuna solid with sunflower oil (cooked with tuna meat 70%,sunfloweroil,salt,water 30%) -Product of Thailand
3.	Founty	00A000 2	7/7/2012	7/7/2014	125GM	-Sardines in vegetable oil(sardine,oil,salt) -Product of morocco
4.	Port Clyde		8/8/2010	8/8/2014	106GM	-Port clyde sardine in soy bean oil(sardines lightly smoked,soybean,oil,salt,natural flavor smoke).
5.	Yasmine	ATSU0 024	11/3/2010	11/3/2013	200GM	-Sardin in vegetable oil(cooked sardine ,vegetaboil,salt) -Product of Thialand
6.	Tahani	3502 101001	4/11/2011	4/2/2013	425GM	-Mackerel in natural oil(water,salt,oil,mackerel) -Product of China
7.	Hawesta	0069220 01206	10/2011	12/2015	200GM	-Extra zarte herring filets in Toskana-Sauce (oil,sugar,water60%,vinegar, tomato paste,protein) -Product of Jordan
8.	Herring Fillets		7/7/2010	7/7/2014	200GM	-Herring Fillets in paprika sause(water,tomatopaste,sugar,distilledvinegar,rapeseedoil,s pice,starch,bean gum). -Product ofGermeny
9.	Ocean Wave	852021 001250	2/8/2011	2/8/2013	250GM	-Light meat tuna in vegetableoil(water,oil,salt) -Product of Thialand
10.	Habar	67006w wa	3/7/2010	3/8/2013	200GM	- cuttle in tomato sause (salt,water,tomato paste) -Product of uae

 Table 1 -. List of canned fish brands with detailed information for each of them

PH measurement

Before the PH of food is measured, the food should be in liquid form or prepared as a puree in a blender. Distilled water may be added to aid in mixing the components thorough theninserted in pH meter (Electronic Instruments LTD).

Samples Analysis

50-100 gm of sample was taken from each canned meat with three replicate. All sample were oven dried at $(70)^{0}$ C for 30 minute. The samples were transferred to mixer was divided into small pieces and the size of piece was 4mm., 2.5 gm of dried samples were taken, and then added 25ml of HNO₃ and heated for 30 minute, then cooled at room temperature and added (15ml con HCLO₄),it was heated to dry till appear of the white vapors of HCLO₄.

Each sample was filtered by using filter paper (42 whatman) and it was diluted with de-ionized water to complete the volume to 25 ml, each element concentration was determined by Atomic Absorption Spectrometry (Buck -Scientific FAAS/VGP 210/2005) .Mercury concentration was determined by vapor system, in Research of Food Center / Ministry of Science and Technology [13].

Statistical analysis

The data were subjected to use SPSS and statistical tests for the significant differences was used (T test) and least significant differences test LSD at (p<0.01) (p<0.05).

Results and Discussion

The Study results revealed that the highest value of pH in "Port clyde" was (7-7.11) ,While the lowest value of PH in "Durra" and "Hawesta" was 5.5 ,this difference in the values of the PH due to the stress of the animal before slaughtering ,the difference between the samples as a result for adding of preservatives with low pH that reflected on these meat samples [14]

Statistical analysis of the data revealedno significant different in pH value (P<0.05,P<0.01) between the samples which indicate that the value of pH is nearly equal see in table-2.

Study results were showed variation in mercury concentration between November 2012and February 2013 that related to some reasons such as the interaction mainly depend on chemical properties of the food contact material and the food stuff ,temperature at packaging during heat treatment and storage ,exposure to light ,water activity of salt and acids of the product [15].

The highest concentration of mercury (0.1 mg/kg) was observed in "Hawesta" brand and "Ocean wave" brand in November rather than in February.

"Ocean wave" and "Durra" brand, the concentration level of mercury are agreement with FDA reports that the mercury level in canned tuna is ranged between 0.1 - 0.2 ppm and it was 0.29mg/kg in Libyan canned tuna [16]

The lowest concentration level for mercury 0.01ppm in "Habar" and "Sayad" brand during(Nov.2012-Feb.2013) and have not recorded any concentration for mercury in "Yasmine" brand during (Nov. 2012-Feb. 2013) and have not recorded any concentration of Hg in "Habar" and "Founty" brand in November while "Hawesta", "Ocean wave", "Herring Fillets" and "Port clyde" does not record any concentration of Hg in February, which were agreement with [17] and [18] while [19] they showed the concentration of mercury varied from 0.01to 3 ppm exceed normal levels and [20] varied from 0.0430– 0.253ppm for mercury.

