

Theoretical Study of Electronic Properties and Vibration Frequencies for Tri-Rings Layer (6, 0) Linear (Zigzag) SWCNT

Rehab Majed Kubba*, Khalida Aubead Samawi

Department of Chemistry, College of Science, University of Baghdad, Iraq, Baghdad, Iraq

Abstract.

DFT (3-21G, 6-31G and 6-311G/ B3LYP) and Semi-empirical PM3 methods were applied for calculating the vibration frequencies and absorption intensities for normal coordinates (3N-6) of the Tri-rings layer (6,0) Zigzag single wall carbon nanotube (SWCNT) at their equilibrium geometries which was found to have D_{6h} symmetry point group with C-C bond alternation in all tube rings.as well as mono ring layer. Assignments of the modes of vibration were done depending on the pictures of their modes applying by Gaussian 03 program. The whole relations for the vibration modes were also done including (CH stretching, vCC stretching, deformation in plane of the molecule (δ CH, δ ring and δ CCC), deformation out of plane of the molecule (γ CH and γ ring (γ CCC). Also include the assignment of puckering, breathing and clock-anticlockwise bending vibrations.

Comparison for the geometry (the relations for axial bonds, which are the vertical C-C bonds (linear bonds) in the rings layer and for circumferential bonds which are the outer ring bonds), electronic properties and IR active vibration frequencies (asymmetric modes) of (Mono and Tri) rings layer were done. Clear relationships were found in the results of an odd layer number (Mono and Tri-rings layer). The theoretical results allow a comparative view of the charge density at the carbon atoms too.

Keywords: Tri-rings layer Zigzag SWCNT, Electronic properties, Vibration frequencies.

دراسة نظرية للصفات الالكترونية ولترددات اهتزاز انبوب النانوكاربون نوع (6,0) زكزاك ثلاثي الطبقات

رحاب ماجد كبة، خالدة عبيد سماوي

كلية العلوم، قسم الكيمياء، جامعة بغداد، بغداد، العراق

الخلاصة

Semi-empirical method تضمن البحث استخدام إحدى طرق ميكانيك الكم التقريبية شبه التجريبية DFT (6-311G,6-31G,3-21G/B3LYP) وطريقة (parameter model 3 (PM3) الأساسية غير التقريبية (لعناصر قاعدة متعددة) باستخدام برنامج Gaussian-03 في حساب الشكل الهندسي التوازني لانبوب النانوكاريون نوع زكزاك ((6, 0)) ثلاثي الطبقات الذي وجد امتلاكه للتماثل ال 0_{6} . و تم تصنيف ترددات المتواز طيف الأشعة تحت الحمراء وبعدد 6-31 وتشخيصها تكافؤيا وتماثليا، وايجاد جميع العلاقات المتعلقة بالانماط المختلفة كتريدات مط Hy و 20% و

المتضمنة الحركات التنفسية والانبعاجية. كذلك تمت دراسة بعض الصفات الفيزياوية كحرارة التكوين والطاقة الملكية وعزم ثنائي القطب والفرق الطافي ΔΕΗΟΜΟ-LUMO وتوزيع الكثافة الالكترونية-- الخ، عند الشكل الهندسي التوازني. تم التركيز في الدراسة على عناصر القاعدة الاكثر دقة في الحساب /6-3116) الشكل الهندس وتمت مقارنة النتائج نظريا مع انبوب النانوكاريون نوع زكزاك (6, 0) احادي الطبقة. وكذالك تمت دراسة ومقارنة توزيع الكثافة الالكترونية على ذرات الكاريون.

Introduction

Carbon nanotubes (CNTs) have been intensively studied according their importance as a building block in nanotechnology. The special geometry and unique properties of carbon nanotubes offer great potential applications [1]. Various quantum mechanical studies were done for the physical properties of the nanotubes [2-6]. Structural deformation is expected to change their thermal and electronic properties too. The study of vibration of CNTs is for successful applications in nanotechnology. Specifically, some vibration modes of CNTs, e.g., radial breathing mode [7-10], beam-like bending mode, [11,12] and longitudinal mode [13], offers valuable probes for the molecular structures and the elastic properties of CNTs. On the other hand, CNTs consisting of straight concentric layers with circular cross-section could lose their structural symmetry due to the vibration in axial, circumferential and radial directions [14,15]. This could result in a sudden change in their physical properties (e.g., the electrical properties [16] and in turn, significantly affect their performance in nanostructures. Thus, similar to the buckling behavior [17] the vibration of CNTs turns out to be a major topic of great interest in nanomechanics, considerable efforts [18] have been devoted to capturing the fundamental vibration behaviors of CNTs by using experimental techniques [19] and multi-scale modeling tools [20-24]. Recently, the interest of the mechanics of CNTs has been transferred from their fundamental behavior to the effect of internal and external factors on the elastic properties [25-27], buckling [28-30] of CNTs. However no study could be found in the literature for a normal coordinate analysis of the simplest type of nanotube Tri rings-layer Zigzag SWCNT. Methods of calculation

G03 program of Pople et al. [31] was applied throughout the present work.

Results and Discussion

In the recent study [32], the absorption intensities and assignment of the vibration frequencies of carbon nanotube were calculated for normal coordinates (3N-6) of [6] Zigzag single wall carbon nanotube. In this work the vibratory motions of Tri-rings layer (6,0) Zigzag single wall carbon nanotube (SWCNT) at their equilibrium geometrieswere calculated, define its geometric parameters, and distinguished between their axial (C-Ca) (vertical bonds) in the rings and circumferential (C-Cc) the outer ring bonds, both C-C bond alternation in all tube rings. figure-1, shows the two types of bonds of zigzag Tri ring layers CNT, a space filling, optimized geometry and repetitive sections of bonds due to its symmetry D_{6h} .Basic vibrations of SWCNTs were measured and assigned as breathing, puckering and clock-anti-clockwise deformation modes [7]. They were considered as finger print vibrations for the carbon nanotubes (CNTs) [8]. The active vibrations cause a change in its geometric structure. Measurements were done to study the impact of the puckering distortion on the electronic properties of CNTs [9-11].

For a normal mode of vibration to be infrared active, there must be a change in the dipole moment of the molecule during the course of vibration (during the vibrational motion of a molecule, a regular fluctuation in the dipole moment occurs, and a field is established which can interact with the electrical field associated with radiation). For the absorption of infrared radiation, a molecule must undergo a net change in its dipole moment as a result of its vibrational or rotational motions [12].

The classifications of carbon nanotube Tri-rings layer, determined by three numbers of ring layers, and the length of CNT, can also be described as single-walled nanotubes (SWNT), resembling by rolling a graphene sheet into a cylindrical structure are uniquely defined by specifying the coordinates of the smallest folding vector (n, 0) Zigzag SWCNT is composed of linear numbers of aromatic rings molecules. So the Tri-rings layer SWCNT is composed of linear six members of aromatic rings in each three layers. Its (PM3 and DFT (B3LYP/6-311G) calculated equilibrium geometry shows D_{6h} symmetry point group, as in figure-1.

Space filling for tri-rings layer SWCNT

Tri-rings layer SWCNT (D_{6h})

Repetitive section

Figure 1- Space filling, equilibrium geometry and repetitive sections of bonds and angles for Tri-rings layer (6,0) Zigzag (SWCNT) according to their point group (D_{6h}).

Table-1 shows that for the Tri-rings layer SWCNT (C...Ca) bonds be shorter on going from outer rings layer to mid ring layer, the reverse was shown for the (C...Cc). The comparison of Mono-ring layer with Tri-rings layers, showed that the diameter decrease with increasing odd rings layer, the diameter of Mono ring layer (4.7370 Å) is lower than that for Tri-rings layers (4.8256 Å). The C-C bonds of the optimized Zigzag Tri-rings layer SWCNTs as well as for the optimized Zigzag Mono layer were all being conjugated double bonds. (C-H) and (C...Ca) bond length in Mono-ring layer was shorter than that inTri-rings layer, the reverse was found for (C...Cc) bond length, which decrease in length with increase in odd rings layer (Tri rings layers), and decrease in length on going from the outer rings layer to the mid ring layer.

Table 1- DFT (6-311G/ B3LYP) calculated bond distances for the calculated (Mono and Tri) rings								
layer (6,0) Zigzag SWCNT.								
Odd laver Zigzag Diameter Bond length (Å)								

Odd layer Zigzag	Diameter		Bond length (Å)				
(SWCNT)	NT) (Å) Length (A)		CCa	CCc	С—Н		
*Mono-ring layer D _{6h}	4.7370	4.9722	1.4462	1.4133	1.0946		
Tri-rings layer D _{6h}	4.8256	9.2647	1.4442 Outer 1.4362 Mid	1.4254 Outer 1.4341 Mid	1.0830		

C-Ca: axial bond.;C-Cc: circumferential bond [32].

The frontier molecular orbital's HOMO (the Highest Occupied Molecular Orbital) and LUMO (the Lowest Unoccupied Molecular Orbital), also have been calculated, as well as E_{HOMO}, E_{LUMO} represents the ability of the molecule to accept or donate electrons. The higher value of E_{HOMO} suggests the molecule donates electrons more probable, while the lower value of ELUMO suggests the molecule accepts electrons more probable [33, 34].

Detailed result in table-2, showed that ΔH_{f} , and E_{HOMO} , increase with increasing number of odd rings layer, E_{LUMO} decrease with the increasing odd rings layer. $\Delta E_{HOMO-LUMO}$ decrease with increasing both, the number of odd and even rings layer.

Dipole moment μ is zero for two odd rings layer, Mono and Tri-rings layer because they have a center of inversion according to their symmetry D_{6h}.table-2, shows some physical properties of thecalculated (Mono and Tri)-rings layer (6, 0) Zigzag SWCNT at their equilibrium geometry.

