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Abstract 

            In this paper, a four species mathematical models involving different types of 

ecological interactions is proposed and analyzed. Holling type – II functional 

response is a doubted to describes the behavior of predation. The existence, 

uniqueness and boundedness of the solution are discussed. The existences and the 

stability analysis of all possible equilibrium points are studied. suitable Lyapunov 

functions are used to study the global dynamics of the system. Numerical 

simulations are also carried out to investigate the influence of certain parameters on 

the dynamical behavior of the model, to support the analytical results of the model.  
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 ديناميكية النموذج الايكولوجي لاربعة انواع
 

 رائد كامل ناجي و رامي رعد سعدي
 العراق ،بغداد ،جامعة بغداد ،كمية العموم ،قسم الرياضيات

 
  :الخلاصة

. البيئية المختمفة التفاعلات منالانواع الاربعة  يتضمننموذج رياضي دراسة و، تم اقتراح هذا البحث     
وحدانية وقيد ، وجود ناقشنا. ك من النوع الثانيهولن من النوع الافتراس هي  سموكوصف الدالة المستخدمة ل

كما أستخدمة دوال ليابونوف  .الممكنة قمنا بدراسة وجود و تحميل الاستقرارية لجميع  نقاط التوازن. الحل
لبحث السموك  اكاة العدديةالمح دامكذالك تــم استخــ المناسبة لدراسة الديناميكية الشاممة لمنماذج المقترحة

 .الديناميكي الشامل لمنظام
 

1. Introduction 
    Mathematical modeling is an important interdisciplinary activity which involves the study of some 

aspects of diverse disciplines. Biology, Epidemiodology, Physiology, Ecology, Immunology, Bio-

economics, Genetics, Pharmacokinetics are some of those disciplines. This mathematical modeling has 

taken a lot of attentions in recent years and spread to all branches of life and drew the attention of 

every one [9]. Ecology relates to study of living beings in relation with their living styles. Research in 

the branch of theoretical ecology was initiated by Lotka [1] and by Volterra [2]. Since then many 

scientists and  researchers gave a lot of time and interest to this branch of study, see for example 

Meyer [3], Cushing [4], Paul Colinvaux[5], Freedman [6], Kapur [7, 8]. The ecological interactions 

can be broadly classified as prey-predator, competition, mutualism, commensalism and so on. Srinivas 

[9] studied the competitive eco-systems of two species and three species with regard to limited and 

unlimited resources. Later, Narayan [10] has investigated the two species prey-predator models with a 

partial covers for the prey and alternative food for the predator. Recently stability analysis of 

competitive species was investigated by Reddy [11]. Local stability analysis for a two species 

ecological mutualism model has been investigated by Reddy et al., [12, 13]. 
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    In this paper however , investigation is devoted to an analytical study of a four species Syn-

ecological system , with Holling type-II functional response involving a predator (say 2N ) preys upon 

the prey (say 1N ) : the prey is a commensal to the host 3N  which itself is in competition with the 

fourth species 4N  ; 2N  and 4N  are natural. Figure-1, shows the schematic sketch of the system under 

investigation. The model equations of the system constitute a set of four first order non-linear ordinary 

differential equations. 

2. The mathematical model:- 

    Consider the four species Syn-Ecosymbiosis, comprising of prey-predator, commensalisms and 

competition, model that consists of a prey   (for example, Anemone) whose population density at time 

T  denoted by 1N , the predator (for example, Butterfly fish) whose population density at time T  

denoted by 2N , the host (for example, Hermit crabs) whose population density at time T   denoted by 

3N , and the host's competitor species (for example, other type of Hermit crabs) whose population 

density at time T  denoted by 4N . Now in order to formulates the mathematical model of the above 

Syn-Ecosymbiosis system, the following assumptions are adopted: 

1. The predator species preys upon the prey species according to Holling type-II functional 

response with maximum attack rate 01 a  and half saturation constant 0b . While, in the absence of 

the predator the prey species grows logistically with carrying capacity 01 k  and intrinsic growth rate 

01 r . Moreover in the absence of the prey the predator decay exponential with natural death rate 

01 d , however in the existence of prey the predator individuals competes each other with 

intraspecific competition constant rate 02 d  

2. The existence of the host 3N  enhance the existence of the prey species 1N  with the 

commensal constant rate 0c , while the existence of 1N  do not affect (positively or negatively) the 

existence of 3N . 

3. Both the species 3N  and 4N  growth logistically with intrinsic growth rates 0ir  for 3,2i  

and carrying capacities 0ik  for 3,2i  respectively. 

4. Finally there is an interspecific competition interaction between the species 3N  and 4N  with 

competition intensity rates 01   and 02   respectively. 

Therefore the dynamics of the above proposed model can be represented by the following set of the 

first order nonlinear differential equations while the block diagram of this model system can be 

illustrated in Figure-1. 
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Figure 1- The block diagram of system (1). 
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Note that the above proposed model has fourteen parameters in all, which make the analysis difficult. 

