Naji & Saady Iragi Journal of Science, 2014, Vol 55, No.2A, pp:506-529

Iraqi
Journal of
Science

The Dynamics of Four-Species Ecological Model

Raid Kamel Naji, Rami Raad Saady
Department of Mathematic, College of Science, University of Baghdad, Baghdad, Iraq.

Abstract
In this paper, a four species mathematical models involving different types of
ecological interactions is proposed and analyzed. Holling type — Il functional

response is a doubted to describes the behavior of predation. The existence,
uniqueness and boundedness of the solution are discussed. The existences and the
stability analysis of all possible equilibrium points are studied. suitable Lyapunov
functions are used to study the global dynamics of the system. Numerical
simulations are also carried out to investigate the influence of certain parameters on
the dynamical behavior of the model, to support the analytical results of the model.
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1. Introduction

Mathematical modeling is an important interdisciplinary activity which involves the study of some
aspects of diverse disciplines. Biology, Epidemiodology, Physiology, Ecology, Immunology, Bio-
economics, Genetics, Pharmacokinetics are some of those disciplines. This mathematical modeling has
taken a lot of attentions in recent years and spread to all branches of life and drew the attention of
every one [9]. Ecology relates to study of living beings in relation with their living styles. Research in
the branch of theoretical ecology was initiated by Lotka [1] and by Volterra [2]. Since then many
scientists and researchers gave a lot of time and interest to this branch of study, see for example
Meyer [3], Cushing [4], Paul Colinvaux[5], Freedman [6], Kapur [7, 8]. The ecological interactions
can be broadly classified as prey-predator, competition, mutualism, commensalism and so on. Srinivas
[9] studied the competitive eco-systems of two species and three species with regard to limited and
unlimited resources. Later, Narayan [10] has investigated the two species prey-predator models with a
partial covers for the prey and alternative food for the predator. Recently stability analysis of
competitive species was investigated by Reddy [11]. Local stability analysis for a two species
ecological mutualism model has been investigated by Reddy et al., [12, 13].
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In this paper however , investigation is devoted to an analytical study of a four species Syn-
ecological system , with Holling type-I1 functional response involving a predator (say N,) preys upon

the prey (say N,) : the prey is a commensal to the host N, which itself is in competition with the
fourth species N, ; N, and N, are natural. Figure-1, shows the schematic sketch of the system under

investigation. The model equations of the system constitute a set of four first order non-linear ordinary
differential equations.
2. The mathematical model:-

Consider the four species Syn-Ecosymbiosis, comprising of prey-predator, commensalisms and
competition, model that consists of a prey (for example, Anemone) whose population density at time
T denoted by N,, the predator (for example, Butterfly fish) whose population density at time T

denoted by N,, the host (for example, Hermit crabs) whose population density at time T denoted by
N, and the host's competitor species (for example, other type of Hermit crabs) whose population
density at time T denoted by N,. Now in order to formulates the mathematical model of the above

Syn-Ecosymbiosis system, the following assumptions are adopted:
1. The predator species preys upon the prey species according to Holling type-11 functional
response with maximum attack rate a, >0 and half saturation constant b >0. While, in the absence of

the predator the prey species grows logistically with carrying capacity k, >0 and intrinsic growth rate
r, >0. Moreover in the absence of the prey the predator decay exponential with natural death rate
d, >0, however in the existence of prey the predator individuals competes each other with
intraspecific competition constant rate d, >0

2. The existence of the host N, enhance the existence of the prey species N, with the
commensal constant rate ¢ >0, while the existence of N; do not affect (positively or negatively) the
existence of Nj.

3. Both the species N; and N, growth logistically with intrinsic growth rates r, >0 for i=2.3
and carrying capacities k; >0 for i =2,3 respectively.
4. Finally there is an interspecific competition interaction between the species N, and N, with

competition intensity rates «; >0 and «a, >0 respectively.

Therefore the dynamics of the above proposed model can be represented by the following set of the
first order nonlinear differential equations while the block diagram of this model system can be
illustrated in Figure-1.

dT k, ) b+N;

dN, aN, 2

—~=e——N, —-d;N,—-d,N

dT ~ “b+N, 2 P2 TR i
d—T=r2N3 1‘@ —ayN3N,

dN, N,

—= =N, 1-—|-a,N3N

T » 4{ ksj 2N3lNy

Competition Host competator

=

Predator

Figure 1- The block diagram of system (1).
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Note that the above proposed model has fourteen parameters in all, which make the analysis difficult.
So, in order to simplify the system, the number of parameters is reduced by using the following
dimensionless variables and parameters:

N N cN oyN
1 2 3 1Ng
t:rlT,x:k—, y:—k , I=—2>, W=—="
1 1 n n
Q b d; d,yk, ry
U1=—, u2:_1 U3:_, U4:_, u5:_1
n 1 n n n
n I3 n o
U6=—, U7:_, UBZ y UQ:_
ck, rn oKy c

Then the non-dimensional form of system (1) can be written as:

%: X|:(1—X)—i+ z} =xf1(X,Y,2,w)
dt U, +X

dy eu; X
—_—= —Uy—U = XY, Z,W
ot YLZ_H( 3 4y} yia (X y )

)

% = Z[US(l_u(SZ) —W]: ng(xy Yy, ZyW)
dd—\::v = W[u7 (l_USW) —UQZ]: Wf4(X, yl va)

with x(0)>0,y(0)>0,z(0)>0 andw(0)>0. It is observed that the number of parameters have been

reduced from fourteen in the system (1) to ten in the system (2). Obviously the interaction functions of
the system (2) are continuous and have continuous partial derivatives on the following positive four
dimensional space:

R* ={(x y,2,w) € R*:x(0) = 0, y(0) > 0,2(0) > 0,w(0) > 0}
Therefore these functions are Lipschitzian on R? , and hence the solution of the system (2) exists and

is unique. Further, in the following theorem, the boundedness of the solution of the system (2) in R? is
established.