Odd layer Zigzag (SWCNT)	m. wt. (g/ mol)	$\Delta H_{\rm f}$ (kcal/mol)	μ (Debye)	E _{tot.} (eV)	E _{HOMO} (eV)	E _{LUMO} (eV)	ΔE _{HOMO-} _{LUMO} (eV)
Mono-ring* layer (C ₂₄ H ₁₂)	300.359	353.370	0.000	-25071.916	-6.309	-2.586	3.723
Tri-rings layer (C ₄₈ H ₁₂)	588.623	663.338	0.000	-49953.572	-5.670	-3.642	2.038

 Table 2- Some physical properties of the calculated (Mono and Tri) rings layer(6, 0) Zigzag SWCNT at their equilibrium geometry* [32]

Figure-2, shows the frontier molecule orbital density distributions and energy levels of HOMO (Highest Occupied Molecular Orbital), and LUMO (the Lower Unoccupied Molecular Orbital) orbitals computed at the B3LYP/6-311G level for the Mono and Tri rings layer (6, 0) Zigzag SWCNT. As seen from figure-2, in HOMO and LUMO, electrons are mainly localized on the outer circumferential carbon atoms. The value of the energy separation between the HOMO and LUMO ($\Delta E_{HOMO-LUMO}$) is 2.038eV, for Tri rings layer less than for Mono ring layer 3.723eV and this lower energy gap indicates that the Tri rings layer is better for electrical conductivity.

Vibration frequency assignment of Tri-rings layer(6, 0) Zigzag SWCNT(C₄₈H₁₂)

The Tri-rings layer Zigzag SWCNT posses 174 fundamental vibrations. Inspection of its irreducible representations, as defined by the symmetry character table, resulted in the following modes of vibration;

 $\Gamma_{vibration} = \Gamma_{total} - (\Gamma_{rotation} + \Gamma_{translation}) = 3N-6 = 180 - 6 = 174 = 10A_{1g} + 4A_{2g} + 7B_{1u} + 8B_{2u} + 14E_{1u} + 15E_{2g} + 5A_{1u} + 9A_{2u} + 7B_{1g} + 8B_{2g} + 14E_{1g} + 15E_{2u}$

For SWCNTs, and relative to the $(\mathbf{\delta}_{+\mathbf{h}})$ reflection the vibration modes are classified as:

a- Symmetric modes with respect to $\delta_h(\delta_{+h})$. These are out of plane (of the molecule).

 $\Gamma \delta_{+h} = 10A_{1g} + 4A_{2g} + 15E_{2g} + 7B_{1u} + 8B_{2u} + 14E_{1u}$ (In-plane modes of vibrations with respect to σ_h) = 87

b- Antisymmetric modes with respect to $\delta_h(\textbf{6-}_h).$ These are in plane (of the molecule) modes of vibrations.

 $\Gamma \delta_{.h} = 7B_{1g_+} 8B_{2g} + 14E_{1g} + 5A_{1u} + 9A_{2u} + 15E_{2u} = 87$ Symmetric modes with respect to $\delta_h (\delta_{+h})$

These are 68 modes of vibration in number, of which 40 are Raman active $(10A_{1g} \text{ (polarized)}) + 15E_{2g} (depolarized))$, and 28 IR active $(14E_{1u})$.

vCH stretching vibrations

The frequency values range from (3029-3041cm⁻¹), showing the following correlations:

 $v_{sym} CH str. (3041 cm^{-1}) (A_{1g}) \cong v_{asym} CH str. (3041 cm^{-1}) (A_{2u})$

The highest IR absorption intensity is 55.779km/mol due to $v_{93}(3041 \text{ cm}^{-1}) (A_{2u})$.

v(C--C stretching) vibrations

The calculated CC stretching vibration frequencies range from (1054-1565 cm⁻¹). Showing the following correlation;

 $v_{sym.}$ (CC str.) (1565 cm⁻¹) (axial.)(A_{1g}) > $v_{asym.}$ (CC str.) (1547 cm⁻¹) (axial.) (A_{2u}) $v_{sym.}$ (CC str.) (1565 cm⁻¹) (axial.)(A_{1g}) > $v_{asym.}$ (CC str.) (1536 cm⁻¹) (circum.) (E_{1u}) In general:

 $v_{sym.}$ (CC str.) > $v_{asym.}$ (CC str.)

The highest IR absorption intensity is 176.103km/mol due to v_{94} (1531 cm⁻¹) (A_{2u}).

vRing stretching(CCC stretching vibrations)

Unlike the C--C vibration modes, these are not located at definite C atoms as could be seen from the atomic displacement vectors. According to their assignment, they fall in the range $(1108-1507 \text{ cm}^{-1})$.

The highest IR absorption intensity is 1.660km/mol due to $v_{125,126}$ (1266 cm⁻¹) (E_{1u}).

δCH in plane CH bending vibrations

Their displacement vectors are mainly located at the corresponding H atoms. The calculated frequency values range is (1126-1466cm⁻¹).

δCH (scissor.) (1466 cm⁻¹) (E_{2u}) > δCH (rock.) (1191cm⁻¹) (E_{1u})

In general:

 $\delta CH_{asym.} > \delta CH_{sym}$

The highest IR absorption intensity is 0.133km/mol due to $v_{127,128}$ (1191 cm⁻¹) (E_{1u}).

δRing in planeCCC bending vibrations (δCCC)

Of smaller values are the deformation (δ CCC) vibrations. According to their assignment, they fall in the range (461-1296 cm⁻¹). These modes include the expected clock and anticlockwise vibration motions. There is no δ CCC_{sym} for this mode of vibration. The highest IR absorption intensity is 271.985km/mol due to v₉₅ (1296 cm⁻¹) (**A**_{2u}).

γCH out of plane CH bending vibrations

The (γ CH) out of plane vibration frequency range is (695-935cm⁻¹). The following relations hold too;

 $v_{sym}\gamma CH (935 \text{ cm}^{-1}) (wagg.) (A_{1g}) > v_{asym}\gamma CH (896 \text{ cm}^{-1}) (twist.) (E_{2u}).$

The highest IR absorption intensity is 377.198km/mol due to $v_{131, 132}$ (899 cm⁻¹) (E_{1u}).

γCC out of plane (of the molecule) vibrations

The (γ CC) out of the plane of the molecule vibration frequency range is (341-765 cm⁻¹).

The highest IR absorption intensity is 17.056km/mol due to $v_{133, 134}$ (765 cm⁻¹) (E_{1u}).

$\gamma Ring$ out of plane (of the molecule) vibrations ($\gamma CCC)$

The ring out of plane vibrations (γ CCC), show frequency values of which the range is (145-764 cm⁻¹). The modes include puckering, deformations, as well as breathing vibrations of the whole ring. The relation of the symmetric to the asymmetric modes of Zigzag molecule is viewed in the following scheme;

$v_{asym.}\gamma Ring (\gamma CCC) (axial.) (764 \text{ cm}^{-1}) (E_{1g}) > v_{sym.}\gamma Ring (\gamma CCC) (axial.) (752 \text{ cm}^{-1}) (A_{1g})$

The highest IR absorption intensity is 286.183km/mol due to v_{101} (409 cm⁻¹) (A_{2u}).

Compared with the frequencies of Mono ring layer SWCNT [37], as calculated applying the same DFT method and gauss basis, the frequency values and the force field of Mono ring layer are higher

for v_{sym} . CHstr., v_{asym} . C--Cc str., δ CH, δ ring, γ CH wagg., and lower for v_{sym} . C--Ca str., γ CH twist., γ ring, table-3, 4. The following relations hold:

```
v<sub>svm</sub>.CH str. Mono > v<sub>svm</sub>.CH str. Tri
```

 v_{asym} .CH str. Mono > v_{asym} .CH str. Tri

v_{sym}.C--Ca str. Tri > v_{sym}.C--Ca str. Mono

 $v_{asym.}$ C--Ca str. Tri > $v_{asym.}$ C--Ca str. Mono

 $v_{asym.}$ C--Cc str. Mono > $v_{asym.}$ C--Cc str. Tri

 δCH Mono > δCH Tri

 $\delta Ring(\delta CCC)$ Mono > $\delta Ring(\delta CCC)$ Tri

 γ CH wagg.Mono > γ CH wagg. Tri

 γ CH twist.Tri > γ CH twist. Mono

γRing (γCCC) Tri >γRing (γCCC) Mono

The ordering of the modes follows the Herzberg convention [35]. table-3 includes the calculated vibration frequencies and IR absorption intensities for each mode of the Tri rings layer SWCNT. figure-3 shows the graphical pictures of some vibration modes for Tri-rings layer (6, 0) Zigzag SWCNT as calculated applying the DFT (B3LYP /6-311G) method.