So, in order to simplify the system, the number of parameters is reduced by using the following 

dimensionless variables and parameters: 
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Then the non-dimensional form of system (1) can be written as: 
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                                                  (2)  

with 0)0(,0)0(,0)0(  zyx  and 0)0( w . It is observed that the number of parameters have been 

reduced from fourteen in the system (1) to ten in the system (2). Obviously the interaction functions of 

the system (2) are continuous and have continuous partial derivatives on the following positive four 

dimensional space:  

 0)0(,0)0(,0)0(,0)0(:),,,( 44  wzyxRwzyxR . 

Therefore these functions are Lipschitzian on 4
R  , and hence the solution of the system (2) exists and 

is unique. Further, in the following theorem, the boundedness of the solution of the system (2) in 4
R  is 

established. 

 

Theorem (1): All the solutions of system (2) which initiate in 4
R  are uniformly bounded. 

Proof: 

       Let ))(),(),(),(( twtztytx  be any solution of the system (2) with non-negative initial condition 
4

00,00 ),,( Rwzyx . Now according to the third equation of system (2) we have 
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Finally, according to the first equation of system (2) we have 

         xzxx
dt
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So, again by using the comparison theorem on the above differential inequality with the initial point 

0)0( xx   and the upper bound of  )(tz  we get: 
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Again by solving this differential inequality for the initial value 0)0( MM  , we get: 
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s
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tM  )(0  , 0t . Hence all the solutions of system (2) are uniformly bounded and the proof 

is complete.                                                                                                                                 ■ 

 

3. The existence of equilibrium points:- 

  In this section, the existence of all possible equilibrium points of system (2) is discussed. It is 

observed that, system (2) has at most twelve equilibrium points, which are mentioned in the following: 

The equilibrium points  0,0,0,00 E , which known as the washout point, and the single species points 
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Clearly, 0y  when 1x . Now by substituting (4) in (3b) and then simplifying the resulting term we 

obtain that 
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 is a positive root of equation (5) 
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condition 1x


 at least one of the following conditions are satisfied: 

2

1
2 u                                                                                                                         (6a) 



Naji & Saady                             Iraqi Journal of Science, 2014, Vol 55, No.2A, pp:506-529 

510 

42314
2
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1 2 uuuuuueu                                                                                                (6b) 

The second planar equilibrium point  wzE ~,~,0,05   exists uniquely in the 2. RInt of zw plane if there 

is a positive solution to the following set of equations: 

   01 65  wzuu                                                                                             (7a) 

   01 987  zuwuu                                                                                          (7b) 

Straightforward computation gives that  
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Clearly z~ and w~  are positive and hence 5E  exists uniquely in 2. RInt  of zw plane provided that one 

set of the following sets of conditions is satisfied: 

185 uu  and  976 uuu                                                                                                   (8a) 

185 uu  and  976 uuu                                                                                                   (8b) 

The third planar equilibrium point    0,,0,0,,0,
66

6 11
6 uu

u
zxE


  always exists in 2. RInt  of xz plane 

where x  and z  represent the positive solution of the following system: 
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Substituting (11d) in (11a) and then simplifying the resulting term we get: 
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Now, by substituting (11e) in (11b) and then simplifying the resulting term we obtain that 
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Note that Eq.(12) has a unique positive root, namely x


, provided that at least one of the following 

conditions are satisfied: 
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Consequently, the first three species equilibrium point  0,,,8 zyxE


  where )(xyy


  given by 

Eq.(11e), exists uniquely in the 3. RInt  of xyz space if in addition to conditions (13a) – (13b) the 

following condition holds 
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The second three species equilibrium point  wyxE ˆ,0,ˆ,ˆ9   exists uniquely in 3. RInt  of xyw space if 

there is a positive solution to the following set of equations: 
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Not that Eq.(16) has a unique positive root, namely x̂ , provided that at least one of the following 

conditions are satisfied: 
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Consequently, the second three species equilibrium point  wyxE ˆ,0,ˆ,ˆ9   where )ˆ(ˆ xyy   is given by 

Eq.(15e), exists uniquely in the 3. RInt  of xyw space if in addition to conditions (17a) – (17b) the 

following condition holds 
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The third three species equilibrium point   wzxE ,,0,10  exists uniquely in the 3. RInt  of xzw space 

if there is a positive solution to the following set of equations: 
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Straightforward computation shows that these three equations give that 
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here z~  and w~  are given in Eq. (7c). Clearly  zx ,  and w  are positive and hence 10E  exists uniquely 

in the 3. RInt  of  xzw space provided that condition (8a) or (8b) is satisfied: 
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Clearly, by using discard rule of sign, Eq.(22) has a unique positive root, denoted by x , provided that 

in addition to condition (8a) at least one of the following conditions hold 
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Consequently, the positive equilibrium point  ****
11 ,,, wzyxE  , where )( ** xyy   as given in 

Eq.(21f), exists uniquely in 4. RInt  if and only if in addition to the above conditions the following 

condition is satisfied. 
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4. The stability analysis of system (2):- 

        In this section the stability analysis of all feasible equilibrium points of system (2) is studied 

analytically with the help of linearization method as bellow. 