Theorem (1): All the solutions of system (2) which initiate in R# are uniformly bounded.
Proof:
Let (x(t), y(t), z(t),w(t)) be any solution of the system (2) with non-negative initial condition

(Xo» Yo 2o, Wo) € R} . Now according to the third equation of system (2) we have
dz
— < uszl{l—-ugz
= < tali-ug)

So, by using the comparison theorem on the above differential inequality with the initial point
z(0) =z, we get:
Zy

zZ(t) < 5
ZoUg + (L—zpug)e ™™

Thus, Iimz(t)si and hence, Sup.z(t)gi, vt>0.
t—ow u6 uG

Similarly, from the forth equation of system (2) we obtain that limw(t) < i, and hence Sup.w(t) < £l :
t—ow u8 u8
vt>0.

Finally, according to the first equation of system (2) we have
dx
—<xX(1-x)+xz
" 1-x)+

So, again by using the comparison theorem on the above differential inequality with the initial point
x(0) = x, and the upper bound of z(t) we get:
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limx(t)< L, where L =1+i
t—o0 u6
Therefore, Sup.x(t) <L, vt>0.

Now define the function: M(t):x(t)+%y(t)+z(t)+w(t), and then take the time derivative of M¢(t)

along the solution of the system (2) we get:
LU ILIPL L Sy
dt Ug Ug Ug
where s =min{l,us,us,u, }. Then
M M <H where H=7 L+ 54U Y7
dt 2Ug Ug Ug

Again by solving this differential inequality for the initial value M (0)=M,, we get:
M (t) SEJ{MO —ﬂje“
s s
Then,
limM (t) < H
tow S
S0, 0<M(t) g% , vt>0. Hence all the solutions of system (2) are uniformly bounded and the proof

is complete. [

3. The existence of equilibrium points:-

In this section, the existence of all possible equilibrium points of system (2) is discussed. It is
observed that, system (2) has at most twelve equilibrium points, which are mentioned in the following:
The equilibrium points E, =(0,0,0,0), which known as the washout point, and the single species points

E, =(1,0,00), E2=(O,O,t,0), E3=(O,O,O,i) are always exists. The first planar equilibrium point

E, =(%,¥,0,0) exists uniquely in Int.R? of xy—plane if there is a positive solution to the following set

of equations:
uy

(1—x)—m:0 (3a)

eu; X
Uy + X
From equation (3a) we have,

y:(l x)l(:2+x) 4)
Clearly, y>0 when x<1. Now by substituting (4) in (3b) and then simplifying the resulting term we
obtain that

F () =70 + 7% + 73X+ 7, =0 (5)
where

—Uz—Uy=0 (3b)

y1=Uu, >0

Y2 = 2UaUy — Uy

73 =euf —UyUs — 2U,U, +U5U,

V4= —(ulu2u3 + u§u4)< 0
Therefore the first planar equilibrium point E, =(%,,0,0), where x is a positive root of equation (5)
and y=y(x) that results from (4), exists uniquely in the Int.R? of xy—plane if in addition to the
condition x <1 at least one of the following conditions are satisfied:

1
u, > 5 (6a)
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eu? +Uuu, < UuyUs +2u,U, (6b)
The second planar equilibrium point E; =(0,0,Z,w) exists uniquely in the Int.R?of zw—plane if there
is a positive solution to the following set of equations:

Us(l—ugz)-w=0 (7a)
U7 (1—ugw)—ugz =0 (7b)
Straightforward computation gives that
7_ u; (ustg —1) and W= us (UgU; —Ug) (70)
UsUgUUg —Ug UsUgU,Ug — Ug

Clearly 7 and W are positive and hence E exists uniquely in Int.R? of zw—plane provided that one
set of the following sets of conditions is satisfied:

UsUg >1 and ugu; > Ug (8a)

UsUg <1 and ugu, < U (8b)

The third planar equilibrium point Eg :(X,O,Z,O):(”g—f,o,i,o) always exists in Int.R? of xz—plane

where X and Z represent the positive solution of the following system:

1-x+z=0 (%)

ug(1-ugz)=0 (9b)
The fourth planar equilibrium point E, =(i,o,0,W)=(;l,0,o,u—18) always exists in Int.R? of xw- plane
where X and W represent the positive solution of the following system:

1-x=0 (10a)

U;(1—ugw)=0 (10b)
Now, the first three species equilibrium point Eg =(X,y,Z,0) exists uniquely in Int.R® of xyz — space if
there is a positive solution to the following set of equations:

Uy
(1—x)—m+z=0 (11a)
Bl1X —Us—U,y=0 (11b)
U, + X
Us(1-ugz)=0 (11c)
From equation (11c) we have,
7oL (11d)
Us
Substituting (11d) in (11a) and then simplifying the resulting term we get:
yo Ugl(uy + x)1—x)]+ (u, +x) (11¢)
UyUg
Now, by substituting (11e) in (11b) and then simplifying the resulting term we obtain that
F(0) = B + BoX° + fox+ f, =0 (12)
where
B =Usug >0

Ba = 2UjU U —UgUg — Uy
S5 = eulUg — UyUsUg — 2U,U,Ug + USU,Ug — 2U U,
By = —(ulu2u3u6 +U3U,Ug + u§u4)< 0
Note that Eqg.(12) has a unique positive root, namely x, provided that at least one of the following

conditions are satisfied:
2U,Ug > Ug +1 (13a)

ue(euf +u§u4)< Ug (Uyu3 + 2u,u, )+ 2u,u, (13b)
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Consequently, the first three species equilibrium point Eg=(X,y,z,0) where y=y(X) given by
Eq.(11e), exists uniquely in the Int.R® of xyz —space if in addition to conditions (13a) — (13b) the
following condition holds

Ug +1>UgX (14)
The second three species equilibrium point Eg = (%, ,0,W) exists uniquely in Int.R? of xyw —space if
there is a positive solution to the following set of equations:

L-x)-—1Y _o (15a)
U, +X
B X —Us—U,y=0 (15b)
u, + X
U;(1—ugw)=0 (15¢)
From equation (15c) we have,
wet (15d)
Ug
Also, from equation (15a) we have,
_(1=x)u; +x) (15€)
U
By substituting (15e) in (15b) and then simplifying the resulting term we obtain that
f(x) =0'1X3 +0'2X2 +03X+0, =0 (16)
where
op=u, >0

oy =2UsUy —Uy
O3 = €Uf —UyUg — 2U,U, + USU,
o, = —(uluzu3 + u§u4)< 0

Not that Eqg.(16) has a unique positive root, namely X, provided that at least one of the following
conditions are satisfied:

U, >% (17a)
eu? +udu, <uyus +2u,u, (17b)

~

Consequently, the second three species equilibrium point Eg =(X,9,0,W) where §=y(X) is given by
Eq.(15e), exists uniquely in the Int.R® of xyw—space if in addition to conditions (17a) — (17b) the
following condition holds

x<1 (18)
The third three species equilibrium point E;, =(x‘,0,z‘,w‘) exists uniquely in the Int.R? of xzw—space
if there is a positive solution to the following set of equations:

1-x+z=0 (19a)
Us(l—ugz)-w=0 (19D)
U (L— ugw)—ugw = 0 (19¢c)
Straightforward computation shows that these three equations give that
o  UglglsUg—Ug+U,(Usug—1) _e = o -~
X* = VIT=Z,W =W (20)

UsUgU;Ug —Ug
here 7 and w are given in Eq. (7c). Clearly x*, z* and w* are positive and hence E,, exists uniquely
in the Int.R? of xzw—space provided that condition (8a) or (8b) is satisfied:

Finally the positive (coexistence) equilibrium point Ellz(x*,y*,z*,w*) exists if there is a positive
solution to the following set of equations:

uy
1-x)-—2_ 4+ 7-0 21
(1-x) uerX+z (21a)
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uzuixx —uy3—-u,y=0 (21b)
Us(l—ugz)-w=0 (21c)
U, (1—ugw)—ugz =0 (21d)
From equation (21c) and equation (21d) we get

=7 and w' =W (21e)

Clearly z* >0 and w* >0 provided that condition (8a) or (8b) holds.
Substituting (21e) in (21a) and then simplifying the resulting term we obtain that
y = (u2 + X)[SZ (1_ X)+ Uz 51] (21f)
U S,
where s; =ugug—1 and s, = uslgU;Ug —Ug.
Now by substituting (21f) in (21b) and then simplifying the resulting term we obtain that
f(X) = 5 + 5, x% + 83X+ 5, =0 (22)
where
01 =Sy
Oy =2U5Uy Sy —UyUs Sy —Uy Sy

2 2
O3 =€U;j Sy, —UjUg Sy +UyU5 Sy —2UoUy Sy — 2UsU,U7 S
8, = —(ulu2u3 S, +U5U, S, +U3U,U; sl)

Clearly, by using discard rule of sign, Eq.(22) has a unique positive root, denoted by x*, provided that
in addition to condition (8a) at least one of the following conditions hold

2U,S, >Us S +5, (23a)

(eul2 + u§u4)s2 <UUs S, +2U,U, (S, +U7S;) (23b)
or else in addition to condition (8b) at least one of the following conditions hold

2U,S, <U;S; +S, (23c)

(eul2 + u§u4)s,2 > Uyl S, + 2UU, (S, +U7 S;) (23d)

Consequently, the positive equilibrium point Ellz(x*,y*,z*,w*), where y“=y(x") as given in
Eq.(21f), exists uniquely in Int.R? if and only if in addition to the above conditions the following

condition is satisfied.
X < S2trs (24)

S2
4. The stability analysis of system (2):-
In this section the stability analysis of all feasible equilibrium points of system (2) is studied
analytically with the help of linearization method as bellow.
Note that, from now onward the symbols 4,4, 4, and 4, represent the eigenvalues of the Jacobian

matrix J(E;);i=02,...11 that describe the dynamics in the x—direction, y-—direction, z—direction

and w—direction respectively,
It is easy to verify that, the Jacobian matrix of system (2) at the trivial equilibrium point E, =(0,0,0,0)

can be written in the form:

1 0 0 0

0 —u;, 0 O

IE)= g o3 U 0
5

0 0 0 u

Thus the eigenvalues of J(E;) are A5, =1>0, Aoy =—U3<0, Ay, =Uus >0 and 4y, =u; >0, then E,

is a saddle point.
The Jacobian matrix of system (2) at the first single species equilibrium point E, =(1,0,0,0) can be

written as:
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B R T T
u, +1
eu
JE)=| 0 il—us 0 0
2
0 0 us 0
|0 0 0 uy|

Hence the eigenvalues of J(E;) are 4, =1>0 , A4y =4 —Us, 4, =Us>0 and 4, =u; >0, then E;

u,+1
is a saddle point.
The Jacobian matrix of system (2) at the second single species equilibrium point E, = (O,O,UA,O)can be

written as:
1+i 0 0 0
Ug
0 -u; O 0
J(E;) = 0 0 -ug __1
Ug
0o 0 0 u-X
L Us |

Thus the eigenvalues of J(E,) are 4, =1+¢ >0, Ay =-U3<0 Ay, =-U5 <0 and 4,, =u; —ﬁ—z, then

E, is asaddle point.

The Jacobian matrix of system (2) at the third single species equilibrium point E; :(O,O,O,UA)can be
8

written as:

1 0 0 0 |
0 -u; 0 0

1
J(E=|0 0 ug-—— 0

Ug
o o Iy

Ug

Thus the eigenvalues of J(E;) are A5 =1>0 , A3y =—Uz <0, A, =Us —i and 4, =-u, <0, then E;
is a saddle point.