	Symmetry & description	PM3	DFT/3-	DFT/6-31G	DFT/6-	DFT/6-
A _{1g}						-
V1	CHsym. str.	3081	3086	3099	3041	0.000
v_2	ring (CC str.) (axial) mid layer	1736	1531	1585	1565	0.000
V3	ring (CC str.) (axial)	1620	1432	1470	1450	0.000
v_4	δring (δCCC str.)	1230	1080	1097	1083	0.000
V5	γCH (wagging)	921	888	937	935	0.000
ν ₆	γ ring (γ CCC) (axial) (puck).	865	715	803	752	0.000
v_7	γ ring (γ CCC)(puck.) + γ CH(breath.)	622	567	613	609	0.000
ν_8	γ ring (γ CCC)(breathing) mid layer	606	492	500	494	0.000
ν_9	γ ring (γ CCC) (puck.) outer edge	437	424	429	431	0.000
v_{10}	γ ring (γ CCC) (puckering)	389	393	396	394	0.000
A _{2g}						
v ₁₁	δCH (clock-anti clock)	1534	1396	1430	1416	0.000
V ₁₂	CCCstr. (circum.) mid layer + δ CH	1282	1284	1341	1318	0.000
V ₁₃	δCH (clock-anti clock)	1098	1163	1190	1175	0.000
v_{14}	δring (δCCC) (clock-anti clock) + δCH	462	462	464	461	0.000
B _{1g}				-		-
V ₁₅	δCH (scissor.)	1565	1445	1449	1440	0.000
v_{16}	CCC str. (circum.) mid layer	1543	1354	1382	1362	0.000
V ₁₇	ring str. (CCC str.)	1393	1298	1354	1329	0.000
v_{18}	δ CH (scissor.) + CC str. (axial)	1133	1123	1137	1126	0.000
V ₁₉	γ CC (axial) (puckering) + γ CH	710	665	690	684	0.000
v_{20}	γCC (axial) (puckering)	630	665	612	603	0.000
v_{21}	γ CC (axial) (puck.) outer layer	394	348	370	368	0.000
B _{2g}						
v_{22}	CHasym. str.	3080	3075	3088	3029	0.000
v_{23}	CCstr. (circum.)	1589	1359	1390	1370	0.000
v_{24}	CCstr. (circum.)	1566	1263	1294	1269	0.000
V25	γCH (twisting)	836	852	872	867	0.000
v_{26}	γCH (twisting)	808	777	797	800	0.000
v_{27}	γ CC (axial) mid layer + γ CH	700	656	692	680	0.000
v_{28}	γCC (axial) mid layer	588	561	577	573	0.000
V ₂₉	γring (γCCC) (puckering)	279	248	266	278	0.000
E _{1g}			-			
V ₃₀	CHasy. str.	3078	3083	3095	3037	0.000
V ₃₂	CC str. (circum.) + δ CH (rock.)	1696	1511	1557	1536	0.000
V ₃₄	CCstr. (axial) outer layer + δ CH	1669	1486	1524	1505	0.000
V ₃₆	ring str. + δ CH (rock.)	1465	1321	1358	1341	0.000
V ₃₈	CC str. (circum.) + δ CH (rock.)	1378	1252	1278	1261	0.000

Table 3- Vibration frequencies and IR absorption intensities for Tri-rings layer (6, 0) Zigzag.