Lead do not detected in fish samples, these results were agree with [17] and may be refer to the absence of these cans from the concentration of lead, which related to the toxic metals that prevent presence in the food and that causes toxicity when ingested in large amounts, in addition the effect of this metal bioaccumulation and does not show symptoms of poisoning directly, but it depends on the dose after eating

The range of copper concentration was from (0.073-10.216 mg/kg), which were agreement with [21] , they found the concentration of Cu in meat and fish products varied (7.18-10.01 mg/kg), while the lowest concentration of copper (0.073mg/kg) was observed in "Durra" brand, "Founty" and "Herring fillets" were observed 0.19 mg/kg and 0.16 mg/kg disagreement with [19], were found that the concentration of Cu varied from (0.001-0.01 mg/kg) in fish samples and did not agree with [22]. The finding results do not exceed the acceptable limit of Iraqi standard which is 50mg/kg in canned tuna.

The maximum level of zinc reached in November rather than in February ,the study result which were agreement with [23] ,they studied the detection about heavy metals in 10 types of canned food in Turkey markets were found the Zn concentration is high (6.46-18.6 mg/kg) and agreement with [24] and [25] reported the lowest concentration of Zn in canned fish from (0.010-0.370mg/kg),which were disagreement with [26].

In Statistical Analysis explains all the differences between the heavy metals are significant (atp <0.05 & p < 0.01) that shows oscillated in the concentration of these elements in each can for the study periods see in table-1.

In table-4 and table-13 it can observe that the heavy metals in each can and each period by using T test (included two element) and (L.S.D) test (included more than two element). In cases that included more than two element shows that the difference between the mean of Zn and Hg higher than L.S.D (P < 0.05) (p < 0.01) indicates significant different.

The difference between mean Cu and Zn are significant while the significant difference between Zn and Hg more than the significant difference between Cu and Zn which indicates that the effect of Zn concentration more than the effect Cu and Hg concentration.

Canned	Heavy	Test of		T-ta	able	Significant difference
fish	metals	variance	I-Cal.	0.05	0.01	at α=0.05 & α=0.01
	Hg	Unequal	-45.0333	± 4.303	± 9.925	S.
Habar	Zn	Unequal	37.01937	± 4.303	± 9.925	S.
параг	Cu	Unequal	840.3805	± 4.303	± 9.925	S.
	PH	Equal	47.76505	± 2.776	± 4,604	S.
	Hg	Equal	24.4949	± 2.776	± 4,604	S.
Tabani	Zn	Equal	1467.086	± 2.776	± 4,604	S.
Tahani Port clyde	Cu	Unequal	-32.909	± 4.303	± 9.925	S.
	PH	Unequal	-0.74183	± 4.303	± 9.925	N.S.
	Hg	Unequal	34.64102	± 4.303	± 9.925	S.
Dort dudo	Zn	Equal	1316.601	± 2.776	± 4,604	S.
Port ciyue	Cu	Unequal	60.62178	± 4.303	± 9.925	S.
	PH	Equal	-1.08386	± 2.776	± 4,604	N.S.
	Hg	Equal	-30.6186	± 2.776	± 4,604	S.
Savad	Zn	Equal	800.933	± 2.776	± 4,604	S.
Sayau	Cu	Equal	8.573214	± 2.776	± 4,604	S.
	PH	Equal	-5.94445	± 2.776	± 4,604	S.
	Hg	Unequal	-27.7128	± 4.303	± 9.925	S.
Founty	Zn	Equal	2327.015	± 2.776	± 4,604	S.
Founty	Cu	Equal	38.72983	± 2.776	± 4,604	S.
. county	PH	Equal	2.44949	± 2.776	± 4,604	N.S.
	Hg	Unequal	67.54998	± 4.303	± 9.925	S.
orring fills	Zn	Equal	2308.644	± 2.776	± 4,604	S.
enniginie	Cu	Equal	75.93418	± 2.776	± 4,604	S.
	PH	Equal	9.166562	± 2.776	± 4,604	S.
	Hg	Unequal	17.32051	± 4.303	± 9.925	S.
Hawasta	Zn	Unequal	220.0852	± 4.303	± 9.925	S.
nawesta	Cu	Equal	25.71964	± 2.776	± 4,604	S.
	PH	Unequal	25.67948	± 4.303	± 9.925	S.
	Hg	Equal	-106.553	± 2.776	± 4,604	S.
Durra	Zn	Equal	1910.602	± 2.776	± 4,604	S.
Dulla	Cu	Equal	-8.57321	± 2.776	± 4,604	S.
	PH	Unequal	-0.86173	± 4.303	± 9.925	N.S.
	Hg	Unequal		± 4.303	± 9.925	S.
Vasmine	Zn	Equal	1229.644	± 2.776	± 4,604	S.
rasinine	Cu	Unequal	-36.3731	± 4.303	± 9.925	S.
	PH	Equal	-0.16984	± 2.776	± 4,604	N.S.
	Hg	Unequal	17.32051	± 4.303	± 9.925	S.
Coon wow	Zn	Unequal	417.0761	± 4.303	± 9.925	S.
JCEarl WdV	Cu	Equal	40.20422	± 2.776	± 4,604	S.
	PH	Unequal	-3.07359	± 4.303	± 9.925	N.S.