The Jacobian matrix of system (2) at the first two species equilibrium point E, =(x,y,0,0) can be
written as:

f{—u( by } WX o

Uy + X | Up+X
euyu,y -
JEH=| Y _yy 0 o0
(up +%)
0 u; O
0 0 0 u

Hence the charac_teristic equation of J(E,) is given_ by:
22+ Aa+ A, s - ), - 2) =0

where A =Xx- b Xy +U,y

u2+>”()2
~ 2 o
o uy eu, U, Xy
=u, Xyl 1-—=2 +
Fo=te y{ (u2+i>2j (U, + 2
So, either
(Us —A)(u; =) =0 (25a)
Or
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2 +ALI+A, =0 (25b)
Hence from equation (25a) we obtain that:
Ay =Us >0, Ay, =u; >0
Thus E, is unstable.
The Jacobian matrix of system (2) at the second two species equilibrium point
E;=(0,0,Z,W)= (0,0, ur (Usty 1) ”5(“5“7‘“9)) can be written as:

UsUgU7Ug —Ug ’ UsUgU7Ug —Ug

1+Z7 0 0 0
I(Es) = 0 -u; 0 _ 0~

0 0 —Usugz -2

0 0  —UW —U;UugW

Therefore the characteristic equation is:
@+Z -2 -uz— /1)[12 + (UgUgZ + U;UgW) A + (UsUgUsUg — Ug Z W J =0

So, either

@+7Z-41)
(~u;-2)=0 (26a)
Or

22+ (UgUg Z + Uy Ug W) + (UsUgUi;Ug —Ug)Z W =0 (26b)

Hence from equation (26a) we obtain that:
Aoy =147 >0 , Asy =—U3 <0.
Thus E; is unstable.
The Jacobian matrix of system (2) at the third two species equilibrium point
Ee = (X,0,2,0) (“6—*1 0L 0) can be written as:

= 1 L L
Ug Ug

- iy i
% 1X % 0
U, +X
0 eu1>'<—u3(Li2 +X) 0 0
U, +X
‘](E6): 2 -1
0 0 —Ug ™
6
0 0 0 Uglz —Ug
U6 i

Thus the eigenvalues of J(Eg) are

- €U; +eU;Ug —U,UgUs —Uz—UgUg
Ay =—X<0, Ag, = ,
UyUg +Ug+1

=-Us <0 and Jg, =12
z 5 W

Therefore, if the following conditions hold
eu; (L+ug) < Ug(u,ug +Ug +1) (273)
Ugl; < Ug (27b)
Then Eg is locally asymptotically stable. However, it is a saddle point otherwise.
The Jacobian matrix of system (2) at the forth two species equilibrium point E, =(;L0,0,i) can be

written as:
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_ . i}
- 1 1 0
u, +1
_ u, +
I(Er) = Uglg —1
0 0 0
Ug
0 0 oy,
US ]

Thus the eigenva_lues of J(E,) are given by;

ﬂqx —_1<0, /17y _ eu; —Uz(up +1) 172 _ Usug1 and /17W =—u, <0.

U, +1 Ug
Therefore, if the following conditions hold
eu; < Us(u, +1) (28a)
Uslg <1 (28b)

Then E, is locally asymptotically stable. However, it is a saddle point otherwise.
The Jacobian matrix of system (2) at the first three species equilibrium point E; = (x,y,2,0)= ()“( y,i,o)
can be written as:

LA AL 0
(u, +X) U, + X
Yy 0 0
IE=| L2tH .
0 0 —Us —
Ug
0 0 0 UgU7 —Ug.
U6 |

Hence the characteristic equation of J(Eg) is given by:

[/12+Kl,1+lgk—u5—/1)(u—/1)=o

Ug
where
o Uy
=—X|-1+—2 +U
A [ (u2+>“<)2J +
= uy eu; U, Xy
=u, Xy 1-—=
fo =ty y[ u2+X)2J (U, +%)°
So, either
(—us - 4) [_ _zJ 0 (293)
6
which gives two of the eigenvalues of J(Eg) by
gy =—Us <0 and Ay, =807 "l
Us
Or
2 +AL+A, =0 (29b)

which gives the other two eigenvalues of J(Eg) by

a5+ 3R -4,

hoy =~ -3 [RE-4A,
Straightforward computations show that all the above eigenvalues have negative real parts provided
that the following conditions are satisfied
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" ”iyx)z <1 (30a)
2
UgU; <Ug (30b)

So, Eg is locally asymptotically stable in the Rf. However, it is a saddle point otherwise.
The Jacobin matrix of system (2) at the second three species equilibrium point
Eq = (% 7.0,W)= (%, y,o,i) can be written as:

. U Xy —U X p

- X+ > - 0
(u2+x) U, +X
Sy g 0 0
J(Eg): (u2+x) Uclo —1

0 0 58 0

Ug

—u
0 0 —

Ug

Hence the characteristic equation of J(E,) is given by:

2+ B+ 521”5‘:8 _l—xj(—u7 ~2)=0
8

where

. uy N
B =% -1+—2 +U
1 ( (U2+)2)2] 4y

~ 2 A A

w2+kf W2+*P

So, either

[%M—AJ (~u; —2)=0 (31a)

8

which gives two of the eigenvalues of J(Eg) by:

j*92 = Uslle -1 ) ﬂgw =-U; <0

Ug

Or

2 +BA+B,=0 (31b)

which gives the other two eigenvalues of J(E,) by:

[ 2

%x:_%+% B," -4B,
2

Aoy = =5 —$\B - 4B,

Straightforward computations show that all the above eigenvalues have negative real parts provided
that the following conditions are satisfied:

Uy

<1 32a
(u2 + )?)2 (322)
Usug <1 (32b)

So, E, is locally asymptotically stable in the R?. However, it is a saddle point otherwise.