v_{40}	δCH (rock.)	1147	1180	1203	1188	0.000
V42	γCH (twisting)	980	863	885	883	0.000
V44	γ CH(wagg.) + γ ring (γ CCC)(puck.)	904	812	844	837	0.000
Vac	vring (vCCC) (nuckering) + vCH	870	752	790	764	0.000
V 40	vring (puckering) mid laver	819	595	773	686	0.000
V48	γCC (axial) (puckering)	628	673	641	630	0.000
V 50	wCC (axial) (puckering)	585	608	508	504	0.000
V ₅₂	ycc (axiai) (puckering) inid layer	250	250	269	260	0.000
V ₅₄	$\gamma CCC (cifcum.)$	332	330	308	309	0.000
V ₅₆	γring (γCCC) (puckering)	304	303	300	304	0.000
E _{2g}		2050	2050	2000	2022	0.000
V ₅₈	CHasy. str.	3079	3078	3090	3032	0.000
v_{60}	CCCstr. (circum.) + δ CH (scissor.)	1667	1496	1523	1507	0.000
v_{62}	CCstr. (axial)	1595	1374	1421	1397	0.000
v_{64}	CCstr. (axial) + δ CH (scissor.)	1508	1361	1392	1377	0.000
v_{66}	Ring str. (CCCstr.)	1454	1281	1335	1308	0.000
v_{68}	δ CH (scissor.) + CCCstr. (circum.)	1330	1217	1244	1226	0.000
v_{70}	Ring str. (CCCstr.)	1192	1104	1124	1108	0.000
v_{72}	$\delta ring(\delta CCC)$ mid layer + δCH	1033	910	921	911	0.000
v_{74}	γCH (twisting)	851	830	868	869	0.000
v_{76}	γCH (twisting)	795	745	763	759	0.000
V ₇₈	γ CH (twist.) + γ ring (γ CCC)(puck.)	676	639	681	673	0.000
V80	γ CC (axial) mid layer (puckering)	504	489	496	495	0.000
Ver	γ ring (γ CCC) (puckering)	458	411	451	453	0.000
Ve4	vring (vCCC) (puckering)	247	252	258	259	0.000
V ₈₆	vring (vCCC) (puckering)	148	137	143	145	0.000
A ₁	Jung (Jeee) (partering)					
Voo	ring str. (clock-anti-clock) + δCH	1593	1407	1456	1433	0.000
V 88	δCH (clock-anti clock)	1296	1356	1392	1378	0.000
V 89	SCH (clock-anti clock)	1100	1142	1175	1155	0.000
V90	Sring (SCCC) (clock-anti-clock) (outer	608	601	601	598	0.000
Ver	$\delta ring (\delta CCC) (clock_anti clock) + \delta CH$	252	254	254	253	0.000
	-	/. //.	/ · / 	/ / -		
A ₂	oring (oeee) (clock-anti-clock) + oerr	232	234	234	233	0.000
A _{2u}	CHasy	3081	3085	3099	3041	55 779
$\begin{array}{c} V_{92} \\ A_{2u} \\ V_{93} \\ \end{array}$	CHasy	<u>3081</u>	3085 1504	3099	3041	55.779
$\begin{array}{c} v_{92} \\ A_{2u} \\ v_{93} \\ v_{94} \\ \end{array}$	CHasy CC str. (axial) outer layer	3081 1700 1415	<u>3085</u> <u>1504</u> 1289	3099 1551 1310	3041 1531 1296	55.779 176.103 271.985
	CHasy CC str. (axial) outer layer δring (δCCC) (elongation)	3081 1700 1415	3085 1504 1289	3099 1551 1310	3041 1531 1296	55.779 176.103 271.985 201.477
$ \begin{array}{c} V_{92} \\ A_{2u} \\ V_{93} \\ V_{94} \\ V_{95} \\ V_{96} \end{array} $	$\frac{CHasy}{CC str. (axial) outer layer}$ $\frac{\delta cCC}{\delta cCC} (elongation)$ $\frac{\gamma CH (wagg.)}{\delta cCC}$	3081 1700 1415 930	3085 1504 1289 818	3099 1551 1310 865	3041 1531 1296 867	55.779 176.103 271.985 301.477
$\begin{array}{c} v_{92} \\ A_{2u} \\ v_{93} \\ v_{94} \\ v_{95} \\ v_{96} \\ v_{97} \end{array}$	CHasy CC str. (axial) outer layer δring (δCCC) (elongation) γCH (wagg.) γring (γCCC)	3081 1700 1415 930 923	3085 1504 1289 818 774	3099 1551 1310 865 794	3041 1531 1296 867 779	55.779 176.103 271.985 301.477 128.109
$\begin{array}{c} v_{92} \\ A_{2u} \\ v_{93} \\ v_{94} \\ v_{95} \\ v_{96} \\ v_{97} \\ v_{98} \end{array}$	$\frac{CHasy}{CC \text{ str. (axial) outer layer}}$ $\frac{\delta CCC}{\delta CCC} (elongation)$ $\frac{\gamma CH (wagg.)}{\gamma ring (\gamma CCC)}$ $\frac{\gamma ring (\gamma CCC) (puckering) outer}{\gamma ring (\gamma CCC)}$	3081 1700 1415 930 923 897 740	3085 1504 1289 818 774 701	3099 1551 1310 865 794 781	3041 1531 1296 867 779 729	55.779 176.103 271.985 301.477 128.109 219.485
$\begin{array}{c} V_{92} \\ A_{2u} \\ V_{93} \\ V_{94} \\ V_{95} \\ V_{96} \\ V_{97} \\ V_{98} \\ V_{99} \end{array}$	CHasy CC str. (axial) outer layer $\delta ring (\delta CCC)$ (elongation) $\gamma CH (wagg.)$ $\gamma ring (\gamma CCC)$ (puckering) outer $\gamma ring (\gamma CCC)$ (breathing) mid	3081 1700 1415 930 923 897 740	3085 1504 1289 818 774 701 634	3099 1551 1310 865 794 781 745	3041 1531 1296 867 779 729 644	55.779 176.103 271.985 301.477 128.109 219.485 131.016
$\begin{array}{c} \sqrt{92} \\ \overline{A_{2u}} \\ \sqrt{93} \\ \sqrt{94} \\ \sqrt{95} \\ \sqrt{96} \\ \sqrt{97} \\ \sqrt{98} \\ \sqrt{99} \\ \sqrt{100} \end{array}$	CHasy CC str. (axial) outer layer $\delta ring (\delta CCC)$ (elongation) $\gamma CH (wagg.)$ $\gamma ring (\gamma CCC)$ $\gamma ring (\gamma CCC)$ (puckering) outer $\gamma ring (\gamma CCC)$ (breathing) mid $\gamma ring (\gamma CCC)$ (breathing)	3081 1700 1415 930 923 897 740 520	3085 1504 1289 818 774 701 634 488 208	3099 1551 1310 865 794 781 745 500	3041 1531 1296 867 779 729 644 496	55.779 176.103 271.985 301.477 128.109 219.485 131.016 10.266
$\begin{array}{c} v_{92} \\ A_{2u} \\ v_{93} \\ v_{94} \\ v_{95} \\ v_{96} \\ v_{97} \\ v_{98} \\ v_{99} \\ v_{100} \\ v_{101} \\ p \end{array}$	CHasy CC str. (axial) outer layer $\delta ring (\delta CCC)$ (elongation) $\gamma CH (wagg.)$ $\gamma ring (\gamma CCC)$ $\gamma ring (\gamma CCC)$ (puckering) outer $\gamma ring (\gamma CCC)$ (breathing) mid $\gamma ring (\gamma CCC)$ (puckering) outer $\gamma ring (\gamma CCC)$ (breathing) $\gamma ring (\gamma CCC)$ (puckering) outer	3081 1700 1415 930 923 897 740 520 437	3085 1504 1289 818 774 701 634 488 398	3099 1551 1310 865 794 781 745 500 407	3041 1531 1296 867 779 729 644 496 409	55.779 176.103 271.985 301.477 128.109 219.485 131.016 10.266 286.183
$\begin{array}{c} v_{92} \\ A_{2u} \\ v_{93} \\ v_{94} \\ v_{95} \\ v_{96} \\ v_{97} \\ v_{98} \\ v_{99} \\ v_{100} \\ v_{101} \\ B_{2u} \end{array}$	CHasy CC str. (axial) outer layer $\delta ring (\delta CCC)$ (elongation) $\gamma CH (wagg.)$ $\gamma ring (\gamma CCC)$ $\gamma ring (\gamma CCC)$ (puckering) outer $\gamma ring (\gamma CCC)$ (breathing) mid $\gamma ring (\gamma CCC)$ (breathing) $\gamma ring (\gamma CCC)$ (puckering) outer CU	3081 1700 1415 930 923 897 740 520 437	3085 1504 1289 818 774 701 634 488 398	3099 1551 1310 865 794 781 745 500 407	3041 1531 1296 867 779 729 644 496 409	55.779 176.103 271.985 301.477 128.109 219.485 131.016 10.266 286.183
$\begin{array}{c} v_{92} \\ A_{2u} \\ v_{93} \\ v_{94} \\ v_{95} \\ v_{96} \\ v_{97} \\ v_{98} \\ v_{99} \\ v_{100} \\ v_{101} \\ B_{2u} \\ v_{102} \end{array}$	CHasy CC str. (axial) outer layer δ ring (δ CCC) (elongation) γ CH (wagg.) γ ring (γ CCC) γ ring (γ CCC) (puckering) outer γ ring (γ CCC) (breathing) mid γ ring (γ CCC) (breathing) γ ring (γ CCC) (puckering) outer CCC) (puckering) outer CHasy	3081 1700 1415 930 923 897 740 520 437 3080	3085 1504 1289 818 774 701 634 488 398 3076	3099 1551 1310 865 794 781 745 500 407	3041 1531 1296 867 779 729 644 496 409 3029 1251	55.779 176.103 271.985 301.477 128.109 219.485 131.016 10.266 286.183
$\begin{array}{c} v_{92} \\ A_{2u} \\ v_{93} \\ v_{94} \\ v_{95} \\ v_{96} \\ v_{97} \\ v_{98} \\ v_{99} \\ v_{100} \\ v_{101} \\ B_{2u} \\ v_{102} \\ v_{103} \end{array}$	CHasy CC str. (axial) outer layer δ ring (δ CCC) (elongation) γ CH (wagg.) γ ring (γ CCC) γ ring (γ CCC) (puckering) outer γ ring (γ CCC) (breathing) mid γ ring (γ CCC) (breathing) mid γ ring (γ CCC) (breathing) γ ring (γ CCC) (breathing) outer CHasy CCstr. (circum.) outer layer + CCstr.	3081 1700 1415 930 923 897 740 520 437 3080 1576	3085 1504 1289 818 774 701 634 488 398 3076 1344	3099 1551 1310 865 794 781 745 500 407 3088 1372	3041 1531 1296 867 779 729 644 496 409 3029 1351 1244	55.779 176.103 271.985 301.477 128.109 219.485 131.016 10.266 286.183 0.000 0.000
$\begin{array}{c} v_{92} \\ A_{2u} \\ v_{93} \\ v_{94} \\ v_{95} \\ v_{96} \\ v_{97} \\ v_{98} \\ v_{99} \\ v_{100} \\ v_{101} \\ B_{2u} \\ v_{102} \\ v_{103} \\ v_{104} \end{array}$	CHasy CC str. (axial) outer layer δ ring (δ CCC) (elongation) γ CH (wagg.) γ ring (γ CCC) γ ring (γ CCC) (puckering) outer γ ring (γ CCC) (breathing) mid γ ring (γ CCC) (breathing) mid γ ring (γ CCC) (breathing) γ CCC) (breathing) (b	3081 1700 1415 930 923 897 740 520 437 3080 1576 1562 1242	3085 1504 1289 818 774 701 634 488 398 3076 1344 1311	3099 1551 1310 865 794 781 745 500 407 3088 1372 1368	3041 1531 1296 867 779 729 644 496 409 3029 1351 1344	0.300 55.779 176.103 271.985 301.477 128.109 219.485 131.016 10.266 286.183 0.000 0.000 0.000 0.000
$\begin{array}{c} v_{92} \\ A_{2u} \\ v_{93} \\ v_{94} \\ v_{95} \\ v_{96} \\ v_{97} \\ v_{98} \\ v_{99} \\ v_{100} \\ v_{101} \\ B_{2u} \\ v_{102} \\ v_{103} \\ v_{104} \\ v_{105} \end{array}$	CHasy CC str. (axial) outer layer δ ring (δ CCC) (elongation) γ CH (wagg.) γ ring (γ CCC) (puckering) outer γ ring (γ CCC) (puckering) mid γ ring (γ CCC) (breathing) mid γ ring (γ CCC) (breathing) γ ring (γ CCC) (breathing) γ ring (γ CCC) (puckering) outer CHasy CCstr. (circum.) outer layer + CCstr. CCstr. mid layer ring str. (CCC str.)	3081 1700 1415 930 923 897 740 520 437 3080 1576 1562 1343	3085 1504 1289 818 774 701 634 488 398 3076 1344 1311 1161	3099 1551 1310 865 794 781 745 500 407 3088 1372 1368 1182 246	3041 1531 1296 867 779 729 644 496 409 3029 1351 1344 1166	0.000 55.779 176.103 271.985 301.477 128.109 219.485 131.016 10.266 286.183 0.000 0.000 0.000 0.000 0.000
$\begin{array}{c} v_{92} \\ A_{2u} \\ v_{93} \\ v_{94} \\ v_{95} \\ v_{96} \\ v_{97} \\ v_{98} \\ v_{99} \\ v_{100} \\ v_{101} \\ B_{2u} \\ v_{102} \\ v_{103} \\ v_{104} \\ v_{105} \\ v_{106} \end{array}$	CHasy CC str. (axial) outer layer δ ring (δ CCC) (elongation) γ CH (wagg.) γ ring (γ CCC) (puckering) outer γ ring (γ CCC) (puckering) mid γ ring (γ CCC) (breathing) mid γ ring (γ CCC) (breathing) γ ring (γ CCC) (breathing) γ ring (γ CCC) (puckering) outer CHasy CCstr. (circum.) outer layer + CCstr. CCstr. mid layer ring str. (CCC str.) γ CH (twisting)	3081 1700 1415 930 923 897 740 520 437 3080 1576 1562 1343 821	3085 1504 1289 818 774 701 634 488 398 3076 1344 1311 1161 809	3099 1551 1310 865 794 781 745 500 407 3088 1372 1368 1182 846 605	3041 1531 1296 867 779 729 644 496 409 3029 1351 1344 1166 846	0.000 55.779 176.103 271.985 301.477 128.109 219.485 131.016 10.266 286.183 0.000 0.000 0.000 0.000 0.000 0.000 0.000
$\begin{array}{c} \nu_{92} \\ \nu_{93} \\ \nu_{94} \\ \nu_{95} \\ \nu_{96} \\ \nu_{97} \\ \nu_{98} \\ \nu_{99} \\ \nu_{100} \\ \nu_{101} \\ B_{2u} \\ \nu_{102} \\ \nu_{103} \\ \nu_{104} \\ \nu_{105} \\ \nu_{106} \\ \nu_{107} \end{array}$	CHasy CC str. (axial) outer layer δ ring (δ CCC) (elongation) γ CH (wagg.) γ ring (γ CCC) (puckering) outer γ ring (γ CCC) (puckering) mid γ ring (γ CCC) (breathing) mid γ ring (γ CCC) (breathing) mid γ ring (γ CCC) (breathing) outer CHasy CCstr. (circum.) outer layer + CCstr. CCstr. mid layer ring str. (CCC str.) γ CH (twisting) γ CH (twisting) γ CH (twisting)	3081 1700 1415 930 923 897 740 520 437 3080 1576 1562 1343 821 680	3085 1504 1289 818 774 701 634 488 398 3076 1344 1311 1161 809 691	3099 1551 1310 865 794 781 745 500 407 3088 1372 1368 1182 846 695	3041 1531 1296 867 779 729 644 496 409 3029 1351 1344 1166 846 695	0.000 55.779 176.103 271.985 301.477 128.109 219.485 131.016 10.266 286.183 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
$\begin{array}{c} & v_{92} \\ \hline A_{2u} \\ \hline v_{93} \\ \hline v_{94} \\ \hline v_{95} \\ \hline v_{96} \\ \hline v_{97} \\ \hline v_{98} \\ \hline v_{99} \\ \hline v_{100} \\ \hline v_{100} \\ \hline v_{101} \\ \hline B_{2u} \\ \hline v_{102} \\ \hline v_{103} \\ \hline v_{104} \\ \hline v_{105} \\ \hline v_{107} \\ \hline v_{108} \\ \end{array}$	CHasy CC str. (axial) outer layer δ ring (δ CCC) (elongation) γ CH (wagg.) γ ring (γ CCC) (puckering) outer γ ring (γ CCC) (puckering) mid γ ring (γ CCC) (breathing) mid γ ring (γ CCC) (breathing) γ ring (γ CCC) (breathing) outer CHasy CCstr. (circum.) outer layer + CCstr. CCstr. mid layer ring str. (CCC str.) γ CH (twisting) γ CH (twisting) γ CC (axial) mid layer	3081 1700 1415 930 923 897 740 520 437 3080 1576 1562 1343 821 680 381 252	3085 1504 1289 818 774 701 634 488 398 3076 1344 1311 1161 809 691 368	3099 1551 1310 865 794 781 745 500 407 3088 1372 1368 1182 846 695 390	3041 1531 1296 867 779 729 644 496 409 3029 1351 1344 1166 846 695 388	0.000 55.779 176.103 271.985 301.477 128.109 219.485 131.016 10.266 286.183 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
$\begin{array}{c} v_{92} \\ \overline{A_{2u}} \\ v_{93} \\ v_{94} \\ v_{95} \\ v_{96} \\ v_{97} \\ v_{98} \\ v_{99} \\ v_{100} \\ v_{100} \\ v_{101} \\ \overline{B_{2u}} \\ v_{102} \\ v_{103} \\ v_{103} \\ v_{104} \\ v_{105} \\ v_{106} \\ v_{107} \\ v_{108} \\ v_{109} \\ \overline{v_{109}} \end{array}$	CHasy CC str. (axial) outer layer δ ring (δ CCC) (elongation) γ CH (wagg.) γ ring (γ CCC) (puckering) outer γ ring (γ CCC) (breathing) mid γ ring (γ CCC) (breathing) mid γ ring (γ CCC) (breathing) γ ring (γ CCC) (breathing) γ ring (γ CCC) (breathing) γ ring (γ CCC) (constring) outer CHasy CCstr. (circum.) outer layer + CCstr. CCstr. mid layer ring str. (CCC str.) γ CH (twisting) γ CH (twisting) γ CC (axial) mid layer γ ring (γ CCC) (puckering)	3081 1700 1415 930 923 897 740 520 437 3080 1576 1562 1343 821 680 381 273	3085 1504 1289 818 774 701 634 488 398 3076 1344 1311 1161 809 691 368 269	3099 1551 1310 865 794 781 745 500 407 3088 1372 1368 1182 846 695 390 285	3041 1531 1296 867 779 729 644 496 409 3029 1351 1344 1166 846 695 388 291	0.000 55.779 176.103 271.985 301.477 128.109 219.485 131.016 10.266 286.183 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
