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Abstract  

    The aim of this paper is the study of the influence  magnetic  field on steady state 

flows and heat transfer in microchannels between two parallel plates.  

    It is found that the motion equations are controlled by many dimensionless 

parameter, namely magnetic field parameter M Reynolds number Re, physical 

quantity at wall W and  Knudsen number Kn also found that the energy equations 

are controlled by many dimensionless parameter, namely magnetic field parameter 

M Reynolds number Re, physical quantity at wall W and  Knudsen number Kn , 

Prinkman number  Br and Peclet number  Pe. 

    The equations which controlled this type of fluid flow are complicated, so finding 

an analytical solution is not easy. 

    We obtained the velocity and energy distribution by using  homotopy  analysis 

method (HAM). 

    We have been studied the influence of all the physical parameters, that mentioned 

above on the  velocity And heat transfer distribution .        

    This study is done through drawing about (30) graph by using  the Mathematica 

package. 

Keywords: Temperature jump, Viscous dissipation, Homotopy analysis method. 

 

 HAM باستخدامتأثير الحقل المغناطيسي على مائع نيوتيني وانتقال الحراره بين صفيحتين متوازيتين 
 

أحمد مولود عبد الهادي  ,*مروان عبد الستار احمد
 العراق ،بغداد ،جامعة بغداد ،كمية العموم ،الرياضيات قسم

 
  :الخلاصة

يسي عمى جريان مستقر لمائع ثابت المزوجة وانتقال اليدف من ىذا البحث ىو دراسة تأثير الحقل المغناط     
. متوازيتين   الدقيقو بين صفيحتينالحراره في الانابيب 

، Mمثل معممة الحقل المغناطيسي ، لقد تبين أن معادلة الحركة تحكميا بعض المعممات اللابعدية     
ىذه المعادلات الغير خطيو تم حميا و knعدد نودسن  وWكمية الفعمية في الجدارال و، Re زوعدد رينولد

. باستخدام طريقو اليوموتوبي التحميميو 
مثل معممة الحقل  المغناطيسي ، بعض المعممات اللابعدية  "اضوكذالك تبين ان معادلو الطاقو تحكميا اي

M ، رينولد وعددRe ،الكمية الفعمية في الجدار وWعدد نودسن  وkn  و عدد برنك مانBr  ، وعدد
  Peبكمت 

، ان المعادلات التي تحكم ىذا النوع من المسائل ذات طبيعو معقده وبالتالي ايجاد الحل التحميمي غير سيل 
وانتقال الحراره السرعة توزيع داد الفيزيائية المذكورة اعلاه عمى منا بدراسة تأثير كل من الاعق

.  Mathematicaبيان بأستخدام البرنامج الجاىز ( 30)ىذه الدراسة قد تمت من خلال رسم حوالي     
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1. Introduction 
     Fluid is that state of matter, which is capable of changing  shape and is capable of flowing. Fluids 

may be classified as  real ''viscous'' and ideal ''perfect'' according to whether the fluid is capable of 

exerting shearing stress or not. Real fluid is called Newtonian if the relation between stress and rate of 

strain is linear, otherwise is called non-Newtonian fluid [1]. 

          Magnetofluiddynamics (MFD) is that branch of applied mathematics which deals with the flow 

of electrically conducting fluids  in electric and magnetic fields. It unified in a common framework the 

electromagnetic and fluid-dynamic theories to yield a description of the concurrent effects of the 

magnetic field on the flow and the flow on the magnetic field [2]. 

The magnetohydrodynamic (MHD) phenomenon is characterized   by an interaction between the 

hydrodynamic and boundary layer and     the electromagnetic field. The studies of boundary layer 

flows of    viscous and non-Newtonian fluids over a stretching surface have   received much attention 

because of their extensive applications in the field of metallurgy and chemical engineering, for 

example, in the extrusion of polymer sheet from a dye . Such investigations of magnetohydrodynamic 

(MHD) flows are very important industrially and have applications in different areas of researches 

such as petroleum production and metallurgical processes, it   is now well known that in technological 

applications the non-Newtonian fluids are more appropriate than the Newtonian fluids [2].  