The Jacobin matrix of system (2) at the third three species equilibrium point E,, :(x‘,o,z‘,w‘) can be
written as:
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xe WX x* 0
u, +x°
I(Ey) =| 0 ue”ixx. “u; 0 0
2
0 0 —UglUgz® -z°
0 0 —UgW"  —U;UgW" |

Hence the characteristic equation of J(E,,) is given by:

[x —AH ey, X —uSJ—AJ[ﬂﬂ +BIA+B}|=0

u, +x°
where
Bl =UsUgZ° +U;UgW*
BS = (UgUgU;Ug —Ug)Z" W*
So, either

(—x'—/l)[( e X7 —u3J—/1J:O (33a)

Uy +X°

which gives two of the eigenvalues of J(E,,) by:

eu; x* —us(u2 +x')

ﬂiOXZ_X.<O ) /110y: .
U, +X

Or
A2 +BA+B; =0 (33b)
which gives the other two eigenvalues of J(E,,) by:

N .2 L]
° .2 L]
Ayow = =5 —$1B;" —4B;

Straightforward computations show that all the above eigenvalues have negative real parts provided
that the following conditions are satisfied

UsUgU,Ug > Ug (34a)

eu, x* < ug(u2 + x') (34b)
So, E,, is locally asymptotically stable in the R? . However, it is a saddle point otherwise.
The Jacobian matrix of system (2) at the positive equilibrium point E;; = (x*, y*,z*,w*) can be written
as:

I uxy Upx” |
AL LD 17 X 0
(u2 +X )2 Uz +X
euu,y” .
JED=| —=% —Ugy 0 0
(u, +x°F
0 0 -ugz -z
0 0 —UgW  — U UgW

Hence the characteristic equation of J(E,,) is given by:
|2+ RA+R, | 2+ Ra+R, |=0

R, :—x*[—l+ﬁ]+u4y*

where
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vl uyy” euu,x’y”
e [ <u2+x*>2]+ o]

Rs; =UsUgZ +U,UgW

R, = (UsUgU;Ug —Ug )z 'W"

So, either
2 +RA+R, =0 (35a)
which gives the first two eigenvalues of J(E;,) as:

Aix =_%+%\/R12—4R2
R o2
Ay ==7 =R - 4R,

Straightforward computations show that the above eigenvalues have negative real parts provided that
the following condition is satisfied.
Y] (35b)
(u2 +X
Or
A2 +RyA+R, =0 (35c¢)
which gives the other two eigenvalues of J(E,;) as:

R, 2
A1 :—73+%\IR3 —4R,
R 2
ﬂ’llwz_zs_%VRB _4R4

Again straightforward computations show that the above eigenvalues have negative real parts provided
that the following condition is satisfied

UsUgU7Ug > Ug (35d)
So, Ey, is locally asymptotically stable in the R? under the conditions (35b) and (35d). However, it is
a saddle point otherwise.
5. Global Stability Analysis:-

In this section the global stability analysis for the equilibrium points, which are locally
asymptotically stable, of system (2) is studied analytically with the help of Lyapunov method as
shown in the following theorems
Theorem (2): Assume that, the equilibrium point Eg =(x,0,2,0) of system (2) is locally asymptotically
stable and the following conditions hold

X <e—Ul (36a)
1< 4ugug (36b)
= 2
M<[(x—>‘<)—,/u5 Ug (z—Z)]2 (36¢)
4u; ug

Then the equilibrium point E4 of system (2) is globally asymptotically stable.
Proof: Consider the following function

Vi (x, y,z,w):c{x—i—ilné}rczwc{z—Z—Zlnéj+c4w
X z

where ¢,,c,,c;andc, are positive constants to be determine.

Clearly v, :R? >R isa C* positive definite function. Now by differentiating Vv, with respect to time t
and doing some algebraic manipulation, gives that:
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% = ¢ (x =X +¢(x XNz~ 2) - cqusig(2 ~ ) ~
Uxy y
U + X (¢ —coe)

(c3z +C4U7 W — CU;UgW?
by choosing ¢, =1, ¢, =1, ¢3 =c, =1 we get

d(;il —(x=%)? +(x=%)(z-Z)-usug(z—2)?
_(u_a_ijw(m?) {1_%*_8@
e u Z+Uy
Now since the function f(w) =(2+u7)wb it J in the last term represents a logistic function with

7+u,

respect to w and hence it is bounded above by the constant ( o,
(36a) — (36b) we have

D fo-x)- gt - + E20S

4U7 Ug

then according to the conditions

So, if condition (36¢) holds then we obtain that % is negative definite and hence Vv, is a Lyapunov
function. Thus Eg is a globally asymptotically stable and the proof is complete. [
Theorem (3): Assume that, the equilibrium point E, :(i,o,o,ﬁ) of system (2) is locally

asymptotically stable and the following conditions hold

X <_eu1 (379)

2 =
Lrus) (g oYY X (37h)
4us Ug Ug W

Then the equilibrium point E, of system (2) is globally asymptotically stable.
Proof: Consider the following function

V,(x,y,z,w)= cl(x—x - xln§j+czy+c3z +c4(w—w —wlnﬁj
where ¢,,c,,c;andc, are positive constants to be determine

Clearly Vv, :R* »R isa C! positive definite function. Now by differentiating Vv, with respect to time
t and doing some algebraic manipulation, gives that:

dv. = U i
d_t2 = —ol(x—x)z - u21+y (- cze)—[c2u3 QULZ]Y

+Cz - (cli - c4u9W)z +CqUsZ

— ol 22 — c4u7u8(w— W)Z

by choosing ¢, =1,c, =1,¢c; =1, Ci=05 —X we get

e - - TF - - -

U3 WX Us Ug Z
—= +1+UsJz| 1-—=>——
(e u, Jy ( 5) { 1+us }
UsUg Z
1+ug

EII

Now since the function f(z)=(1+ u5)z[1— J in the last term represents a logistic function with

2
respect to z and hence it is bounded above by the constant (1Zu5u) then according to the condition

456

(37a) we have
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di<—[(x—i)2 Uzl (W—W)Z}LM
dt Ug W 4 Ug

So, if the condition (37b) holds then we obtain that dditz IS negative definite and hence V, is a
Lyapunov function. Thus E, is a globally asymptotically stable and the proof is complete. [
Theorem (4): Assume that, the equilibrium point E;=(X,y,z,0) of system (2) is locally

asymptotically stable and the following conditions hold

Wy (38a)
U, (U, +X)
N2 _
eu;U, —UyUy — U X uy
- <2u,l1l-—2 (38b)
{ (up - X)(Uz + X) J 4( Uz(uz + X)j
o uwy

1< 2u5u6(1 U, + X)J (38c)
(Z + u7)2
~ 7 38d

AU, U <P+ P> (38d)
here

ﬂ[% 1—%<x—x>—my-y>}z

" uy(up + X

5, =[% 1 “;y)(x—i)—M(z—Z)T

Then the equilibrium point Eg of system (2) is globally asymptotically stable.
Proof: Consider the following function