$\begin{array}{c} v_{92} \\ v_{93} \\ v_{94} \\ v_{95} \\ v_{96} \\ v_{97} \\ v_{98} \\ v_{99} \\ v_{100} \\ v_{101} \\ B_{2u} \\ v_{102} \\ v_{102} \\ v_{103} \\ v_{104} \\ v_{105} \\ v_{106} \\ v_{107} \\ v_{108} \\ v_{109} \\ B_{1u} \end{array}$	CHasy CC str. (axial) outer layer δ ring (δ CCC) (elongation) γ CH (wagg.) γ ring (γ CCC) (puckering) outer γ ring (γ CCC) (puckering) mid γ ring (γ CCC) (breathing) mid γ ring (γ CCC) (breathing) mid γ ring (γ CCC) (breathing) outer CCC) (puckering) outer CHasy CCstr. (circum.) outer layer + CCstr. CCstr. mid layer ring str. (CCC str.) γ CH (twisting) γ CH (twisting) γ CC (axial) mid layer γ ring (γ CCC) (puckering)	3081 1700 1415 930 923 897 740 520 437 3080 1576 1562 1343 821 680 381 273	3085 1504 1289 818 774 701 634 488 398 3076 1344 1311 1161 809 691 368 269	3099 1551 1310 865 794 781 745 500 407 3088 1372 1368 1182 846 695 390 285	3041 1531 1296 867 779 729 644 496 409 3029 1351 1344 1166 846 695 388 291	0.300 55.779 176.103 271.985 301.477 128.109 219.485 131.016 10.266 286.183 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
$\begin{array}{c} v_{92} \\ v_{93} \\ v_{94} \\ v_{95} \\ v_{96} \\ v_{97} \\ v_{98} \\ v_{99} \\ v_{100} \\ v_{101} \\ B_{2u} \\ v_{102} \\ v_{102} \\ v_{103} \\ v_{104} \\ v_{105} \\ v_{106} \\ v_{107} \\ v_{108} \\ v_{109} \\ B_{1u} \\ v_{110} \end{array}$	CHasy CC str. (axial) outer layer δ ring (δ CCC) (elongation) γ CH (wagg.) γ ring (γ CCC) (puckering) outer γ ring (γ CCC) (breathing) mid γ ring (γ CCC) (breathing) γ ring (γ CCC) (breathing) γ ring (γ CCC) (breathing) γ ring (γ CCC) (puckering) outer CHasy CCstr. (circum.) outer layer + CCstr. CCstr. mid layer ring str. (CCC str.) γ CH (twisting) γ CH (twisting) γ CH (twisting) γ CC (axial) mid layer γ ring (γ CCC) (puckering) δ CH (scissor.)	3081 1700 1415 930 923 897 740 520 437 3080 1576 1562 1343 821 680 381 273 1562	3085 1504 1289 818 774 701 634 488 398 3076 1344 1311 1161 809 691 368 269 1446	3099 1551 1310 865 794 781 745 500 407 3088 1372 1368 1182 846 695 390 285	3041 1531 1296 867 779 729 644 496 409 3029 1351 1344 1166 846 695 388 291 1442	0.300 55.779 176.103 271.985 301.477 128.109 219.485 131.016 10.266 286.183 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
$\begin{array}{c} v_{92} \\ v_{93} \\ v_{94} \\ v_{95} \\ v_{96} \\ v_{97} \\ v_{98} \\ v_{99} \\ v_{100} \\ v_{101} \\ B_{2u} \\ v_{102} \\ v_{102} \\ v_{103} \\ v_{104} \\ v_{105} \\ v_{106} \\ v_{107} \\ v_{108} \\ v_{109} \\ B_{1u} \\ v_{110} \\ v_{111} \end{array}$	CHasy CC str. (axial) outer layer δ ring (δ CCC) (elongation) γ CH (wagg.) γ ring (γ CCC) (puckering) outer γ ring (γ CCC) (breathing) mid γ ring (γ CCC) (breathing) mid γ ring (γ CCC) (breathing) γ ring (γ CCC) (breathing) γ ring (γ CCC) (breathing) γ ring (γ CCC) (puckering) outer CHasy CCstr. (circum.) outer layer + CCstr. CCstr. mid layer ring str. (CCC str.) γ CH (twisting) γ CH (twisting) γ CC (axial) mid layer γ ring (γ CCC) (puckering) δ CH (scissor.) CCstr. (circum.) + CCstr. (axial)	3081 1700 1415 930 923 897 740 520 437 3080 1576 1562 1343 821 680 381 273 1562 1519	3085 1504 1289 818 774 701 634 488 398 3076 1344 1311 1161 809 691 368 269 1446 1296	3099 1551 1310 865 794 781 745 500 407 3088 1372 1368 1182 846 695 390 285 1451 1351	3041 1531 1296 867 779 729 644 496 409 3029 1351 1344 1166 846 695 388 291 1442 1326	0.300 55.779 176.103 271.985 301.477 128.109 219.485 131.016 10.266 286.183 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
$\begin{array}{c} v_{92} \\ v_{92} \\ v_{93} \\ v_{94} \\ v_{95} \\ v_{96} \\ v_{97} \\ v_{98} \\ v_{99} \\ v_{100} \\ v_{101} \\ B_{2u} \\ v_{102} \\ v_{102} \\ v_{102} \\ v_{103} \\ v_{103} \\ v_{104} \\ v_{105} \\ v_{106} \\ v_{107} \\ v_{108} \\ v_{109} \\ B_{1u} \\ v_{110} \\ v_{111} \\ v_{112} \end{array}$	CHasyCC str. (axial) outer layer $\delta ring (\delta CCC)$ (elongation) $\gamma CH (wagg.)$ $\gamma ring (\delta CCC)$ (puckering) outer $\gamma ring (\gamma CCC)$ (puckering) outer $\gamma ring (\gamma CCC)$ (breathing) mid $\gamma ring (\gamma CCC)$ (breathing) $\gamma ring (\gamma CCC)$ (breathing) $\gamma ring (\gamma CCC)$ (puckering) outer $CHasy$ CCstr. (circum.) outer layer + CCstr.CCstr. (circum.) outer layer + CCstr. $CCstr.$ mid layer $ring str. (CCC str.)$ γCH (twisting) γCC (axial) mid layer $\gamma ring (\gamma CCC)$ (puckering) δCH (scissor.) $CCstr. (circum.) + CCstr. (axial)$ $\delta CH(scissor.) + ring str. (CCC str.)$	3081 1700 1415 930 923 897 740 520 437 3080 1576 1562 1343 821 680 381 273 1562 1519 1337	3085 1504 1289 818 774 701 634 488 398 3076 1344 1311 1161 809 691 368 269 1446 1296 1284	3099 1551 1310 865 794 781 745 500 407 3088 1372 1368 1182 846 695 390 285 1451 1313	3041 1531 1296 867 779 729 644 496 409 3029 1351 1344 1166 846 695 388 291 1442 1326 1291	0.300 55.779 176.103 271.985 301.477 128.109 219.485 131.016 10.266 286.183 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
$\begin{array}{c} v_{92} \\ v_{92} \\ v_{93} \\ v_{94} \\ v_{95} \\ v_{96} \\ v_{97} \\ v_{98} \\ v_{99} \\ v_{100} \\ v_{110} \\ v_{111} \\ v_{112} \\ v_{113} \\ \end{array}$	CHasyCC str. (axial) outer layer $\delta ring (\delta CCC)$ (elongation) $\gamma CH (wagg.)$ $\gamma ring (\gamma CCC)$ (puckering) outer $\gamma ring (\gamma CCC)$ (breathing) mid $\gamma ring (\gamma CCC)$ (breathing) $\gamma ring (\gamma CCC)$ (puckering) outerCHasyCCstr. (circum.) outer layer + CCstr. $CCstr.$ (circum.) outer layer + CCstr. $\gamma CH (twisting)$ $\gamma CH (twisting)$ $\gamma CC (axial)$ mid layer $\gamma ring (\gamma CCC)$ (puckering) $\delta CH (scissor.)$ $\delta CH (scissor.)$ $\delta CH (scissor.) + ring str. (CCC str.)$ $\delta CH(scissor.) + str. (scissor.)$	3081 1700 1415 930 923 897 740 520 437 3080 1576 1562 1343 821 680 381 273 1562 1519 1337 1077	3085 1504 1289 818 774 701 634 488 398 3076 1344 1311 1161 809 691 368 269 1446 1296 1284 990	3099 1551 1310 865 794 781 745 500 407 3088 1372 1368 1182 846 695 390 285 1451 1313 1006	3041 1531 1296 867 779 729 644 496 409 3029 1351 1344 1166 846 695 388 291 1442 1326 1291 997	0.300 55.779 176.103 271.985 301.477 128.109 219.485 131.016 10.266 286.183 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
$\begin{array}{c} v_{92} \\ v_{92} \\ v_{93} \\ v_{94} \\ v_{95} \\ v_{96} \\ v_{97} \\ v_{98} \\ v_{99} \\ v_{100} \\ v_{101} \\ B_{2u} \\ v_{100} \\ v_{101} \\ B_{2u} \\ v_{100} \\ v_{101} \\ v_{100} \\ v_{103} \\ v_{104} \\ v_{105} \\ v_{106} \\ v_{107} \\ v_{108} \\ v_{109} \\ B_{1u} \\ v_{110} \\ v_{110} \\ v_{111} \\ v_{112} \\ v_{113} \\ v_{114} \\ \end{array}$	CHasy CC str. (axial) outer layer δ ring (δ CCC) (elongation) γ CH (wagg.) γ ring (γ CCC) (puckering) outer γ ring (γ CCC) (puckering) mid γ ring (γ CCC) (breathing) γ ring (γ CCC) (breathing) γ ring (γ CCC) (breathing) γ ring (γ CCC) (puckering) outer CHasy CCstr. (circum.) outer layer + CCstr. CCstr. mid layer ring str. (CCC str.) γ CH (twisting) γ CH (twisting) γ CC (axial) mid layer γ ring (γ CCC) (puckering) δ CH (scissor.) CCstr. (circum.) + CCstr. (axial) δ CH(scissor.) + ring str. (CCC str.) δ ring (δ CCC) + δ CH (scissor.) γ CC (axial) (puck.) outer layer	3081 1700 1415 930 923 897 740 520 437 3080 1576 1562 1343 821 680 381 273 1562 1519 1337 1077 706	3085 1504 1289 818 774 701 634 488 398 3076 1344 1311 1161 809 691 368 269 1446 1296 1284 990 650	3099 1551 1310 865 794 781 745 500 407 3088 1372 1368 1182 846 695 390 285 1451 1313 1006 685	3041 1531 1296 867 779 729 644 496 409 3029 1351 1344 1166 846 695 388 291 1442 1326 1291 997 683	0.3000 55.779 176.103 271.985 301.477 128.109 219.485 131.016 10.266 286.183 0.000
$\begin{array}{c} v_{92} \\ v_{92} \\ v_{93} \\ v_{94} \\ v_{95} \\ v_{96} \\ v_{97} \\ v_{98} \\ v_{99} \\ v_{100} \\ v_{101} \\ B_{2u} \\ v_{102} \\ v_{102} \\ v_{103} \\ v_{104} \\ v_{105} \\ v_{106} \\ v_{107} \\ v_{108} \\ v_{109} \\ B_{1u} \\ v_{110} \\ v_{110} \\ v_{111} \\ v_{112} \\ v_{113} \\ v_{114} \\ v_{115} \end{array}$	CHasy CC str. (axial) outer layer δ ring (δ CCC) (elongation) γ CH (wagg.) γ ring (γ CCC) (puckering) outer γ ring (γ CCC) (puckering) mid γ ring (γ CCC) (breathing) γ ring (γ CCC) (breathing) γ ring (γ CCC) (breathing) γ ring (γ CCC) (puckering) outer CHasy CCstr. (circum.) outer layer + CCstr. CCstr. mid layer ring str. (CCC str.) γ CH (twisting) γ CC (axial) mid layer γ ring (γ CCC) (puckering) γ CC (axial) mid layer γ ring (γ CCC) (puckering) δ CH (scissor.) CCstr. (circum.) + CCstr. (axial) δ CH(scissor.) + ring str. (CCC str.) δ ring (δ CCC) + δ CH (scissor.) γ CC (axial) (puck.) outer layer δ ring	3081 1700 1415 930 923 897 740 520 437 3080 1576 1562 1343 821 680 381 273 1562 1519 1337 1077 706 539	3085 1504 1289 818 774 701 634 488 398 3076 1344 1311 1161 809 691 368 269 1446 1296 1284 990 650 513	3099 1551 1310 865 794 781 745 500 407 3088 1372 1368 1182 846 695 390 285 1451 1313 1006 685 523	3041 1531 1296 867 779 729 644 496 409 3029 1351 1344 1166 846 695 388 291 1442 1326 1291 997 683 524	0.3000 55.779 176.103 271.985 301.477 128.109 219.485 131.016 10.266 286.183 0.000
$\begin{array}{c} v_{92}\\ \overline{A_{2u}}\\ \overline{V_{93}}\\ \overline{V_{94}}\\ \overline{V_{95}}\\ \overline{V_{96}}\\ \overline{V_{97}}\\ \overline{V_{98}}\\ \overline{V_{97}}\\ \overline{V_{98}}\\ \overline{V_{99}}\\ \overline{V_{100}}\\ \overline{V_{101}}\\ \overline{B_{2u}}\\ \overline{V_{102}}\\ \overline{V_{102}}\\ \overline{V_{102}}\\ \overline{V_{103}}\\ \overline{V_{103}}\\ \overline{V_{103}}\\ \overline{V_{103}}\\ \overline{V_{104}}\\ \overline{V_{105}}\\ \overline{V_{105}}\\ \overline{V_{106}}\\ \overline{V_{107}}\\ \overline{V_{108}}\\ \overline{V_{109}}\\ \overline{B_{1u}}\\ \overline{V_{110}}\\ \overline{V_{111}}\\ \overline{V_{1112}}\\ \overline{V_{1113}}\\ \overline{V_{1114}}\\ \overline{V_{115}}\\ \overline{V_{116}}\\ \overline{V_{11}}\\ V$	CHasy CC str. (axial) outer layer δ ring (δ CCC) (elongation) γ CH (wagg.) γ ring (γ CCC) (puckering) outer γ ring (γ CCC) (puckering) mid γ ring (γ CCC) (breathing) γ ring (γ CCC) (breathing) γ ring (γ CCC) (breathing) γ ring (γ CCC) (puckering) outer CHasy CCstr. (circum.) outer layer + CCstr. CCstr. mid layer ring str. (CCC str.) γ CH (twisting) γ CH (twisting) γ CC (axial) mid layer γ ring (γ CCC) (puckering) δ CH (scissor.) CCstr. (circum.) + CCstr. (axial) δ CH(scissor.) CCstr. (circum.) + CCstr. (axial) δ CH(scissor.) γ CC (axial) (puck.) outer layer δ ring (δ CCC) + δ CH (scissor.) γ CC (axial) (puck.) outer layer δ ring γ CC (axial)(puckering) outer layer	3081 1700 1415 930 923 897 740 520 437 3080 1576 1562 1343 821 680 381 273 1562 1519 1337 1077 706 539 368	3085 1504 1289 818 774 701 634 488 398 3076 1344 1311 1161 809 691 368 269 1446 1296 1284 990 650 513 315	3099 1551 1310 865 794 781 745 500 407 3088 1372 1368 1182 846 695 390 285 1451 1313 1006 685 523 340	3041 1531 1296 867 779 729 644 496 409 3029 1351 1344 1166 846 695 388 291 1442 1326 1291 997 683 524 341	0.3000 55.779 176.103 271.985 301.477 128.109 219.485 131.016 10.266 286.183 0.000
$\begin{array}{c} v_{92} \\ \overline{A_{2u}} \\ v_{93} \\ v_{94} \\ v_{95} \\ v_{96} \\ v_{97} \\ v_{98} \\ v_{99} \\ v_{100} \\ v_{101} \\ \overline{B_{2u}} \\ v_{102} \\ v_{102} \\ v_{103} \\ v_{103} \\ v_{104} \\ v_{105} \\ v_{106} \\ v_{107} \\ v_{108} \\ v_{109} \\ \overline{B_{1u}} \\ v_{109} \\ \overline{B_{1u}} \\ v_{110} \\ v_{111} \\ v_{112} \\ v_{113} \\ v_{114} \\ v_{115} \\ v_{116} \\ \overline{E_{1u}} \\ \end{array}$	CHasy CC str. (axial) outer layer δ ring (δ CCC) (elongation) γ CH (wagg.) γ ring (γ CCC) (puckering) outer γ ring (γ CCC) (puckering) mid γ ring (γ CCC) (breathing) γ ring (γ CCC) (breathing) γ ring (γ CCC) (breathing) γ ring (γ CCC) (puckering) outer CHasy CCstr. (circum.) outer layer + CCstr. CCstr. mid layer ring str. (CCC str.) γ CH (twisting) γ CH (twisting) γ CC (axial) mid layer γ ring (γ CCC) (puckering) δ CH (scissor.) CCstr. (circum.) + CCstr. (axial) δ CH(scissor.) γ CC (axial) (puck.) outer layer δ ring γ CC (axial)(puckering) outer layer	3081 1700 1415 930 923 897 740 520 437 3080 1576 1562 1343 821 680 381 273 1562 1519 1337 1077 706 539 368	3085 1504 1289 818 774 701 634 488 398 3076 1344 1311 1161 809 691 368 269 1446 1296 1284 990 650 513 315	3099 1551 1310 865 794 781 745 500 407 3088 1372 1368 1182 846 695 390 285 1451 1313 1006 685 523 340	3041 1531 1296 867 779 729 644 496 409 3029 1351 1344 1166 846 695 388 291 1442 1326 1291 997 683 524 341	0.300 55.779 176.103 271.985 301.477 128.109 219.485 131.016 10.266 286.183 0.000
$\begin{array}{c} v_{92} \\ \overline{A_{2u}} \\ v_{93} \\ v_{94} \\ v_{95} \\ v_{96} \\ v_{97} \\ v_{98} \\ v_{99} \\ v_{100} \\ v_{101} \\ \overline{B_{2u}} \\ v_{102} \\ v_{103} \\ v_{103} \\ v_{104} \\ v_{105} \\ v_{106} \\ v_{107} \\ v_{108} \\ v_{109} \\ \overline{B_{1u}} \\ v_{109} \\ \overline{B_{1u}} \\ v_{110} \\ v_{111} \\ v_{112} \\ v_{113} \\ v_{114} \\ v_{115} \\ v_{116} \\ \overline{E_{1u}} \\ v_{118} \\ v_{118} \end{array}$	CHasy CC str. (axial) outer layer δ ring (δ CCC) (elongation) γ CH (wagg.) γ ring (γ CCC) (puckering) outer γ ring (γ CCC) (puckering) mid γ ring (γ CCC) (breathing) mid γ ring (γ CCC) (breathing) γ ring (γ CCC) (breathing) γ ring (γ CCC) (puckering) outer CHasy CCstr. (circum.) outer layer + CCstr. CCstr. mid layer ring str. (CCC str.) γ CH (twisting) γ CH (twisting) γ CC (axial) mid layer γ ring (γ CCC) (puckering) δ CH (scissor.) CCstr. (circum.) + CCstr. (axial) δ CH(scissor.) + ring str. (CCC str.) δ ring (δ CCC) + δ CH (scissor.) γ CC (axial) (puck.) outer layer δ ring γ CC (axial)(puckering) outer layer CHasy	3081 1700 1415 930 923 897 740 520 437 3080 1576 1562 1343 821 680 381 273 1562 1519 1337 1077 706 539 368 3078	3085 1504 1289 818 774 701 634 488 398 3076 1344 1311 1161 809 691 368 269 1446 1296 1284 990 650 513 315	3099 1551 1310 865 794 781 745 500 407 3088 1372 1368 1182 846 695 390 285 1451 1313 1006 685 523 340	3041 1531 1296 867 779 729 644 496 409 3029 1351 1344 1166 846 695 388 291 1442 1326 1291 997 683 524 341	0.300 55.779 176.103 271.985 301.477 128.109 219.485 131.016 10.266 286.183 0.000