Note that, from now onward the symbols iziyix  ,,  and iw  represent the eigenvalues of the Jacobian 

matrix 11,...,2,1,0);( iEJ i  that describe the dynamics in the directionx , directiony  , directionz   

and directionw  respectively,    

It is easy to verify that, the Jacobian matrix of system (2) at the trivial equilibrium point )0,0,0,0(0 E  

can be written in the form: 

 






















7

5

3
0

000

000

000

0001

)(

u

u

u
EJ  

Thus the eigenvalues of )( 0EJ  are 010 x , 030  uy , 050  uz   and  070  uw , then 0E  

is a saddle point. 

The Jacobian matrix of system (2) at the first single species equilibrium point )0,0,0,1(1 E  can be 

written as: 
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

































7

5

3
2

1

2

1

1

000

000

00
1

0

01
1

1

)(

u

u

u
u

eu

u

u

EJ  

Hence the eigenvalues of )( 1EJ  are 011 x  , 311
2

1 u
u

eu
y 


 , 051  uz  and 071  uw , then 1E  

is a saddle point. 

The Jacobian matrix of system (2) at the second single species equilibrium point  0,,0,0
6

1
2 u

E  can be 

written as: 

 






































6

9
7

6
5

3

6

2

000

1
00

000

000
1

1

)(

u

u
u

u
u

u

u

EJ  

Thus the eigenvalues of )( 2EJ  are 01
6

1
2 

ux  , 032  uy  052  uz  and 
6

9

72 u

u
w u  , then 

2E  is a saddle point. 

The Jacobian matrix of system (2) at the third single species equilibrium point  
8

1
3 ,0,0,0

u
E  can be 

written as: 

 


































7
8

9

8
5

3

3

00

0
1

00

000

0001

)(

u
u

u

u
u

u

EJ  

Thus the eigenvalues of )( 3EJ  are 013 x  , 033  uy  , 
8

1
53 uz u   and 073  uw , then 3E  

is a saddle point. 

The Jacobian matrix of system (2) at the first two species equilibrium point  0,0,,4 yxE


  can be 

written as: 

 

 

 



















































7

5

42
2

21

2

1

2
2

1

4

000

000

00

01

)(

u

u

yu
xu

yueu

x
xu

xu

xu

yu
x

EJ
















 

Hence the characteristic equation of )( 4EJ  is given by: 

             0))(( 7521
2   uuAA  

where 
 

yu
xu

yxu
xA







42
2

1
1 


  

           
3

2

2
2

1

2
2

1
42

)()(
1

xu

yxuue

xu

yu
yxuA 

























  

So, either 

            0))(( 75   uu                                                                                          (25a) 

Or 
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           021
2  AA                                                                                               (25b) 

Hence from equation (25a) we obtain that: 

              054  uz  ,  074  uw  

Thus 4E  is unstable. 

The Jacobian matrix of system (2) at the second two species equilibrium point 

      
98765

9765

98765

857 ,,0,0~,~,0,0
1

5 uuuuu

uuuu

uuuuu

uuu
wzE








  can be written as: 

 





























wuuwu

zzuu

u

z

EJ

~~00

~~00

000

000~1

)(

879

65

3
5  

Therefore the characteristic equation is: 

        0~~~~~1 987658765
2

3  wzuuuuuwuuzuuuz   

So, either 

               z~1  

  3u 0                                                                                                         (26a) 

Or 

                 0~~~~
987658765

2  wzuuuuuwuuzuu                                               (26b) 

Hence from equation (26a) we obtain that: 

             0~15  zx   ,  035  uy . 

Thus 5E  is unstable. 

The Jacobian matrix of system (2) at the third two species equilibrium point 

   0,,0,0,,0,
66

6 11
6 uu

u
zxE


  can be written as: 

 

 















































6

976

6
5

2

231

2

1

6

000

1
00

000

0

)(

u

uuu

u
u

xu

xuuxeu

x
xu

xu
x

EJ  

Thus the eigenvalues of )( 6EJ  are  

06  xx , 
16

662

633632611






uuu

uuuuuuueueu
y , 

056  uz  and 
6

976

6 u

uuu

w


  

Therefore, if the following conditions hold   

 )1()1( 662361  uuuuuue                                                                               (27a) 

 976 uuu                                                                                                            (27b) 

Then 6E  is locally asymptotically stable. However, it is a saddle point otherwise. 

The Jacobian matrix of system (2) at the forth two species equilibrium point  
8

1
7 ,0,0,1

u
E   can be 

written as: 
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 )( 7EJ













































7
8

9

8

85

2

3321

2

1

00

0
1

00

00
1

0

01
1

1

u
u

u

u

uu

u

uuueu

u

u

 

Thus the eigenvalues of )( 7EJ  are given by; 

017 x  ,  
1

)1(

7
2

231






u

uueu

y  
8

85 1
7 u

uu
z


   and  077  uw . 