Table 2- Difference between heavy metals and pH to each period at (p<0.05) (p<0.01)

	mean and stan	idara deviación for each sa	.mpic
Canned	Heavy	28/11/2012	25/02/2013
fish	metals	Mean ± S.D.	Mean ± S.D.
	Hg	0.0 ± 0.0	0.013 ± 0.0005
Hobor	Zn	7.523 ± 0.312	0.8 ± 0.04
Habar	Cu	10.216 ± 0.01	0.5 ± 0.02
	PH	6.31 ± 0.01	5.92 ± 0.01
	Hg	0.39 ± 0.001	0.019 ± 0.001
Tahani	Zn	9.87 ± 0.005	0.4 ± 0.01
Idiidiii	Cu	0 ± 0	0.19 ± 0.01
	PH	6.5 ± 0.01	6.62 ± 0.28
	Hg	0.02 ± 0.001	0 ± 0
Port clude	Zn	13.78 ± 0.01	3.03 ± 0.01
FULCIYUE	Cu	0.35 ± 0.01	0 ± 0
	PH	7 ± 0.173	7.11 ± 0.03
	Hg	0.013 ± 0.001	0.038 ± 0.001
Savad	Zn	11.14 ± 0.01	0.8 ± 0.02
Sayau	Cu	0.29 ± 0.01	0.22 ± 0.01
	PH	6.2 ± 0.1	6.55 ± 0.02
	Hg	0 ± 0	0.016 ± 0.001
Sayad C P Founty C	Zn	19.44 ± 0.01	0.44 ± 0.01
Founty	Cu	0.69 ± 0.01	0.19 ± 0.02
	PH	6.7 ± 0.1	6.3 ± 0.265
	Hg	0.039 ± 0.001	0 ± 0
lorring fillo	Zn	19.98 ± 0.01	1.13 ± 0.01
	Cu	0.78 ± 0.01	0.16 ± 0.01
	PH	6.3 ± 0.1	5.73 ± 0.04
	Hg	0.1 ± 0.01	0 ± 0
Hawesta	Zn	24.97 ± 0.01	0.1 ± 0.01
Hawesta	Cu	0.68 ± 0.01	0.47 ± 0.01
	PH	7 ± 0.1	5.51 ± 0.01
	Hg	0.01 ± 0.001	0.097 ± 0.001
Durra	Zn	16.2 ± 0.01	0.6 ± 0.01
Duna	Cu	0.73 ±0.001	0.08 ± 0.001
	PH	5.5 ± 0.1	6 ± 1
	Hg	±	±
Vasmino	Zn	10.35 ± 0.01	0.31 ± 0.01
rasinine	Cu	0 ± 0	0.21 ± 0.01
	PH	6.6 ± 0.1	6.61 ± 0.02
	Hg	0.1 ± 0.01	0 ± 0
	Zn	26.7 ± 0.01	2.5 ± 0.1
	Cu	0.52 ± 0.005	0.27 ± 0.0095
	PH	6.1 ± 0.1	6.28 ± 0.017

Table 3- The mean and standard deviation for each sample

		5	(,	1	
	ŀ	A - Fish	Habar	28/11/201	2	
Heavy	Test of	T-Cal	T-ta	ble	ignificant	difference
metals	variance	I-Cal.	0.05	0.01	at α=0.05	& α=0.01
Zn & Cu	Unequal	-14.95	± 4.303	± 9.925	S).
	E	3 - Fis	h Haba	r 25/2/20 ⁻	13	
	Test the	differences	between t	ne means		
treat.	average	L.S.D0.05	L.S.D0.01	Hg	Cu	
Zn	0.8	0.051591	0.040965	0.787	0.3	
Cu	0.5	0.051591	0.040965	0.487		
Z	'n	C	u			
Mean	± S.D.	Mean	E S.D.			
7.523	± 0.312	10.216	± 0.001			