v_{122}	CCstr. (axial) mid layer + δ CH (rock.)	1601	1418	1458	1440	21.762
v_{124}	CCstr. (axial)	1568	1390	1433	1412	9.945
v_{126}	δ CH (rock.) + CCCstr. (circum.)	1348	1244	1286	1266	1.660
v_{128}	δCH (rock.)	1227	1178	1210	1191	0.133
v_{130}	CCstr. (axial)	886	1049	1068	1054	0.023
v_{132}	γCH (wagg.)	857	853	899	899	377.198
v_{134}	γ CC (axial) (puck.) outer layer	783	743	792	765	17.056
v_{136}	γ ring (γ CC) (puckering)	783	672	709	695	1.924
v_{138}	γ ring (puckering) + γ CH (wagg.)	653	608	709	611	31.955
v_{140}	γyring (puckering)	498	478	617	522	0.079
v_{142}	γring (puckering)	408	412	417	416	0.239
v_{144}	γring (puckering)	257	261	263	263	1.472
E _{2u}			-			
v_{146}	CHasy	3079	3078	3090	3032	0.000
v_{148}	CCCstr. (cercum.) + δ CH(scissor.)	1682	1492	1525	1506	0.000
v_{150}	ring str. + δ CH (scissor.)	1617	1458	1482	1466	0.000
V ₁₅₂	CCstr. outer layer	1546	1320	1377	1350	0.000
v_{154}	$\delta CH (scissor.) + \delta ring (\delta CCC)$	1427	1270	1285	1272	0.000
v_{156}	CCCstr. (circum.)	1272	1192	1222	1203	0.000
v_{158}	δring (δCCC)	1116	1050	1058	1047	0.000
v_{160}	γCH (twisting)	888	885	900	896	0.000
v_{162}	γCH (twisting)	845	796	830	831	0.000
v_{164}	γ ring (γ CC) (axial) (puckering)	809	685	755	709	0.000
v_{166}	γ ring (γ CC) (axial) outer (puck.)	632	623	635	631	0.000
v_{168}	$\gamma ring (\gamma CCC) (axial) (puckering)$	613	573	601	594	0.000
v_{170}	γ ring (γ CCC) (puckering)	505	492	497	495	0.000
v_{172}	γ ring (γ CC) (axial) (puckering)	363	344	364	364	0.000
v_{174}	γ ring (γ CCC) (puckering)	163	157	161	163	0.000

