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Abstract

The aim of this paper is the study of the influence magnetic field on steady state
flows and heat transfer in microchannels between two parallel plates.

It is found that the motion equations are controlled by many dimensionless
parameter, namely magnetic field parameter M Reynolds number Re, physical
quantity at wall W and Knudsen number Kn also found that the energy equations
are controlled by many dimensionless parameter, namely magnetic field parameter
M Reynolds number Re, physical quantity at wall W and Knudsen number Kn ,
Prinkman number Br and Peclet number Pe.

The equations which controlled this type of fluid flow are complicated, so finding
an analytical solution is not easy.

We obtained the velocity and energy distribution by using homotopy analysis
method (HAM).

We have been studied the influence of all the physical parameters, that mentioned
above on the velocity And heat transfer distribution .

This study is done through drawing about (30) graph by using the Mathematica
package.

Keywords: Temperature jump, Viscous dissipation, Homotopy analysis method.
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1. Introduction

Fluid is that state of matter, which is capable of changing shape and is capable of flowing. Fluids
may be classified as real "viscous" and ideal "perfect" according to whether the fluid is capable of
exerting shearing stress or not. Real fluid is called Newtonian if the relation between stress and rate of
strain is linear, otherwise is called non-Newtonian fluid [1].

Magnetofluiddynamics (MFD) is that branch of applied mathematics which deals with the flow

of electrically conducting fluids in electric and magnetic fields. It unified in a common framework the
electromagnetic and fluid-dynamic theories to yield a description of the concurrent effects of the
magnetic field on the flow and the flow on the magnetic field [2].
The magnetohydrodynamic (MHD) phenomenon is characterized by an interaction between the
hydrodynamic and boundary layer and the electromagnetic field. The studies of boundary layer
flows of  viscous and non-Newtonian fluids over a stretching surface have received much attention
because of their extensive applications in the field of metallurgy and chemical engineering, for
example, in the extrusion of polymer sheet from a dye . Such investigations of magnetohydrodynamic
(MHD) flows are very important industrially and have applications in different areas of researches
such as petroleum production and metallurgical processes, it is now well known that in technological
applications the non-Newtonian fluids are more appropriate than the Newtonian fluids [2].

A systematic research on micro devices and MEMS started in the late 1980’s. Micro ducts, micro

nozzles, micro pumps, micro turbines and micro valves are the examples of the devices involving
liquid and gas flows. Modeling mass, momentum and energy transport may necessitate including slip,
rarefaction, compressibility, intermolecular forces and other unconventional effects. The Knudsen
number (Kn) can classify the gas flow in micro channel into four flow regimes: continuum flow (Kn <
0.001), slip flow (0.001 < Kn < 0.1), transition flow (0.1 < Kn < 10) and free molecular flow (Kn >
10) [3]. Since Navier—Stokes (N-S) equations are not valid for Kn beyond 0.1, the lattice Boltzmann
method (LBM) was developed as an alternative numerical scheme [4] and [5].
However, for flows in continuum and slip regimes, Eckert and Drake [6] have indicated that there is
strong evidence to use the N-S equations modified by boundary conditions. Tsien [7] originally
designated the regime next to continuum flow as the “slip flow”, following Maxwell and
Smoluchowski in assuming that the first failure of continuum theory would occur at gas—solid
interfaces, where the empirical conditions of continuity of tangential velocity and temperature should
give way to the slip and temperature-jump boundary conditions. Studies of the continuum theory warn
that in principle the N-S-plus-slip theory lacks internal consistency, but the try-it-and-see approach
has yielded a substantial body of practically satisfactory results[8]. Liu et al. [9] and Arkilic et al.

In this paper , we attempt to obtain analytical solutions for the imposed problem. The HAM
proposed by Liao[10-16] is employed to solve the problem. Many types of nonlinear problems were
solved with HAM in the literatures [17-21] which verify the validity of the method. For latest
development, Please refer to [22].

In the Previous study, they derive the similarity solutions for flows and heat transfer in micro
channels. By using similarity transformation, they change the governing equations into ordinary
differential equations . The homotopy analysis method (HAM), an analytical method originally from a
basic concept in topology, is employed to solve the non-linear coupled ODEs. The rarefied effects on
velocity profile and friction constant are obtained. Both the constant heat flux (CHF) and the constant
wall temperature (CWT) boundary conditions are considered. The combined effects of the Br and Kn
on Nu are exhibited.