Therefore, if the following conditions hold 

 )1( 231  uueu                                                                                                   (28a) 

 185 uu                                                                                                             (28b) 

Then 7E  is locally asymptotically stable. However, it is a saddle point otherwise. 

The Jacobian matrix of system (2) at the first three species equilibrium point    0,,,0,,,
6

1
8 u

yxzyxE


  

can be written as: 

 
















































6

976

6
5

42
2

21

2

1

2
2

1

8

000

1
00

00
)(

0
)(

)(

u

uuu

u
u

yu
xu

yueu

x
xu

xu

xu

yxu
x

EJ
















 

Hence the characteristic equation of )( 8EJ is given by: 

 

               0
~~

6

976
521

2 












 

u

uuu
uAA  

where  

             yu
xu

yu
xA







42
2

1
1

)(
1 
















  

            
3

2

2
2
1

2
2

1
42

)()(
1

xu

yxuue

xu

yu
yxuA 

























  

So, either 

             )( 5 u 0
6

976 














u

uuu
                                                                       (29a)    

which gives two of the eigenvalues of )( 8EJ  by 

   058  uz   and  
6

976
8

u

uuu
w


  .                                                   

Or 

     021
2  AA


                                                                                                 (29b) 

which gives the other two eigenvalues of )( 8EJ  by 

 

2
2

12
1

28

2
2

12
1

28

4

4

1

1

AA

AA

A
y

A
x
















 

Straightforward computations show that all the above eigenvalues have negative real parts provided 

that the following conditions are satisfied 
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 

1
2

2

1 
 xu

yu



                                                                                                     (30a) 

 976 uuu                                                                                                           (30b) 

So, 8E  is  locally asymptotically stable in the 
3
R . However, it is a saddle point otherwise. 

The Jacobin matrix of system (2) at the second three species equilibrium point 

   
9

1
9 ,0,ˆ,ˆˆ,0,ˆ,ˆ

u
yxwyxE   can be written as: 

 
















































7
8

9

8

85

42
2

21

2

1

2
2

1

9

00

0
1

00

00ˆ
)ˆ(

ˆ

0ˆ
ˆ

ˆ

)ˆ(

ˆˆ
ˆ

)(

u
u

u

u

uu

yu
xu

yuue

x
xu

xu

xu

yxu
x

EJ  

Hence the characteristic equation of )( 9EJ  is given by: 

     0
1

7
8

85
21

2 












  u

u

uu
BB  

where  

            yu
xu

yu
xB ˆ

)ˆ(

ˆ
1ˆ

42
2

1
1 
















  

          
3

2

2
2
1

2
2

1
42

)ˆ(

ˆˆ

)ˆ(

ˆ
1ˆˆ

xu

yxuue

xu

yu
yxuB



















  

So, either 

          














8

85 1

u

uu
  07  u                                                                                (31a) 

which gives two of the  eigenvalues of )( 9EJ  by: 

  
8

85
9

1

u

uu
z


  ,   079  uw                                                          

Or 

           021
2  BB                                                                                              (31b) 

which gives the other two eigenvalues of )( 9EJ  by: 

 

2
2

12
1

29

2
2

12
1

29

4

4

1

1

BB

BB

B
y

B
x








 

Straightforward computations show that all the above eigenvalues have negative real parts provided 

that the following conditions are satisfied: 

 
 

1
ˆ

ˆ

2
2

1 
 xu

yu
                                                                                                     (32a) 

 185 uu                                                                                                             (32b) 

So, 9E  is locally asymptotically stable in the 4
R . However, it is a saddle point otherwise. 

The Jacobin matrix of system (2) at the third three species equilibrium point   wzxE ,,0,10  can be 

written as: 
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






















































wuuwu

zzuu

u
xu

xue

x
xu

xu
x

EJ

879

65

3

2

1

2

1

10

00

00

000

0

)(  

Hence the characteristic equation of )( 10EJ  is given by: 

        021
2

3

2

1 































 




 BBu

xu

xue
x   

where 

              wuuzuuB 87651  

               wzuuuuuB 987652  

So, either 

              x 03

2

1 






























 



u
xu

xue
                                                                     (33a) 

which gives two of the eigenvalues of )( 10EJ  by: 

  010  xx  ,   
 









xu

xuuxue
y

2

231
10               

Or 

     021
2   BB                                                                                                    (33b) 

which gives the other two eigenvalues of )( 10EJ  by: 

 












2

2

12
1

210

2

2

12
1

210

4

4

1

1

BB

BB

B
w

B
z




 

Straightforward computations show that all the above eigenvalues have negative real parts provided 

that the following conditions are satisfied 

 98765 uuuuu                                                                                                      (34a) 

    xuuxue 231                                                                                             (34b) 

So, 10E  is locally asymptotically stable in the 4
R . However, it is a saddle point otherwise. 