 γ : Out of plane (of the molecule) bending vibration., δ : In-plane (of the molecule) bending vibration. Scaling factors: 0.96 (CH str.) for all DFT (B3LYP/6-311G) frequencies, [36].

 wis, 394 cm⁴
 v_{1sc}, 341 cm⁴
 v_{1sc}, 253 cm⁴
 v_{sc}, 253 cm⁴

 yring (γCCC) (puck.)
 γCC (axia) (puck.)
 δCCC (clock-ami clock)
 γRing (γCCC) (puck.)

 Figure 3- Graphical pictures of some vibration modes for Tri-rings layer (6, 0) Zigzag SWCNT as calculated applying the DFT (B3LYP/6-311G) method.

Odd layer	C-H asym	C-H sym.	CCa asym	CCa sym.	CCc asym	δCH sciss	δCH rock.	δring asym	δring sym	γCH wagg asym	γCH wagg sym	γCH twist	γring asym	γring sym
* Mono	3064 A _{2u}	3067 A _{1g}	1516 E _{1u}	1531 A _{1g}	1565 E _{1g}	1274 B _{2g}	1201 A _{1u}	1228 E _{2u}	775 A _{1g}	922 A _{2u}	956 A _{1g}	892 E _{2u}	735 A _{2u}	537 A _{1g}
Tri	3041 A _{2u}	3041 A _{1g}	1547 E _{1u}	1565 A _{1g}	1536 E _{1g}	1466 E _{2u}	1191 E _{1u}	1296A _{2u}	1083 A _{1g}	899 A _{1u}	935 A _{1g}	896 E _{2u}	779 A _{2u}	752 A _{1g}

Table 4-Vibration frequencies for some modes of Mono and Tri-rings layer (6,0) Zigzag SWCNT.

Calculations of Mulliken electronic charges population analysis by (PM3 and DFT (B3LYP/6-311G) methods, showed, similar to the carbon nanotubes [37-41], the charge densities are mainly concentrated at the circumferential carbon and hydrogen atoms of mono and multi-rings layer SWCNT, parallel with their physical properties for electrical conductivity. The axial carbon atoms are diminishing charges from outer to center (σ C---C outer > σ C---C mid. The H atoms are positively charged, the C atoms are of the negative charge, except at carbon atoms of the mid circumference layer, figure-4.

Figure 4- The Mulliken electronic charges population analysis of Tri rings layer (6,0) Zigzag SWCNT as calculated by PM3 and DFT (6-311G/ B3LYP).

Conclusions:

1-Quantum mechanics semi-empirical PM3 and DFT (3-21G, 6-31G and 6-311G/B3LYP) calculations were carried out for Tri-rings layer of (6,0) Zigzag SWCNT with Gaussian 03 program to investigate the complete vibration frequency modes assignment (3N-6) (IR active and Raman active) at their equilibrium geometries. It showed D_{6h} symmetry point group as well as Mono ring SWCNT.

2-For Tri-rings layer SWCNT (C...Ca) bonds were decrease on going from outer rings layer to mid ring layer, the reverse was shown in the circumferential bonds (C...Cc).

3- Comparison of the geometries, physical properties, vibration frequency modes were done for the two odd SWCNTs. It was shown that ΔH_{f_i} and E_{HOMO} , increase with the increasing number of odd

rings layer, E_{LUMO} decrease with the increasing odd rings layer. $\Delta E_{HOMO-LUMO}$ decrease with increasing number of odd rings layer. Dipole moment μ is zero according to their symmetry. The diameter increase with increasing odd rings layer, the diameter of Mono ring layer is lower than the diameter of Tri-rings layers. (C-H) and (C...Ca) bond length in Mono ring layer were shorter than that in Tri rings layer, the reverse was found for (C...Cc) bonds length, which decrease in length with increasing odd rings layers (Tri rings layers), and decrease in length on going from outer to the center of the rings layer (SWCNT).