         A systematic research on micro devices and MEMS started in the late 1980’s. Micro ducts, micro 

nozzles, micro pumps, micro turbines and micro valves are the examples of the devices involving 

liquid and gas flows. Modeling mass, momentum and energy transport  may necessitate including slip, 

rarefaction, compressibility, intermolecular forces and other unconventional effects. The Knudsen 

number (Kn) can classify the gas flow in micro channel into four flow regimes: continuum flow (Kn < 

0.001), slip flow (0.001 < Kn < 0.1), transition flow (0.1 < Kn < 10) and free molecular flow (Kn > 

10) [3]. Since Navier–Stokes (N–S) equations are not valid for Kn beyond 0.1, the lattice Boltzmann 

method (LBM) was developed as an alternative numerical scheme [4] and [5].     

However, for flows in continuum and slip regimes, Eckert and Drake [6] have indicated that there is 

strong evidence to use the N–S equations modified by boundary conditions. Tsien [7] originally 

designated the regime next to continuum flow as the “slip flow”, following Maxwell and 

Smoluchowski in assuming that the first failure of continuum theory would occur at gas–solid 

interfaces, where the empirical conditions of continuity of tangential velocity and temperature should 

give way to the slip and temperature-jump boundary conditions. Studies of the continuum theory warn 

that in principle the N–S-plus-slip theory lacks internal consistency, but the try-it-and-see approach 

has yielded a substantial body of practically satisfactory results[8]. Liu et al. [9] and Arkilic et al.   

     In this paper , we attempt to obtain analytical solutions for the imposed problem. The HAM 

proposed by Liao[10-16] is employed to solve the problem. Many types of nonlinear problems were 

solved with HAM in the literatures [17-21] which verify the validity of the method. For latest 

development, Please refer to [22]. 

     In the  Previous study, they  derive the similarity solutions for flows and heat transfer in micro 

channels. By using similarity transformation, they change the governing equations into ordinary 

differential equations . The homotopy analysis method (HAM), an analytical method originally from a 

basic concept in topology, is employed to solve the non-linear coupled ODEs. The rarefied effects on 

velocity profile and friction constant are obtained. Both the constant heat flux (CHF) and the constant 

wall temperature (CWT) boundary conditions are considered. The combined effects of the Br and Kn 

on Nu are exhibited. 

     Now, we study, effect of MHD on flow and heat transfer in micro channels between two parallel 

plates using HAM.  

2. Basic ideas of HAM:- 

      This method is proposed by Liao [23-25]. Below the outline of the HAM will be presented. 

Consider a non-linear equation governed by 

     0)()(  rfuA                                                                                                    (1)  

where A is a non-linear operator, )(rf is a known function and u  is an unknown function. By means 

of homotopy analysis method, one first construct a family of equations 

      )},()],([{)](),([)1( 0 rfprvAphruprvp                                                (2) 

http://www.sciencedirect.com.tiger.sempertool.dk/science/article/pii/S0017931011000822#b0005
http://www.sciencedirect.com.tiger.sempertool.dk/science/article/pii/S0017931011000822#b0005
http://www.sciencedirect.com.tiger.sempertool.dk/science/article/pii/S0017931011000822#b0005
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where  is an auxiliary linear operator  (u)=0 then u=0, )(0 ru is an initial guess, h  is an auxiliary 

parameter, ]1,0[p  is  an embedding parameter, ),( prv  is an unknown function of r and p . Liao 

[20,21] expanded ),( prv in Taylor series about the embedding parameter  
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The convergence of the series (3) depends upon the auxiliary parameter h . If it is convergent at 

1p , one has  
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Differentiating the zeroth order deformation equation (2) m -time with respect to p and then dividing 

them by !m  and finally setting 0p  we obtain the following m -th order deformation problem: 
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There are many different ways to get the higher order deformation equation. However, according to 

the fundamental theorem in calculus, the term )(rum in the series (3) is unique. Note that the HAM 

contains an auxiliary parameter h , which provides us with a simple way to control and adjust the 

series solution (5). 