Table 4 - Statically Analysis of heavy metals for (Habar) with each period

 Table 5 - Statically Analysis of heavy metals for(Tahani) with each period

	В	- Fish	Thaha	ni 25/2/20)13	
	Test the	differences	between th	ne means		
treat.	average	L.S.D0.05	L.S.D0.01	Hg	Cu	
Zn	0.4	0.016354	0.012986	0.381	0.21	
Cu	0.19	0.016354	0.012986	0.171		
A - Fish Tahani 28/11/2012						
Heavy	Test of		T-table		ignificant	difference
metals	variance	I-Cal.	0.05	0.01	at α=0.05	& α=0.01
Hg & Zn	Equal	-3339.42	± 2.776	± 4,604	S	ò.
F	lg	Z	Zn			
Mean	± S.D.	Mean	± S.D.			
0.039	±0.001	9.87 ±	0.005			

Table 6 - Statically Analysis of heavy metals for(Port clyde) with each period

	А	- Fish	Port clyde	e 28/11/2	012			
Test the differences between the means								
treat.	average	L.S.D0.05	L.S.D0.01	Hg	Cu			
Zn	0.4	0.016354	0.012986	0.381	0.21			
Cu	0.19	0.016354	0.012986	0.171				
В	- Fish	Port	clyde 2	25/2/2013				
	Zn							

		2		<i>4</i> /	-		
	A	- Fish	Sayad	28/11/20)12		
	Test the differences between the means						
treat.	average	L.S.D0.05	L.S.D0.01	Hg	Cu		
Zn	11.14	0.016354	0.012986	11.127	10.85		
Cu	0.29	0.016354	0.012986	0.277			
	В	- Fish	Sayad	25/2/201	13		
	Test the c	differences	between ⁻	the means			
treat.	average	L.S.D0.05	L.S.D0.01	Hg	Cu		
Zn	0.8	0.025819	0.020501	0.762	0.58		
Cu	0.22	0.025819	0.020501	0.182			

Table 7- Statically Analysis of heavy metals for(Sayad) with each period

Table 8- Analysis of heavy metals for (Founty) with each period

	Ą	- Fish	Founty	28/11/201	12	
Heavy	Test of	T-Cal	T-ta	able	ignificant	differenc
metals	variance	I-Cal.	T-Cal. 0.05 0.01 at α =0.05		& α=0.01	
Zn & Cu	Unequal	2296.397	± 4.303	± 9.925	S	
	В	- Fish	n Fount	y 25/2/20	13	
	Test the	differences	between th	ne means		
treat.	average	L.S.D0.05	L.S.D0.01	Hg	Cu	
Zn	0.44	0.025819	0.020501	0.424	0.25	
Cu	0.19	0.025819	0.020501	0.174		
Z	'n	C	u			
Mean	± S.D.	Mean :	£ S.D.			
19.44	± 0.01	0.69 ±	0.01			

Table 9- Statically Analysis of heavy metals for(Herring Fillets) with each period

	А	- Fish	Herring	28/11/2	012	
	Test the	differences	between th	ne means		
treat.	average	L.S.D0.05	L.S.D0.01	Hg	Cu	
Zn	19.98	0.016354	0.012986	19.941	19.2	
Cu	0.78	0.016354	0.012986	0.741		
	В	- Fish	Herring	j 25/2/20)13	
Heavy	Test of		T-ta	able	ignificant	difference
metals	variance	I-Cal.	0.05	0.01	at α=0.05	& α=0.01
Zn & Cu	Unequal	118.8003	± 4.303	± 9.925	S	
Zn		C	ù			
Mean	± S.D.	Mean :	± S.D.]		
1.13	±0.01	0.16±	0.01]		