Now, we study, effect of MHD on flow and heat transfer in micro channels between two parallel
plates using HAM.

2. Basic ideas of HAM:-

This method is proposed by Liao [23-25]. Below the outline of the HAM will be presented.

Consider a non-linear equation governed by

A(u)+ f(r)=0 (1)
where A'is a non-linear operator, f(r)is a known function and u is an unknown function. By means
of homotopy analysis method, one first construct a family of equations

(d—p)v(r, p) —ug(N]= ph{Alv(r, p)]- f (N}, (2)
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where /is an auxiliary linear operator ¢ (u)=0 then u=0,uq(r)is an initial guess, h is an auxiliary
parameter, p €[0] is an embedding parameter, v(r, p) is an unknown function of rand p. Liao
[20,21] expanded v(r, p) in Taylor series about the embedding parameter

V(I P)=Ug(1) + S (1) P, ©)
where )
(1) == 20D @
m! ap p=0

The convergence of the series (3) depends upon the auxiliary parameter h. If it is convergent at
p =1, one has

(1) =Uo () + St (1) ®)

Differentiating the zeroth order deformation equation (2) m -time with respect to p and then dividing
them by m! and finally setting p =0 we obtain the following m -th order deformation problem:

U (r) = XmUm-1 (1] = hRp, (1), (6)
in which
B 0, m<l, .
Xm = 1 m>1 (7)

1 dm-t © .
Rm(r) = { A{”o(")*‘ Z_lum(r)p }} (8)

(m-1)! dpm_l

p=0

There are many different ways to get the higher order deformation equation. However, according to
the fundamental theorem in calculus, the term u, (r)in the series (3) is unique. Note that the HAM

contains an auxiliary parameter h, which provides us with a simple way to control and adjust the
series solution (5).
3. Governing equation:-

As depicted in figure-1, the inlet velocity and temperature profile are assumed to be uniform, the
distance between the two pare-1, allel plates is 2H. The governing equations based on the Naver-
Stokes equations with slip-flow boundary conditions at the walls are used to describe the physical
processes. The process is assumed to be two-dimensional steady laminar flow. The body forces and
the effect of compressibility are neglected. The tangential accommodation coefficient and thermal
accommodation coefficient are assumed to be unity. Then, the mathematical model for slip flow
between two parallel plates can be given by

Continuity Equation 8_u+@+@:o 9)
ox oy oz
2
u
N-S Equation ua_u+V6_u:_l@+Uv2u_& (10)
ox oy P OX yo,
u@+v@=—1@+uvzv (11)

539


http://www.sciencedirect.com.tiger.sempertool.dk/science/article/pii/S0017931011000822#f0005

Ahmed & Abdulhadi Iragi Journal of Science, 2014, Vol 55, No.2A, pp:537-547

T—)— y
g 2H
—— x

Figure 1- Microchannel between two parallel plates

By taking the viscous dissipation effects into account, energy equation is written as

2
or  aT  &PT u(@U]
—aY—+ .

Uu—+Vv— >t (12)
The boundary conditions are
u= ] : v=0 (a)
y=0, ¥ 13)
T-T,=1— (b)
oy
ou oT
y=H: S-0,% -0 (14
oy oy

The variables can be separated using similarity transformations based on the stream function v is
defined as

u= o v
oy X
,7:% , w=UxT(n) (15)

Using the expressions (15), Eq. (11) can be simplified as follows:

0 [@J:o as)

ox\ oy

It can be concluded from the above that the function 8_p is independent of variable y, which means

OX
op .
we can assume 8_ is of the form:
X

ENCCY (17)

P OX

Here C, is a constant
For CWT energy equations, the dimensionless temperatures are given by

0(7) = H_Z—W (18)

X" Tm~Tw
Substituting the Eqs.(15) and (17) into (10) and plug Egs. (18) into (12), we obtain following ordinary
differential equations with boundary conditions:

f )-Ref () +Ref(n) f ()+W-M f () =0 (19)
f(0)—knf (0)=0, f(0)=0, f (©)=0 (20)
Energy equation with corresponding boundary condition reduces to:

6" (n)+Br.f *(n).2Pe.f (1).0(n) - Pe.f ().0 (7) =0 (21)
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0(0)—kno(0)=0, 8 (1) =0 (22)
3 2 2 2
Here, Re:ﬁ,W:UH ,M:O-BOUH ,Pe=ﬁ,BFZEA (23)
v wJ yod% a ATw=Tm

4. Solution of the governing equation:-

In this section, we attempt to obtain analytical solutions for the imposed problem. using the HAM.
4.1. Basic procedure

For the HAM solving procedure, we first select initial guess solutions as follows:

f o) :%ns—%nz—knn (24)
Ot =kn+11-— 7’ 5)
Then we define the linear operators

LPE N =d"(£n). Lo®O& 7)) =0 (&,7) (26)

Here, either for the constant heat flux or constant wall temperature case the initial solutions of

energy equation is in second order, we can use the same linear operator 0 (&,m) . Further more, for

the stated two cases having the same energy equation, the nonlinear operator also could be the same.
The nonlinear operators can be defined as

N PE ) =D (£,17)-Red?(£,7) +Red(E N D (&) +W -M f (1,€) @7)

NLO(E7) =@ (E.1) ~Br " (&£,m) [ + Ped(&.m) @ (£.m) ~2Ped (£, )@(.17) (29
where &£ €[0,1] is an embedding parameter, as & increases from 0 to 1, ®(&,7) and O(&,n) vary
from the initial guess fq(77) and 6, (77) to the exact solution f (77) and &(77) , respectively.

We develop the so called zeroth-order deformation equations and corresponding boundary

conditions:  (1—&)L4[D(&;77) — T (17)]= phN1[D(E,7)] (29)
A= L[0(&:m) - Gy ()] = ph N ,[O(S,7)] (30)
f (O)-knf, (=0 f (0=0 f ©=0 (3D)
0(0)—kn.g (0)=0, 6(0)=0 (32)

Differentiating the zeroth-order deformation Egs. (29) and (30) k-times with respect to & and then
dividing them by k!, finally setting & = 0, we obtain the following kth-order deformation equations as

Ll f )= T ) =hR(f, (7)) (33)
Lo[Ok ) — x Ok 1 (M]=hG\ 4 (34)
f (0 —kn.f, (0)=0, f,(0)=0, f, (1)=0 (35)
0(0)—kn.g (0)=0, 6 (1) =0 (36)

for both boundary conations.In which h is an auxiliary parameter.

k-1 . k-1 ., . !

Rk (77) = f k_1(77) +Re % f i (77) f k—1—i (77) —Re % f i (77) f K—1—i (77) +W(1_ Zk) -M f (77) (37)
" k-1 . " k-1 . k-1 '

Gial) = s (N +Br 2 £ () F1_y_; )+ Pe S 1,0 Glca i) ~2Pe 20,0 oy 30)

and
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1 whenk>1

We use the symbolic calculation software MATHEMATICA and solve the set of linear differential
Egs.(33) and (34) with boundary conditions (35) and (36) up to first few order of approximation. It is
found that f (77) and &(77) can be written as

k k
f(m) = ;0 fiGn) . 0(n) = ;06% ()

4.2. Convergence of the solutions

It is noticed that the explicit, analytical expression, figure-2, contain auxiliary parameter h. As
pointed out by Liao [23],the convergence region and rate of approximations given by the HAM are
strongly dependent on h, figure-2, portray the h-curve of the velocity profile. For the velocity
distribution, tables (1) illustrate the values of the second derivatives for different order of the
approximations and for different values of the parameter h where —0.8 <h < 0.8 .It is noted that
the best value for h is —0.2, since the less difference between the second order derivatives, for
different order of the apQroximations, occurs at that value.

0 when k<1
Xk=

£(0)

—

(=

1S3

p=3
aa

-4000 |-

Figure 2- 9th-order of approximation h curve for f ' 0)

It is noticed that the explicit, analytical expression Figure- 3, contain auxiliary parameter h. As
pointed out by Liao [23],the convergence region and rate of approximations given by the HAM are

strongly dependent on h, Figure-3, portray the h-curve of the velocity profile. . For the velocity
distribution, tables (2) illustrate the values of the first derivatives for different order of the

approximations and for different values of the parameter N where —1<h <1 .It is noted that the

best value for h is —0.2, since the less difference between the first order derivatives, for different
order of the approximations, occurs at that value.