V,(x, y,z,w):(x—i—ilnéj+[y—y—yln¥j+(Z—Z—Zlnéj+w
X y Z

Clearly V,:R? »R isa C positive definite function. Now by differentiating Vv, with respect to time t
and doing some algebraic manipulation, gives that:

(u, —X)(Uz +X)
2

Uy (y=9)° +(x =%z~ 2)-usug(z-2)" +

_ U;UgW
(z+u7)w{1— 8 }
Z+u,

J in the last term represents a logistic function

Now since the function f(w)=(Z +u- )Wb— w

Z+Uu

(z+u, )

with respect to w and hence it is bounded above by the constant -

(38a) — (38c) we get

dv, (Z+u,)?
dt h=F 4u,ug

then by using the conditions

748

So, if the condition (38d) holds then we obtain that % is negative definite and hence V; is a
Lyapunov function. Thus Eg is a globally asymptotically stable and the proof is complete. [
Theorem (5): Assume that, the equilibrium point E,=(%,9,0,w) of system (2) is locally
asymptotically stable and the following conditions hold

—Y g (392)

u, (U2 + X)
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N2 \

eu,U, — UgU, — UK Uy

qu,|1——22F 39b
[ (up —)(u; +%) j ) u‘{ Uz(uz+k)j (3%)
LISHS—+LW<51+52 (390)
6
2
where & { 1—#)/”) (x—ﬁ)—\/ﬁ(y—y)} ; 8, =U;Ug (W—W)2. Then the equilibrium point E, of
2 \M2

system (2) is globally asymptotically stable.
Proof: Consider the following function

V4(x,y,z,w)=(x—>“<—>”<|né]+[y—9—9In—¥)+z+(w—v“v—v“vlnv—:lj
% ¥ W

Clearly v, :R* >R isa C! positive definite function. Now by differentiating Vv, with respect to time
t and doing some algebraic manipulation, gives that:

%S—[l—uu;yA)J(x—ﬁ)zJ{euluz_ulx_uluzj(x—f()(y—)?)—
2

dt (U, +% (uy —x)(u, +X%)

Uy (y =) +(us +&+ug W)z —u;ug (w—W)*
by using the condition (39a) — (39b) we get
T<_51_52+ Us + X + UgW
Ug

Then ddi; is negative definite due to condition (39c) and hence V, is a Lyapunov function. Thus E, is
a globally asymptotically stable and the proof is complete.
Theorem (6): Assume that, the equilibrium point Eloz(x‘,o,z’,w‘) of system (2) is locally

asymptotically stable and the following conditions hold

1<2ugug (40a)

X* < % (40b)
1

2< Us“zﬂ (40c)
9

Then the equilibrium point E,, of system (2) is globally asymptotically stable.
Proof: Consider the following function

Vs (x, y'Z'W)=Cl(X—X' -x* mL,J-‘rCzy
X

z w
+03(2—2'—z'In—.]+c4(W—W’—W’In )
z w

where ¢,,c,,c;andc, are positive constants to be determine.

Clearly Vi :R* »>R isa C positive definite function. Now by differentiating V5 with respect to time t
and doing some algebraic manipulation, gives that:

dv D2 Ugx u,x*
d—fs-cl(x—x ) —uzlJr);(cl—cze)+c1 1u2y+

Y
cl(x—X'Xz—z')—czusy—c3u5u6(z—z ) -

L] L] L] 2
03(2—2 Xw—w )—c4u7u8(w—w ) -

CaUglw—w"* Xz—z

by choosing ¢, =1,c, :1, c;=1 ¢, _1 we get
e Ug
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S ol vl [y

dt e U,
[ ] (] u u (] 2
2(2 ~7 XW—W )—ﬂ(w—w )
Ug
by using the conditions (40a) — (40c) we get

e oo ] {5
oo [ o]

Then % is negative definite and hence V; is a Lyapunov function. Thus E,, is a globally

asymptotically stable and the proof is complete. [
Theorem (7): Assume that, the equilibrium point Ellz(x*,y*,z*,w*) of system (2) is locally
asymptotically stable and the following conditions hold

= RARS | (41a)
U, lu, +x

% 2 *
BU, Uty —UpX” | [ Uy 41b
[ (u, —x)(u2 +x*) J ! uziu2 +x") (41b)
uy”
1<Uglg|1——21 41c
56( ‘(_)u2u2+x*] (41c)

(1+ug)? < 2ugugu-Ug (41d)
Then the equilibrium point E,, of system (2) is globally asymptotically stable.
Proof: Consider the following function

Ve (x, y,z,w):[x—x* —x* Ini*}r[y—y* —y* Ini*]+
X y

z w
(z—z* -z In—*j+(w—w* —-w" In—*j
z w

Clearly V, :R? -R isa C! positive definite function. Now by differentiating Vs with respect to time
t and doing some algebraic manipulation, gives that:

dVs uy” L2
V6 o |11 (k=
at [ uz(u2+x)](x X ) !

[eulu2 —UUy —Uy X J(X_X*Xy_ y*)+

(u, —x)(u2 +x*)
(x—x*Xz—z”‘)—uél(y—y*)2 —u5u6<z—z*)2 -

u7u8(w—w* )2 —(1+ ug)(z—z*Xw—w*)

by using the conditions (41a) — (41e) we get
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2
av, u y*
eg—{ uz(u12+x) u4y y)} —
2
It u2<‘:zix)J<x—x*>—J“5:6<z—z*>1 :
2
[ ) )

Then % iS negative definite and hence V, is a Lyapunov function. Thus E;; is a globally

asymptotically stable and the proof is complete. [

6. Numerical Simulation:-

In this paper the dynamical behavior of system (2) is studied numerically for different sets of
parameters and different sets of initial points. The objectives of this study are: first investigate the
effect of varying the value of each parameter on the dynamical behavior of system (2) and second
confirm our obtained analytical results. It is observed that, for the following set of hypothetical
parameters that satisfies stability conditions (35a) and (35d) of the positive equilibrium point, system
(2) has a globally asymptotically stable positive equilibrium point as shown in Figure-2.