The Jacobian matrix of system (2) at the positive equilibrium point  ****
11 ,,, wzyxE   can be written 

as: 

 

 

 











































*
87

*
9

**
65

*
42*

2

*
21

*

*
2

*
1

2*
2

**
1*

11

00

00

00

0

)(

wuuwu

zzuu

yu
xu

yueu

x
xu

xu

xu

yxu
x

EJ  

Hence the characteristic equation of )( 11EJ is given by: 

        043
2

21
2  RRRR   

where 

          
 

*1 42*
2

*
1*

1 yu
xu

yu
xR 
















  
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   3*

2

**
2

2
1

2*
2

*
1**

42 1
xu

yxueu

xu

yu
yxuR



















  

          *
87

*
653 wuuzuuR   

            **
987654 wzuuuuuR   

 

So, either 

           021
2  RR                                                                                              (35a) 

which gives the first two eigenvalues of )( 11EJ  as: 

 

2
2

12
1

211

2
2

12
1

211

4

4

1

1

RR

RR

R
y

R
x








 

Straightforward computations show that the above eigenvalues have negative real parts provided that 

the following condition is satisfied. 

  
 

1
2*

2

*
1 
 xu

yu
                                                                                                 (35b) 

Or  

 043
2  RR                                                                                                (35c) 

which gives the other two eigenvalues of )( 11EJ  as: 

 

4
2

32
1

211

4
2

32
1

211

4

4

3

3

RR

RR

R
w

R
z








 

Again straightforward computations show that the above eigenvalues have negative real parts provided 

that the following condition is satisfied 

 98765 uuuuu                                                                                                  (35d) 

So, 11E  is locally asymptotically stable in the 4
R  under the conditions (35b) and (35d). However, it is 

a saddle point otherwise. 

5. Global Stability Analysis:- 

           In this section the global stability analysis for the equilibrium points, which are locally 

asymptotically stable, of system (2) is studied analytically with the help of Lyapunov method as 

shown in the following theorems 

Theorem (2): Assume that, the equilibrium point  0,,0,6 zxE   of system (2) is locally asymptotically 

stable and the following conditions hold   

1

32

ue

uu
x                                                                                                                      (36a) 

6541 uu                                                                                                                    (36b) 

   265
87

2
7 )()(

4
zzuuxx

uu

uz



                                                                               (36c) 

Then the equilibrium point 6E  of system (2) is globally asymptotically stable. 

Proof: Consider the following function  

  wc
z

z
zzzcyc

x

x
xxxcwzyxV 43211 lnln,,, 

















  

where 4321 ,, candccc  are positive constants to be determine. 

Clearly RRV 
4

1 :  is a 1C  positive definite function. Now by differentiating 1V  with respect to time t  

and doing some algebraic manipulation, gives that: 
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      

 

  2
874743

32
2

1
121

2

1

2
6531

2
1

1

wuucwuczc

yuc
u

yxu
cecc

xu

yxu

zzuuczzxxcxxc
dt

dV








  

by choosing 1,,1 43
1

21  cccc
e

we get 

      

  
























7

87
7

2

13

2
65

21

1
uz

wuu
wuzy

u

xu

e

u

zzuuzzxxxx
dt

dV

 

Now since the function    
7

871)( 7 uz

wuu
wuzwf


  in the last term represents a logistic function with 

respect to w  and hence it is bounded above by the constant 
 

87

2
7

4 uu

uz
 then according to the conditions 

(36a) – (36b) we have  

      

87

2
7

2

65
1

4 uu

uz
zzuuxx

dt

dV 
  

So, if condition (36c) holds then we obtain that 
dt

dV1  is negative definite and hence 1V  is a Lyapunov 

function. Thus 6E  is a globally asymptotically stable and the proof is complete.                         ■ 

Theorem (3): Assume that, the equilibrium point  wxE ,0,0,7   of system (2) is locally 

asymptotically stable and the following conditions hold   

1

32

ue

uu
x                                                                                                                     (37a) 

     2
9

872

65

2
5

4

1
ww

wu

xuu
xx

uu

u



                                                                             (37b) 

Then the equilibrium point 7E  of system (2) is globally asymptotically stable. 

Proof: Consider the following function 

  


















w

w
wwwczcyc

x

x
xxxcwzyxV lnln,,, 43212  

where 4321 ,, candccc  are positive constants to be determine 

Clearly RRV 
4

2 :  is a 1C  positive definite function. Now by differentiating 2V  with respect to time 

t  and doing some algebraic manipulation, gives that: 

   

 

 2874
2

653

539411

2

1
13221

2

12

1
2

wwuuczuuc
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y
u
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yxu
xxc

dt

dV













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

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by choosing 
wu

x
e

cccc
9

43
1

21 ,1,,1  we get 
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8722

1
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e

u
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xuu
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dt
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Now since the function    
5

65

15 11)(
u

zuu
zuzf


  in the last term represents a logistic function with 

respect to z  and hence it is bounded above by the constant 
 

65

2
5

4

1

uu

u
 then according to the condition 

(37a) we have 
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     

65
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9

8722

4

1
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u
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wu

xuu
xx

dt

dV 









  

So, if the condition (37b) holds then we obtain that 
dt

dV2  is negative definite and hence 2V  is a 

Lyapunov function. Thus 7E  is a globally asymptotically stable and the proof is complete.          ■ 

Theorem (4): Assume that, the equilibrium point  0,,,8 zyxE


  of system (2) is locally 

asymptotically stable and the following conditions hold   

 
1

22

1 
 xuu
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


                                                                                                             (38a) 
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




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




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
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                                                                   (38b) 
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



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
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1
65 121                                                                                               (38c) 

 
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2
7

4
 


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

                                                                                                     (38d) 

here  
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Then the equilibrium point 8E  of system (2) is globally asymptotically stable. 