	Α -	Fish	Hawesta	a 28/11/2	2012	
	Test the	differences	between th	ne means		
treat.	average	L.S.D0.05	L.S.D0.01	Hg	Cu	
Zn	24.97	0.01998	0.015865	24.87	24.29	
Cu	0.68	0.01998	0.015865	0.58		
	В	- Fish	Hawest	a 25/2/20)13	
		T-table				
Heavy	Test of		T-ta	able	ignificant	difference
Heavy metals	Test of variance	T-Cal.	T-ta 0.05	ble 0.01	ignificant at α=0.05	difference & α=0.01
Heavy metals Zn & Cu	Test of variance Unequal	T-Cal. 202.1613	T-ta 0.05 ± 4.303	able 0.01 ± 9.925	ignificant at α=0.05 S	difference & $\alpha = 0.01$
Heavy metals Zn & Cu Z	Test of variance Unequal n	T-Cal. 202.1613	T-ta 0.05 ± 4.303 Cu	able 0.01 ± 9.925	ignificant at α=0.05 S	difference & α=0.01 5.
Heavy metals Zn & Cu Z Mean	Test of variance Unequal n ± S.D.	T-Cal. 202.1613 C Mean	T-ta 0.05 ± 4.303 Cu ± S.D.	ble 0.01 ± 9.925	ignificant at α=0.05 S	difference & α=0.01 5.

Table 10- Statically Analysis of heavy metals for (Hawesta) with each period

 Table 11- Statically Analysis of heavy metals for (Durra) with each period

	А	- Fish	Durra	28/11/20	12		
	Test the	differences	between th	ne means			
treat.	average	L.S.D0.05	L.S.D0.01	Hg	Cu		
Zn	16.2	0.01165	0.009251	16.19	16.127		
Cu	0.073	0.01165	0.009251	0.063			
	E	3 - Fisł	n Durra	25/2/201	3		
	Test the differences between the means						
	Test the t		between	the means			
treat.	average	L.S.D0.05	L.S.D0.01	Cu	Hg		
treat. Zn	average 0.6	L.S.D0.05 0.01165	L.S.D0.01 0.009251	Cu 0.52	Hg 0.503		

Table 12.	Statically	Analysis	of heavy	metals for	(Vasmine)	with each	neriod
Table 12-	Statically	Anarysis	of neavy	metals 101	(I asimile)	with Each	penou

	•				-
A	- Fish	Yasmine	e 28/11/2	2012	
		Zn			
	В	- Fish	Yasmir	ne 25/2/20	013
Heavy	Test of		T-table		ignificant difference
metals	variance	I-Cal.	0.05	0.01	at α =0.05 & α =0.01
Zn & Cu	Equal	12.24745	± 2.776	± 4,604	S.
Zn		Cu			
Mean ± S.D.		Mean ± S.D.			
0.31 ± 0.01		0.21±	0.01		

					_		
	A -	Fish	Ocean wa	ve 28/1 ⁻	1/2012		
	Test the differences between the means						
treat.	average	L.S.D0.05	L.S.D0.01	Hg	Cu		
Zn	26.7	0.017303	0.013739	26.6	26.18		
Cu	0.52	0.017303	0.013739	0.42			
	В-	Fish	Ocean wa	ave 25/2/	2013		
Heavy	Test of		T-table		ignificant difference		
metals	variance	I-Cal.	0.05	0.01	at α=0.05 & α=0.0		
7n & Cu	Unoqual	20 45040	1 1 202	. 0.025	S.		
211 & Cu	Unequal	30.43010	± 4.303	± 9.925	3).	
Zhaca	'n	38.45018 C	± 4.303 Cu	± 9.925	3		
Zind Cu Z Mean	in ± S.D.	C Mean	± 4.303 2u ± S.D.	± 9.925	3		

	Table	13-	Statically	Analysis	s of heavy	metals for	(Ocean	wave)	with each	period
--	-------	-----	------------	----------	------------	------------	--------	-------	-----------	--------

Conclusions

This study were appeared that the concentration of Hg,Cu,Zn in canned fish with acceptable limits of Iraq standard and FAO while does not record any concentration of Pb in fish samples and the concentration of Zinc more effect than the concentration of copper and mercury in canned fish.