Note that, from now on ward the solid, dash, dot and dash-dot are used to describing the trajectories
of the prey x, the predator y, the Host z and the Host competitor w respectively.

Ul 206, U2 2025, US :01, U4 2005, US :2, UG 205

(42)
U7 = 2, U8 :0.75, UQ = 0.8, e= 0.5

(a) (b)

3
2 -3 S
| X =
(= ] = F=}
1F} a
)
]
!
ot - - 0
o 2000 4000 6000 8000 0 2000 4000 6000 8000
Time Time
3 . 3
©) — ()
=2
2 = 2
3 g
£ |z 8
1y = 1\
1] t= N
! T
o - - o
o) 2000 4000 6000 8000 o) 2000 4000 6000 8000
Time Time

Figure 2- Time series of the solution of system (2) that started from two different initial points
(0.8,0.7,0.6,0.9) and (1.0,0.5,0.31.25) for the data given by Eq. (42). (a) trajectories of x as a function

of time, (b) trajectories of y as a function of time, (c) trajectories of z as a function of time,(d)
trajectories of w as a function of time.

Clearly, Figure-2 shows that system (2) has a globally asymptotically stable as the solution of

system (2) approaches asymptotically to the positive equilibrium point E;; =(1.2,2.96,1.42,0.57)

starting from two different initial points and this is confirming our obtained analytical results.

Now in order to discuss the effect of the parameters values of system (2) on the dynamical
behavior of the system, the system is solved numerically for the data given in Eq. (42) with varying
one parameter each time. It is observed that for the data as given in Eq. (42) with u, <0.23, the

solution of system (2) approaches asymptotically to E;;=(x",0,z°,w") in the xzw—space as shown in
Figure-3, however for 0.23<u, <0.61 the system approaches to the positive equilibrium point, finally

for 0.61<u, it is observed as given in Figure-4, that system (2) has a periodic dynamics in the Int.R?.
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Figure 3- Time series of the solution of system (2) for the data given by Eq. (42) with u, =0.15,
which approaches to (2.42,0.0,1.42,0.57) in xzw-—space
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o
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Time « 10

Figure 4- Time series of the solution of system (2) for the data given by Eq. (42) with u, =0.7, which
approaches to periodic dynamics in Int.R?.

By varying the parameter u, keeping the rest of parameters values as in Eq. (42), it observed that for
u, <0.24 system (2) approaches to periodic dynamics in Int.R?, while for 0.24<u, the solution still
has a stable positive equilibrium point. On other hand varying the parameter U3 keeping the rest of
parameters values as in Eq. (42), it observed that for u; <0.09 system (2) approaches to periodic
dynamics in Int.R?, while for 0.09<u, <0.27 the solution still has a stable positive equilibrium point,
further for 0.27 <u, the solution of system (2) approaches asymptotically to the equilibrium point
Eip=(x",0,z°,w") in the xzw-space. Moreover, varying the parameter u, keeping the rest of
parameters values as in Eq. (42), showed that for u, <0.04 system (2) approaches to periodic
dynamics in Int.R?, while for 0.04<u, <1 the solution still has a stable positive equilibrium point.

For the parameters values given in Eq. (42) with ug varying in the range us <1.33 the solution of

system (2) approaches asymptotically to the periodic dynamics in the interior of positive octant of
xyw —space as shown in Figure-5, however for 1.33<uz <1.86 it is observed that system (2) has a

periodic dynamics in Int.R?, finally for 1.86 <ug the solution approaches to a positive equilibrium
point.
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Populations

Time w 10°

Figure 5- Time series of the solution of system (2) for the data given by Eq. (42) with ug =1.25,
which approaches to periodic dynamics in the interior of positive octant of xyw — space.

For the parameters values given in Eq. (42) with Ug varying in the range ug <0.4 the solution of
system (2) approaches asymptotically to the equilibrium point Eg =(X,y,z,0) in the interior of positive
octant of xyz —space as shown in Figure-6, however for 0.4<ug it is observed that system (2)

approaches asymptotically to a positive equilibrium point

Populations

0] 2000 4000 6000 8000 10000
Time

Figure 6- Time series of the solution of system (2) for the data given by Eq. (42) with ug = 0.3, which
approaches asymptotically to (3.79,3.62,3.33,0) in the interior of positive octant of xyz — space.

For the parameters values given in Eq. (42) with u, varying in the range u, <1.6 the solution of
system (2) approaches asymptotically to the equilibrium point Eg =(X,y,z,0) in the interior of positive
octant of xyz —space, however for 1.6<u, <21 it is observed that the solution of system (2)
approaches asymptotically to a positive equilibrium point, finally for 2.1<u, system (2) has a periodic
dynamics in Int.R? as shown in Figure-7.

For the parameters values given in Eq. (42) with ug varying in the range ug <0.5 system (2) has a

periodic dynamics in the interior of positive octant of xyw —space, however for 0.5 < Ug it is observed

that system (2) approaches asymptotically to a positive equilibrium point .
For the parameters values given in Eq. (42) with ug varying in the range ug <0.75 system (2) has a

periodic dynamics in Int.R? as shown in Figure-8, however for 0.75<uq <0.99 it is observed that the
solution of system (2) approaches asymptotically to a positive equilibrium point, finally for 0.99 <u,
the solution of system (2) approaches asymptotically to the equilibrium point E; =(x,¥,z,0) in the
interior of positive octant of xyz —space.
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which approaches to periodic dynamics in Int.R?.
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Figure 8- Time series of the solution of system (2) for the data given by Eq. (42) with uy =0.6, which
approaches to periodic dynamics in Int.R?.

For the parameters values given in Eq. (42) with e varying in the range e<0.17 the solution of
system (2) approaches asymptotically to E;,=(x",0,z°,w"

in the interior of positive octant of
xzw —space as shown in Figure-9, however for 0.17 <e<0.51 it is observed that the solution of system

(2) approaches asymptotically to a positive equilibrium point, finally for 0.51<e system (2) has a
periodic dynamics in Int.R?.
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Figure 9- Time series of the solution of system (2) for the data given by Eq. (42) with e=0.1, which

approaches asymptotically to (2.42,0,1.42,0.57) in the interior of positive octant of xzw—Sspace.