Proof: Consider the following function 

  w
z

z
zzz

y

y
yyy

x

x
xxxwzyxV 








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


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
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
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


lnlnln,,,3  

Clearly RRV 
4

3 :  is a 1C  positive definite function. Now by differentiating 3V  with respect to time t  

and doing some algebraic manipulation, gives that: 
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Now since the function    
7

871)( 7 uz

wuu
wuzwf


 


 in the last term represents a logistic function 

with respect to w  and hence it is bounded above by the constant 
 

87

2
7

4 uu

uz 


 then by using the conditions 

(38a) – (38c) we get  

87

2
7

21
3

4

)(

uu

uz

dt

dV 



   

So, if the condition (38d) holds then we obtain that 
dt

dV3  is negative definite and hence 3V  is a 

Lyapunov function. Thus 8E  is a globally asymptotically stable and the proof is complete.                 ■ 

Theorem (5): Assume that, the equilibrium point  wyxE ˆ,0,ˆ,ˆ9   of system (2) is locally 

asymptotically stable and the following conditions hold   

 
1

ˆ

ˆ

22

1 
 xuu

yu
                                                                                                             (39a) 
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 21
6
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ˆˆ

 


u

wuxu
                                                                                                  (39c) 

where 
 
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4
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1
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ˆ

ˆ
1 wwuuyyuxx
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















  . Then the equilibrium point 9E  of 

system (2) is globally asymptotically stable. 

Proof: Consider the following function 
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Clearly RRV 
4

4 :  is a 1C  positive definite function. Now by differentiating 4V  with respect to time 

t  and doing some algebraic manipulation, gives that: 
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by using the condition (39a) – (39b) we get 

6

95
21

4
ˆˆ

u

wuxu

dt

dV 
   

Then  
dt

dV4  is negative definite due to condition (39c) and hence 4V  is a Lyapunov function. Thus 9E  is 

a globally asymptotically stable and the proof is complete. 

Theorem (6): Assume that, the equilibrium point   wzxE ,,0,10  of system (2) is locally 

asymptotically stable and the following conditions hold   

6521 uu                                                                                                                   (40a) 

1

32

ue

uu
x                                                                                                                   (40b) 

9

87652
u

uuuu
                                                                                                               (40c) 

Then the equilibrium point 10E  of system (2) is globally asymptotically stable. 

Proof: Consider the following function 
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where 4321 ,, candccc  are positive constants to be determine. 

Clearly RRV 
4

5 :  is a 1C  positive definite function. Now by differentiating 5V  with respect to time t  

and doing some algebraic manipulation, gives that: 
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by choosing 
9

4321

1
,1,

1
,1

u
cc

e
cc  we get 
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by using the conditions (40a) – (40c) we get 
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Then 
dt

dV5  is negative definite and hence 5V  is a Lyapunov function. Thus 10E  is a globally 

asymptotically stable and the proof is complete.                                                                        ■ 

Theorem (7): Assume that, the equilibrium point   wzyxE ,,,11  of system (2) is locally 

asymptotically stable and the following conditions hold  
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Then the equilibrium point 11E  of system (2) is globally asymptotically stable. 

Proof: Consider the following function 
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Clearly RRV 
4

6 :  is a 1C  positive definite function. Now by differentiating 6V  with respect to time 

t  and doing some algebraic manipulation, gives that: 
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by using the conditions (41a) – (41e) we get  
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Then 
dt

dV6  is negative definite and hence 6V  is a Lyapunov function. Thus 11E  is a globally 

asymptotically stable and the proof is complete.                                                                            ■ 

 

6. Numerical Simulation:- 
 In this paper the dynamical behavior of system (2) is studied numerically for different sets of 

parameters and different sets of initial points. The objectives of this study are: first investigate the 

effect of varying the value of each parameter on the dynamical behavior of system (2) and second 

confirm our obtained analytical results. It is observed that, for the following set of hypothetical 

parameters that satisfies stability conditions (35a) and (35d) of the positive equilibrium point, system 

(2) has a globally asymptotically stable positive equilibrium point as shown in Figure-2.  

Note that, from now on ward the solid, dash, dot and dash-dot are used to describing the trajectories 

of the prey x , the predator y , the Host z  and the Host competitor w  respectively.   
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Figure 2- Time series of the solution of system (2) that started from two different initial points 

)9.0,6.0,7.0,8.0(  and )25.1,3.0,5.0,0.1(  for the data given by Eq. (42). (a) trajectories of x  as a function 

of time, (b) trajectories of y  as a function of time, (c) trajectories of z  as a function of time,(d) 

trajectories of w  as a function of time. 