References

- 1. D'Mello, J.P.F. 2003. Food Safety: Contaminants and Toxins. CABI publishing, Wallingford, Oxon, UK, Cambridge, MA. 480.
- 2. Sathawara, N.G.; D.J. Parikh and Y.K. Agarwal. 2004. Essential heavy metals in environmental samples from western India. Bull. Environ. Contam. Toxicol., 73, 264-269.
- 3. Benjamin C, Luiz C. T, Paul M. and Finglas. 2003. Encyclopedia of Food Science and Nutrition, Elsevier Science Ltd., Academic Press, UK, 2nd Ed, pp. 1595-1598, 3051-3055, 3508-3509, 4617-4619, p. 4136.
- 4. Jarup L. 2003. Hazards of heavy metal contamination. British Med. Bull., 68, 167 182.
- 5. Gilbert, J. 1984. Analysis of food contamination. *Elsevier App. Sci. Pups., London 1.*
- 6. Kennish, M. J. 1992. Ecology of Estuaries. Anthropogenic Effects. CRC. Press, Inc., Boca Raton, F1.
- 7. Oehme, F. W. 1989. Toxicity of heavy metals in the environment. Marcel Dekker, Inc., New York, Part 1, 1.
- 8. Ikem A, Egiebor NO .2005. Assessment of trace elements in canned fishes (mackerel, tuna, salmon, sardines and herrings) marketed in Georgia and Alabama (United States of America) J. Food. Com. Anal., 18:771-787.
- 9. Haugen JE and Undeland I. 2003. Lipid oxidation in herring fillets (*Clupeaharengus*) during ice storage measured by a commercial hybrid gas-sensor array system. J. Agr. Food. Chem 51:752-759.
- 10. Santhi, D.; A. KalaiKannan and K. T. RadhAkrishnan. 2008. Presence of heavy metals in pork products in Chennai (India). Am. J. Food Tech noi., 3(3); 192-199.
- 11. Mahatfey, K.R. 1987. Mineral concentration in animal tissue : certain aspects of FAD regulatory role .J.Amin.Sc.,44; 509-515.
- 12. Brito, G.; C. Diaz; L. Galindo; A. Hardisson; D. Santiago and M. F. Garcia. 2005. Level of metals in canned meat products: inter metallic correlations. Bull. Environ. Contam. Toxicol., 54:155-159.
- 13. Haswell, S.J. 2005. Recomended procedures of meat sample . Treatment Analytical Spectrometry Library. 5.224-226.
- 14. Al -Marazany, N. A. M.2007. Effect of using additives on some chemical, bacteriological and sensory properties of local basturma. MS.c thesis. University of Mosul. Iraq.
- 15. Muncke, J.2009. Exposure to Endocrine Disrupting Compound Via the Food Chain : Is Packaging a Reveant Source Sci. Total. Environ. 407:4549-4559.
- 16. Voegborlo, RB.; El-Methnani ,AM. and Abein, MZ.1999. Mercury. cadmium and lead content of canned tuna fish .Food Chem.,67(4):341-345.

- **17.** Hussein, J. and Al-Soufi, M.**2013**. Detection of microbial and chemical contamination in some of canned food that available in locally markets center for market research and consumer protection *.Tik. J. Sci*. 18(1):1813-1662.
- **18.** Abbas, A. KH and Hamza, E. SH.**2010**.Chemical and microbial spoilage in canned food .Ministry of Science and Technology (Research Center of Food Contamination). No(5).
- **19.** Areej, KH. A.; Angham and Adem, A.A.**2012**. Determination of mercury ,nickel and copper in some types of canned fish and meat. *Bas. J. Vet. Res.* 11(2).1-9.
- **20.** Khansari, FE.; Ghazi-Khansari, M. and Abdollahi, M.**2005**. Heavy metals content of canned tuna fish *.Food Chem.*,93:293-296.
- **21.** Demirezen, D. and Uruc, K.**2006**.Comparative study of trace elements in certain fish, meat and meat products. *Meat Science*.74;255-260.
- **22.** Jirjis, N. N.**2012**. Determination heavy metals Toxic in Canned Tuna Fish Determination Heavy Metals Toxic in Erbil Market. General Directorate for Industry Development .Ministry of Trade and Industry.Quality Control Labs. No(5).
- **23.** Tuzen, M. and Soylak, M. **2007**. Evaluation of trace elements content in canned foods marketed from Turkey *.Food Chem*.102,1089-1095.
- 24. Joseph, E. ;Nasiru, R. and Ahmed, Y.A. 2011. Trace elements pattern in some Nigerian commercial infant milk and infant cereal formulas. *Annals of Biological Research*. 2 (2):351-360.
- 25. Boadi, N.O.; Twumasi, S.K.; Badu, M. and Osei, I.2011. Heavy metal contamination in canned fish marketed in Ghana *Am. J. Sci. Ind. Res.* 2(6): 877-882.
- **26.** Malakootian, M.; Tahergorabi, M.; Daneshpajooh, MandAmirtaheri, M.**2011**. Determination of Pb, Cd, Ni and Zn concentrations in canned fish in southern Iran. *Sacha.J.Envir*. 1(1):94-100.