Moreover, for the parameters values given in Eq. (42) with u;=1.25 and u, =0.4 the solution of
system (2) approaches asymptotically to Eg=(%,9,0,Ww) in the interior of positive octant of
xyw — space as shown in Figure-10, however decreases the parameter u, further, say u, =0.2, then the
solution of system (2) approaches asymptotically to E, = (i,o,o,ﬁ) as shown in Figure-11.
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Finally for the parameters values given in Eq. (42) with u, =1 and u, =0.1 the solution of system (2)
approaches asymptotically to E4 =(x,0,2,0) in the interior of positive quadrant of xz —plane as shown

in Figure-12.
Straightforward computation shows that the data used in figures-(10,11,12) satisfy the stability

conditions of the equilibrium points E; =(%,§,0,W), E,=(X,00,W) and Eg =(%,0,2,0) respectively
which confirm our analytical results too.

1.4
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Figure 10- Time series of the solution of system (2) for the data given by Eq. (42) with u; =1.25 and
u, =0.4, which approaches asymptotically to (0.61,0.83,0,1.33) in the interior of positive octant of

Xyw — Space.
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Figure 11- Time series of the solution of system (2) for the data given by Eq. (42) with u;=1.25 and
u, =0.2, which approaches asymptotically to (1,0,01.33) in the interior of positive quadrant of

(0]

xw — plane.
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Figure 12- Time series of the solution of system (2) for the data given by Eq. (42) with u, =1 and
u; =0.1, which approaches asymptotically to (3,0,2,0) in the interior of positive quadrant of xz —plane.
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7. Conclusion and Discussion:-

In this paper, four species Syn-Ecosymbiosis model, comprising of prey-predator, commensalisms and
competition is proposed for study. It is assumed that the predator species preys upon the prey
according to Holling type-1l functional response. The existence, uniqueness and boundedness of the
solution of the system are discussed. The existence of all possible equilibrium points is studied. The
local and global dynamical behaviors of the system are studied analytically as well as numerically.
Finally to understand the effect of varying each parameter on the global dynamics of system (2) and to
confirm our obtained analytical results, system (2) has been solved numerically for a biological
feasible set of hypothetical parameters values and the following results are obtained:

1. System has only two types of dynamical behavior in the Int. Rf’, approaches to either positive
equilibrium point or else approaches to a limit cycle.
2. For the set of data given by Eq. (42), system (2) has a globally asymptotically stable positive

point in the Int.Rf. However as the attack rate U, decreases then the predator species will faces

extinction and the solution of system (2) approaches to E;,=(x*,0,z°,w") in the first octant of
xzw—space. While increasing u, will causes destabilizing of system (2) and the solution approaches to

a limit cycle in Int. Rf. It is observed that the conversion rate parameter e has the same effect as v, .
3. As the half saturation rate u, decreases keeping the rest of parameters as in Eq. (42), the
positive equilibrium point will be unstable and the solution of system (2) approaches asymptotically to

a limit cycle in the Int. Rf. Otherwise the system still have a globally asymptotically stable positive

point in Int. Rf. It is observed that the intraspecific competition rate parameter u, has the same
effectas u,.

4. As the predator's natural death rate u, decreases keeping the rest of parameters as in Eq. (42),
the positive equilibrium point will be unstable and the solution of system (2) approaches
asymptotically to a limit cycle in the Int. Rf. However increasing the parameter u, causes extinction
in predator species and the solution of system (2) approaches to E,,=(x",0,z°,w") in the first octant of
XZW—Space.

5. As the host's intrinsic growth rate us; decreases slightly keeping the rest of parameters as in
Eq. (42), the positive equilibrium point will be unstable and the solution of system (2) approaches
asymptotically to a limit cycle in the Int.R3. However, further decreases of us causes extinction in the

host species and the solution of system (2) approaches asymptotically to a limit cycle in the positive
octant of xyw — space.

6. As the inverse of the carrying capacity rate ug of the host species decreases keeping the rest
of parameters as in Eq. (42), the competitor host faces extinction and the solution of system (2)

approaches asymptotically to the equilibrium point Eg =(X,y,z,0) in the first octant of xyz —space.

Otherwise the system still have a globally asymptotically stable positive point in Int. Rf’ :
7. As the competitor host intrinsic growth rate u, decreases keeping the rest of parameters as in
Eq. (42), the competitor host faces extinction and the solution of system (2) approaches asymptotically

to the equilibrium point Eg =(X,y,z,0) in the first octant of xyz —space. However, increasing u, will

causes destabilizing of system (2) and the solution approaches to a limit cycle in Int. Rf :
8. As the inverse of the carrying capacity rate Ug of the host competitor species decreases

keeping the rest of parameters as in Eq. (42), the host species faces extinction and the solution of
system (2) approaches asymptotically to the limit cycle in the first octant of xyw — space.

9. As the host competitor intensity of competition rate u, decreases keeping the rest of
parameters as in Eq. (42), the positive equilibrium point will be unstable and the solution of system (2)

approaches asymptotically to a limit cycle in the Int. Rf. However increasing the parameter Ug
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causes extinction in the host competitor species and the solution of system (2) approaches to
Eg =(X,¥,Z,0) in the first octant of xyz —space.

10. For the parameters values given by Eq. (42) with ug =1.25,u; =0.4 it is observed that all the
stability conditions of E, are satisfied and the solution approaches asymptotically to Ey = (X, §,0,W) in
the first octant of xyw—space. However further decreasing the attack rate parameter u, causes
extinction in predator species too and the solution of system (2) approaches asymptotically to
E, :(i,0,0,W) in the first quadrant of xw— plane.

11. Finally, for the parameters values given by Eq. (42) with u, =1.0,u, =0.1 it is observed that
all the stability conditions of E, are satisfied and the solution approaches asymptotically to
Es =(X,0,2,0) in the first quadrant of xz —plane.
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