()

sx101 F

-sx101

-1x1016}

Figure 3- 3th-order of approximation h curve for 6 (n)
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Table 1- the values of the convergence parameter h using the first derivative. At 7 =0.

valueof h fom="f,+.+f, fm=Ffg+.+f5 | f (m=Ffy+..+ 1,
0.2 0.426903 0.443616 0.23225
0.4 0.717462 -0.051250 0.708562
0.6 4.35533 -2.26583 0.437963
0.8 30.8713 -2.91213 -1.0726
0.4 4.2385 1.35421 0.437963
0.6 7.4449 6.45256 -0.131426
0.8 3.67869 11.4263 -1.0726

Table 2- the values of the convergence parameter h using the second derivative. At n=0.

valueof h 0 (7)=60,+6, 0 (17) =6, + 6, + 6,
-1 -4.93584 -20.7829
-0.8 -4.00394 -9.68941
06 3.1444 479118
04 235723 2.897
03 ~1.99079 2.40765
0.2 11.64243 ~1.99291
0.2 20.429934 0.471792
04 0.0677656 2.36515
06 0.493098 4.40297
08 0.846062 6.29314
1 1.12666 7.9017

5. Results and discussion

Utilizing the analytical solutions, calculations are performed to investigate the effect of MHD
parameter "M", Reynolds number "Re", Knudsen number " kn", Prinkman number "Br", Peclet
number "Pe", Reynolds number "Re" and physical quantity at wall "W". The following results are
made of
5.1.Velocity distribution:
1- As MHD parameter "M" increases, there is small decreasing in the velocity rang. See Figure- 4)
2- As Reynolds number "Re" increases, there is small decreasing in the velocity rang. See Figure- 5)
3- As Knudsen number "KN" increases, there is small decreasing in the velocity rang. See Figure- 6)
4-As physical quantity at wall "W" increases, there is small decreasing in the velocity rang. See Fig(7)
5.2. Heat distribution:
1- As MHD parameter "M" increases, there is small decreasing in the velocity rang. See Figure- 8)
2- As Reynolds number "Re" increases, there is small decreasing in the velocity rang. See Figure- 9)
3-As Knudsen number "Kn" increases, there is small decreasing in the velocity rang. See Figure- 10)
4-As physical quantity at wall "W" increases, there is small decreasing in the velocity rang. See
Figure- 11)
5-As Prinkman number "Br" increases, there is small decreasing in the velocity rang. See Figure- 12)
6- As Peclet number "Pe" increases, there is small decreasing in the velocity rang. See Figure- 13)
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Figure 4- Velocity distribution with ,Re=7,h=-0.2,W =1 ,kn=0.1. M =1,2,3.
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Figure 5- Velocity distribution with, M =2,h=-0.2,W =1, kn=0.1. Re=7,8,9.
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Figure 6- Velocity distribution with,M =2,h=-0.2W =1 ,Re=7. kn=0.1,0.05,0.
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Figure 7- Velocity distribution with, M =2,h=-0.2,kn=0.1, Re=7. W =0.5,1,0.2

544



Ahmed & Abdulhadi Iragi Journal of Science, 2014, Vol 55, No.2A, pp:537-547

M-1
M-2
o M-=3

4

4

222 Y

T T S e ’/ -
r/-
/4
./.
W
/

0.0 0.5

Figure 8- Heat distribution with ,Re=7,h=-0.2,Kn=0.1,W =1,Pe=9 ,Br=6 . M =1,2,3.

Re=5
o Re =7
¢ | Re =9
'
1
L5
!
i VI
e N '
vd ~ /
¥ &
/
.
" 7/
4
.............................. n
0.0 0. 1.0 1 20 3.0

Figure 9- Heat distribution with,,M =1, h=-0.2, Kn=0.1LW =1,Pe =9 ,Br=6 . Re=5,7,9
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Figure 10- Heat distribution with,,M =1,h=-0.2,Re=7.1W =1,Pe=9 ,Br=6 . kn=0.1,0.01,0.
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Figure 11- Heat distribution with M =1,h=-0.2,Re=7.1, Kn=0.,Pe=9 ,Br=6 . W =12,3.
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Figure 12- Heat distribution with M =1, h=-0.2,Re=7.1, Kn=0.L,Pe =9 W =1. Br =4,68.
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Figure 13- Heat distribution with ,,M =1,h=-0.2,Re=7.1W =1,kn=0.1

pe =5,7,9.
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