4-A comparative view of the charge density at the carbon and hydrogen atoms were studied. The calculations show that, the charge densities in both Mono and Tri SWCNTs are mainly concentrated at the hydrogen atoms (positively charged) and at the outer circumferential carbon atoms (negatively charged), and have diminishing charges from outer to the mid of the CNTs.

References

- 1. Reich S.C., Thomsen C. and Maltzsch J., 2004. "*Carbon nanotubes basic concepts and physical properties*", Wiley online library.
- 2. Iijima S., 1991. "Helical microtubules of graphitic carbon", Nature 354 (6348), pp: 56–58.
- 3. Hamada N., Sawada S. and Oshiyama A., 1992. "New one-dimensional conductors: graphitic microtubules". *Phys. Rev. Lett.* 68(10), pp: 1579–1581.
- **4.** Wang Y. and Jing X., **2005**. "Intrinsically Conducting Polymers for Electromagnetic Interference Sheilding". *Polym. Adv. Technol.*,16(4), pp: 344-351.
- 5. Durkop T., Getty S.A., Cobas E. and M.S. 2004. "Extraordinarymobility in semiconducting carbon nanotubes". *Fuhrer, Nano Lett.* 4(1), pp: 35-39.
- 6. Yacobson B.I. and Smalley R.E., 1997. "Fullerene Nanotubes; C1000,000 and Beyond", *American Scientist*, 85, pp: 324-337.
- 7. Jorio A., Saito R., Hafner J.H., Liebre C.M., Hunter M., Mcclur T. and Dresselhaus G., 2001. "Structural (n,m)determination of isolated single-wall carbon nanotubes by resonant Raman scattering". *Phys. Rev. Lett* .86 (6), pp: 1118-1121.
- Dalton A.B., Coleman J.N., McCarthy B., Ajayan P.M., Lefrant S., Bernier P., Blau W. and Byme H.J., 2000. "Selective interaction of semi-conjugated polymer with single wall nanotubes". *J. Phys. Chem.* B. 104(43), pp: 10012-10016.
- **9.** Vitali L., Bughard M., Schneider M.A., LeiLiu Y. Wu., Jayanthi C. andKem K., **2004**. "Phonon spectromicroscopy of carbon nanostructures with atomic resolution", *Max Planck Institute for Solid State Research, Lett.* 93(13), pp: 136103-1-136103-4.
- **10.** Kuhlman U., Jantoljak H., Pfander N., Bernier P., Journet C. and Thomsen C., **1998.** "Infrared active phonons in single-walled carbon nanotubes", *Chem. Phys. Lett.* 294 (1-3), pp: 237-240.
- **11.** Burghard M., **2005**. "Electronic and vibrational properties of chemically modified (SWCNTs)", Surface Science Reports, *Max-plank-Institutfuer*, *Germany*, 58(4), pp:1-5.
- **12.** Alon O.E., **2001**."Number of Raman and infrared-active vibrations in single-walled carbon nanotubes", *Physical Review* B, 63(20), pp: 201403-1-201403-3.
- Rao A.M., Richter E., Bandow S.J., Chase B., Eklund P.C., Williams K.A., Fang S., Subbaswamy K.R., Menon M., Thess A., Smalley R. E., Dresselhaus G., Dresselhaus M.S., 1997. "Diameter-selective Raman scattering from vibrational modes in carbon nanotubes", *Science*, 275, pp:187-191.
- 14. Bandow S. and AsakaS. , 1998. "Effect of the growth temperature on the distribution and chirality of single-wallcarbon nanotubes", *Phys. Rev. Lett.* 80(14), pp: 3779-3782.
- 15. Popov V.N.and Henrard L, 2002."Breathing like phonon modes of multiwalled carbon nanotubes", *Phys. Rev. B* 65(23), pp: 235415-235421.
- 16. Wang C.Y., Ru C.Q., Mioduchowski A., 2005. "Pressure effect on radial breathing modes of multiwall carbon nanotubes", J. Appl. Phys. 97(2), pp: 024310-024310.
- 17. Li C. Y. and Chou T. W., 2003., "Single-walled carbon nanotubes as ultrahigh frequency nanomechanical resonators", *Phys Rev B* 68(7), pp: 073405-073405.
- **18.** Wang Z.L., Poncharal W.A. and de Heer W.A., **2000.** "Measuring physical and mechanical properties of individual carbon nanotubes by in situ TEM", *J. Phys. Chem. Solids* 61(7), pp: 1025-1030.

- **19.** Bottani C.E., Bassi A.L., Beghi M.G., Podesta A., Milani P., Zakhidov A., BaughamR., Walters D.A. and Smalley R.E. **2003**. "Dynamic light scattering from ocoustic modes in single-walled carbon nanotubes", *Phys. Rev. B* 67(15), pp: 155407-155407.
- **20.** Wang C.Y., Zhang Y.Y., Wang C.M., and Tan, V.B.C., **2007**. "Buckling of carbon nanotubes", *J. Nanosci.Nanotechno*.7(12), 4221-4247.
- 21. Gibson R.F., Avorinde E.O. and Wen Y.F., 2007., "Vibrations of carbon nanotubes and their composites", *Compos. Sci. Technol.* 67(1).1-28
- 22. Li C.Y. and Chou T.W., 2003., "Vibrational behaviours of multiwalled-carbon-nanotube-based nanomechanical resonators", *Appl. Phys. Lett.* 84(1), 121-124.
- **23.** Wang CY, Ru CQ, Mioduchowski A., **2005**. *"Free vibration of multiwall carbon nanotubes"*, *J. Appl. Phys.* 97(11), 114323.
- 24. Zhou J. and Dong J.M., 2007. "Vibrationl property and Raman spectrum of carbon nanoribbon", *Appl. Phys. Lett.* 91(17), 173108-173111.
- **25.** Xia Y.Y., Zhao M.W., Ma Y.C., Ying M.J., Liu X.D., Liu P.J. and Mei L.M., **2002**. "Tensile strength of single-walled carbon nanotubes with defects under hydrostatic pressure", *Phys. Rev. B* 65 (15), 155415-155421.
- 26. Jeng Y.R., Tsaia P.C. and Fang T.H. 2004. "Effects of temperature and vacancy defects on tensile deformation of single-walled carbon nanotubes", *J. Phys. Chem. Solid* 65(11), 1849-1856.
- 27. Scarpa F., Adhikari S. and Wang C.Y., 2009. "Mechanical properties of non-reconstructed defective single-wall carbon nanotubes", *J. Phys. D-Appl. Phys.* 42(14), 142002-142008.
- **28.** Shen H.S. and Zhang C.L. **2006**. "Post buckling prediction of axially loaded double-walled carbon nanotubes with temperature dependent properties and initial defects", *Phys. Rev. B* 74 (3), 035410-035410.
- **29.** Wang C.M., Ma Y.Q., Zhang Y.Y. and Ang K.K., **2006**. "Buckling of double-walled carbon nanotubes modelled by solid shell elements", *J. Appl. Phys.* 99 (11), 114317-114317.
- **30.** Sun C. and Liu K., **2007**. "Vibration of multi-walled carbon nanotubes with initial axial loading", *Solid State Comm.* 143(4-5), 202-207.
- **31.** Bischoff P., **2003**. Molek 9000 Program, OCI, Uni. Heidelerg, Private Communication Pople, J. A.; Gaussian, *Inc. Pittsburgh*, *PA*.
- **32.** Kubba R.M., Al-AniH.N. and Shanshal M., **2011**. "Calculated Vibration Frequencies and IR Absorption Intensities of [6] Cyclacene (zigzag) Molecule", *American Journal of Scientific and Industrial Research*, 2(4), pp: 642-651.
- **33.** Obot I.B., Obi-Egbedi N.O. and Umoren S.A., **2009.** "Adsorption characteristics and corrosion inhibitive properties of clotrimazole for Aluminium corrosion in hydrochloric acid", *Int. J. Electrochem. Sci.*, 4(6), pp: 863-877.
- 34. Fleming I.,1976. Frontier Orbitals and Organic Chemical Reactions, John Wiley and Sons, NewYork.
- **35.** Herzberg G., **1971**. "Molecular Spectra and Molecular Structure, Infrared and Raman Spectra of *Polyatomic Molecules*", Van Nostrand Co. New York.
- **36.** Lewars E., **2004**, "Computational Chemistry (Introduction to the Theory and Applications of Molecular and Quantum Mechanics)". Chemistry Department Trent University Peterborough, Ontario, Canada.
- **37.** Kubba R.M., Al-AniH.N. and Shanshal M., **2011.** "The Vibration Frequencies of [6] Cyclacenes (Linear, Angular and Angular-Chiral) Monoring Molecules", *Jordan Journal of Chemistry*, 6(3), pp. 271-293.
- **38.** Krcmar M., Saslow W.M. and Zangwill A.,**2003**. "Electrostatic of Conducting Nanocylinder", *J. Appl. phys*.93(6), pp. 3495-3500.
- **39.** Odom T. W., Huang J., Kim P. and Lieber C. M., **2000**. "Structure and Electronic Properties of CNT", *J. Phy. Chem.*, 104(13), pp: 2794-2809.
- **40.** Han S. and Hrm J.I., **2000**. "Role of the localized states in field emission of carbon nanotubes", *Phys. Rev.* B 61(15), pp: 9986-9989.
- **41.** Li C.Y. and Chou T.W. **2007**. "Continuum percolation of nanocomposites with fillers of arbitrary", *Appl. Phys. Lett.*, 90 (17), pp: 174108-174111.