 

Clearly, Figure-2 shows that system (2) has a globally asymptotically stable as the solution of 

system (2) approaches asymptotically to the positive equilibrium point )57.0,42.1,96.2,2.1(11 E  

starting from two different initial points and this is confirming our obtained analytical results.  

       Now in order to discuss the effect of the parameters values of system (2) on the dynamical 

behavior of the system, the system is solved numerically for the data given in Eq. (42) with varying 

one parameter each time. It is observed that for the data as given in Eq. (42) with 23.01 u , the 

solution of system (2) approaches asymptotically to ),,0,(10
 wzxE  in the xzw space as shown in 

Figure-3, however for 61.023.0 1  u  the system approaches to the positive equilibrium point, finally 

for 161.0 u  it is observed as given in Figure-4, that system (2) has a periodic dynamics in the 4. RInt . 
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Figure 3- Time series of the solution of system (2) for the data given by Eq. (42) with 15.01 u , 

which approaches to )57.0,42.1,0.0,42.2(  in xzw space 
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Figure 4- Time series of the solution of system (2) for the data given by Eq. (42) with 7.01 u , which 

approaches to periodic dynamics in 4. RInt . 

 

By varying the parameter 2u  keeping the rest of parameters values as in Eq. (42), it observed that for 

24.02 u  system (2) approaches to periodic dynamics in 4. RInt , while for 224.0 u  the solution still 

has a stable positive equilibrium point. On other hand varying the parameter 3u  keeping the rest of 

parameters values as in Eq. (42), it observed that for 09.03 u  system (2) approaches to periodic 

dynamics in 4. RInt , while for 27.009.0 3  u  the solution still has a stable positive equilibrium point, 

further for 327.0 u  the solution of system (2) approaches asymptotically to the equilibrium point 

),,0,(10
 wzxE  in the xzw space. Moreover, varying the parameter 4u  keeping the rest of 

parameters values as in Eq. (42), showed that for 04.04 u  system (2) approaches to periodic 

dynamics in 4. RInt , while for 104.0 4  u  the solution still has a stable positive equilibrium point. 

For the parameters values given in Eq. (42) with 5u  varying in the range 33.15 u  the solution of 

system (2) approaches asymptotically to the periodic dynamics in the interior of positive octant of 

xyw space as shown in Figure-5, however for 86.133.1 5  u  it is observed that system (2) has a 

periodic dynamics in 4. RInt , finally for 586.1 u  the solution approaches to a positive equilibrium 

point.  
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Figure 5- Time series of the solution of system (2) for the data given by Eq. (42) with 25.15 u , 

which approaches to periodic dynamics in the interior of positive octant of xyw space. 

 

For the parameters values given in Eq. (42) with 6u  varying in the range 4.06 u  the solution of 

system (2) approaches asymptotically to the equilibrium point  0,,,8 zyxE


  in the interior of positive 

octant of xyz space as shown in Figure-6, however for 64.0 u  it is observed that system (2) 

approaches asymptotically to a positive equilibrium point . 
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Figure 6- Time series of the solution of system (2) for the data given by Eq. (42) with 3.06 u , which 

approaches asymptotically to )0,33.3,62.3,79.3(  in the interior of positive octant of xyz space. 

 

For the parameters values given in Eq. (42) with 7u  varying in the range 6.17 u  the solution of 

system (2) approaches asymptotically to the equilibrium point  0,,,8 zyxE


  in the interior of positive 

octant of xyz space, however for 1.26.1 7  u  it is observed that the solution of system (2) 

approaches asymptotically to a positive equilibrium point, finally for 71.2 u  system (2) has a periodic 

dynamics in 4. RInt  as shown in Figure-7. 

For the parameters values given in Eq. (42) with 8u  varying in the range 5.08 u  system (2) has a 

periodic dynamics in the interior of positive octant of xyw space, however for 85.0 u  it is observed 

that system (2) approaches asymptotically to a positive equilibrium point . 

For the parameters values given in Eq. (42) with 9u  varying in the range 75.09 u  system (2) has a 

periodic dynamics in 4. RInt  as shown in Figure-8, however for 99.075.0 9  u  it is observed that the 

solution of system (2) approaches asymptotically to a positive equilibrium point, finally for 999.0 u  

the solution of system (2) approaches asymptotically to the equilibrium point  0,,,8 zyxE


  in the 

interior of positive octant of xyz space. 
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Figure 7- Time series of the solution of system (2) for the data given by Eq. (42) with 15.27 u , 

which approaches to periodic dynamics in 4. RInt . 
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Figure 8- Time series of the solution of system (2) for the data given by Eq. (42) with 6.09 u , which 

approaches to periodic dynamics in 4. RInt . 