3. Governing equation:- 

      As depicted in figure-1, the inlet velocity and temperature profile are assumed to be uniform, the 

distance between the two pare-1, allel plates is 2H. The governing equations based on the Naver-

Stokes equations with slip-flow boundary conditions at the walls are used to describe the physical 

processes. The process is assumed to be two-dimensional steady laminar flow. The body forces and 

the effect of compressibility are neglected. The tangential accommodation coefficient and thermal 

accommodation coefficient are assumed to be unity. Then, the mathematical model for slip flow 

between two parallel plates can be given by  
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                                        Figure  1- Microchannel between two parallel plates      

 

By taking the viscous dissipation effects into account, energy equation is written as 
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The boundary conditions are 
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The variables can be separated using similarity transformations based on the stream function ψ is 

defined as 
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Using the expressions (15), Eq. (11) can be simplified as follows:     
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    It can be concluded from the above that the function 
x
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Here xC  is a constant 

    For CWT  energy equations, the dimensionless temperatures are given by 
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Substituting the Eqs.(15) and (17) into (10) and plug Eqs. (18) into (12), we obtain following ordinary 

differential equations with boundary conditions: 

0)()()(Re)(Re)(
'''2''''

  ffff MWf                                          (19) 

0)0()0(
'''

 ff kn , 0)0( f , 0)1('' f                                                              (20) 

Energy equation with corresponding boundary condition reduces to: 

0)().(.)().(.2).(.)( ''2''''   fPefPefBr                                      (21) 
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0)0(.)0(   kn , 0)1(''                                                                                      (22) 
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4. Solution of the governing equation:- 

    In this section, we attempt to obtain analytical solutions for the imposed problem. using the HAM.  

4.1. Basic procedure 

   For the HAM solving procedure, we first select initial guess solutions as follows: 
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Then we define the linear operators 

),(),( '''
1  L ,  ),(),( ''

2  L                                      (26) 

     Here, either for the constant heat flux or constant wall temperature case the initial solutions of 

energy equation is in second order, we can use the same linear operator ),(''  . Further more, for 

the stated two cases having the same energy equation, the nonlinear operator also could be the same. 

The nonlinear operators can be defined as 
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where ]1,0[  is an embedding parameter, as  increases from 0 to 1, ),(   and ),(  vary 

from the initial guess )(0 f and )(0  to the exact solution )(f and )( , respectively. 

   We develop the so called zeroth-order deformation equations and corresponding boundary 
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     Differentiating the zeroth-order deformation Eqs. (29) and (30) k-times with respect to   and then 

dividing them by k!, finally setting 0 , we obtain the following kth-order deformation equations as  
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for both boundary conations.In which h is an auxiliary parameter.  
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and 
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   We use the symbolic calculation software MATHEMATICA and solve the set of linear differential 

Eqs.(33) and (34) with boundary conditions (35) and (36) up to first few order of approximation. It is 

found that )(f  and )( can be written as 
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4.2. Convergence of the solutions 

    It is noticed that the explicit, analytical expression, figure-2, contain auxiliary parameter h . As 

pointed out by Liao [23],the convergence region and rate of approximations given by the HAM are 

strongly dependent on h , figure-2, portray the h -curve of the velocity profile. For the velocity 

distribution, tables (1) illustrate the values of the second derivatives for different order of the 

approximations and for different values of the parameter h  where 8.08.0  h  .It is noted that 

the best value for h  is 2.0 , since the less difference between the second order derivatives, for 

different order of the approximations, occurs  at that value.       

 

Figure 2- 9th-order of approximation h curve for )0(''f  

 

       It is noticed that the explicit, analytical expression Figure- 3, contain auxiliary parameter h . As 

pointed out by Liao [23],the convergence region and rate of approximations given by the HAM are 

strongly dependent on h , Figure-3, portray the h -curve of the velocity profile. . For the velocity 

distribution, tables (2) illustrate the values of the first derivatives for different order of the 

approximations and for different values of the parameter h  where 11  h  .It is noted that the 

best value for h  is 2.0 , since the less difference between the first order derivatives, for different 

order of the approximations, occurs  at that value. 

 

Figure 3- 3th-order of approximation h curve for )('   
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Table 1- the values of the convergence parameter h  using the first derivative. At 0 . 

hofvalue  )(
''
f = ff

80
...  )(

''
f = ff

60
...  )('' f = ff 40 ...  

-0.2 0.426903 0.443616 0.23225 

-0.4 -0.717462 -0.051250 0.708562 

-0.6 4.35533 -2.26583 0.437963 

-0.8 30.8713 -2.91213 -1.0726 

0.4 4.2385 1.35421 0.437963 

0.6 7.4449 6.45256 -0.131426 

0.8 3.67869 11.4263 -1.0726 

 

 

 
Table 2- the values of the convergence parameter h  using the second derivative. At 0 . 

hofvalue  )('  = 10    )('  = 210    

-1 -4.93584 -20.7829 

-0.8 -4.00394 -9.68941 

-0.6 -3.1444 -4.79118 

-0.4 -2.35723 -2.897 

-0.3 -1.99079 -2.40765 

-0.2 -1.64243 -1.99291 

0.2 -0.429934 0.471792 

0.4 0.0677656 2.36515 

0.6 0.493098 4.40297 

0.8 0.846062 6.29314 

1 1.12666 7.9017 

 

 

 

5. Results and discussion 

    Utilizing the analytical solutions, calculations are performed to investigate the effect of MHD 

parameter "M", Reynolds number "Re", Knudsen number " kn", Prinkman number "Br", Peclet 

number "Pe", Reynolds number "Re" and physical quantity at wall "W". The following results are 

made of 

5.1.Velocity distribution: 
1- As MHD parameter "M" increases, there is small decreasing in the velocity rang. See Figure- 4) 

2- As Reynolds number "Re" increases, there is small decreasing in the velocity rang. See Figure- 5) 

3- As Knudsen number " kn"  increases, there is small decreasing in the velocity rang. See Figure- 6) 

4-As physical quantity at wall "W" increases, there is small decreasing in the velocity rang. See Fig(7) 

5.2. Heat distribution: 

1- As MHD parameter "M" increases, there is small decreasing in the velocity rang. See Figure- 8) 

2- As Reynolds number "Re" increases, there is small decreasing in the velocity rang. See Figure- 9) 

3-As Knudsen number "Kn"  increases, there is small decreasing in the velocity rang. See Figure- 10) 

4-As physical quantity at wall "W" increases, there is small decreasing in the velocity rang. See 

Figure- 11) 

5-As Prinkman number "Br" increases, there is small decreasing in the velocity rang. See Figure- 12) 

6- As Peclet number "Pe" increases, there is small decreasing in the velocity rang. See Figure- 13) 
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Figure 4- Velocity distribution with , 1,2.0,7Re  Wh , 1.0kn  . 3,2,1M . 

 
Figure 5- Velocity distribution with , 1,2.0,2  WhM , 1.0kn .  9,8,7Re  . 

 

 
Figure 6- Velocity distribution with , 1,2.0,2  WhM , 7Re  . 0,05.0,1.0kn . 

 
Figure 7- Velocity distribution with , 1.0,2.0,2  knhM , 7Re  .  2.0,1,5.0W  
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Figure 8- Heat distribution with , 9,1,1.0,2.0,7Re  PeWKnh  , 6Br  . 3,2,1M . 

 

 

 
Figure 9- Heat distribution with , 9,1,1.0,2.0,1,  PeWKnhM  , 6Br  . 9,7,5Re  . 

 
Figure 10- Heat  distribution with , 9,1,1.7Re,2.0,1,  PeWhM  , 6Br  .  0,01.0,1.0kn . 
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Figure 11- Heat distribution with 9,1.,1.7Re,2.0,1  PeoKnhM  , 6Br  .  3,2,1W . 

 

 

 
Figure 12- Heat distribution with 9,1.0,1.7Re,2.0,1  PeKnhM  , 1W  . 8,6,4Br . 

 

 

 

 
Figure 13- Heat distribution with , 1.0,1,1.7Re,2.0,1,  knWhM  , 6Br  . 

9,7,5pe . 
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