 

For the parameters values given in Eq. (42) with e  varying in the range 17.0e  the solution of 

system (2) approaches asymptotically to   wzxE ,,0,10  in the interior of positive octant of 

xzw space as shown in Figure-9, however for 51.017.0  e  it is observed that the solution of system 

(2) approaches asymptotically to a positive equilibrium point, finally for e51.0  system (2) has a 

periodic dynamics in 4. RInt . 
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Figure 9- Time series of the solution of system (2) for the data given by Eq. (42) with 1.0e , which 

approaches asymptotically to )57.0,42.1,0,42.2(  in the interior of positive octant of xzw space. 

 

Moreover, for the parameters values given in Eq. (42) with 25.15 u  and 4.01 u  the solution of 

system (2) approaches asymptotically to  wyxE ˆ,0,ˆ,ˆ9   in the interior of positive octant of 

xyw space as shown in Figure-10, however decreases the parameter 1u  further, say 2.01 u , then the 

solution of system (2) approaches asymptotically to  wxE ,0,0,7   as shown in Figure-11. 
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Finally for the parameters values given in Eq. (42) with 17 u  and 1.01 u  the solution of system (2) 

approaches asymptotically to  0,,0,6 zxE   in the interior of positive quadrant of xz plane as shown 

in Figure-12. 

Straightforward computation shows that the data used in figures-(10,11,12) satisfy the stability 

conditions of the equilibrium points  wyxE ˆ,0,ˆ,ˆ9  ,   wxE ,0,0,7   and  0,,0,6 zxE   respectively 

which confirm our analytical results too.  
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Figure 10- Time series of the solution of system (2) for the data given by Eq. (42) with 25.15 u  and 

4.01 u , which approaches asymptotically to )33.1,0,83.0,61.0(  in the interior of positive octant of 

xyw space. 
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Figure 11- Time series of the solution of system (2) for the data given by Eq. (42) with 25.15 u  and 

2.01 u , which approaches asymptotically to )33.1,0,0,1(  in the interior of positive quadrant of 

xw plane. 
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Figure 12- Time series of the solution of system (2) for the data given by Eq. (42) with 17 u  and 

1.01 u , which approaches asymptotically to )0,2,0,3(  in the interior of positive quadrant of xz plane. 
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7. Conclusion and Discussion:- 
In this paper, four species Syn-Ecosymbiosis model, comprising of prey-predator, commensalisms and 

competition is proposed for study. It is assumed that the predator species preys upon the prey 

according to Holling type-II functional response. The existence, uniqueness and boundedness of the 

solution of the system are discussed. The existence of all possible equilibrium points is studied. The 

local and global dynamical behaviors of the system are studied analytically as well as numerically. 

Finally to understand the effect of varying each parameter on the global dynamics of system (2) and to 

confirm our obtained analytical results, system (2) has been solved numerically for a biological 

feasible set of hypothetical parameters values and the following results are obtained: 

1. System has only two types of dynamical behavior in the 
4. RInt , approaches to either positive 

equilibrium point or else approaches to a limit cycle. 

2. For the set of data given by Eq. (42), system (2) has a globally asymptotically stable positive 

point in the 
4. RInt . However as the attack rate 1u  decreases then the predator species will faces 

extinction and the solution of system (2) approaches to ),,0,(10
 wzxE  in the first octant of 

xzw space. While increasing 1u  will causes destabilizing of system (2) and the solution approaches to 

a limit cycle in 
4. RInt . It is observed that the conversion rate parameter e  has the same effect as 1u . 

3. As the half saturation rate 2u  decreases keeping the rest of parameters as in Eq. (42), the 

positive equilibrium point will be unstable and the solution of system (2) approaches asymptotically to 

a limit cycle in the 
4. RInt . Otherwise the system still have a globally asymptotically stable positive 

point in 
4. RInt .  It is observed that the intraspecific competition rate parameter 4u  has the same 

effect as 2u . 

4. As the predator's natural death rate 3u  decreases keeping the rest of parameters as in Eq. (42), 

the positive equilibrium point will be unstable and the solution of system (2) approaches 

asymptotically to a limit cycle in the 
4. RInt . However increasing the parameter 3u  causes extinction 

in predator species and the solution of system (2) approaches to ),,0,(10
 wzxE  in the first octant of 

xzw space.  

5. As the host's intrinsic growth rate 5u  decreases slightly keeping the rest of parameters as in 

Eq. (42), the positive equilibrium point will be unstable and the solution of system (2) approaches 

asymptotically to a limit cycle in the 3. RInt . However, further decreases of 5u  causes extinction in the 

host species and the solution of system (2) approaches asymptotically to a limit cycle in the positive 

octant of xyw space.  

6.  As the inverse of the carrying capacity rate 6u  of the host species decreases keeping the rest 

of parameters as in Eq. (42), the competitor host faces extinction and the solution of system (2) 

approaches asymptotically to the equilibrium point )0,,,(8 zyxE


  in the first octant of xyz space. 

Otherwise the system still have a globally asymptotically stable positive point in 
4. RInt .   

7. As the competitor host intrinsic growth rate 7u  decreases keeping the rest of parameters as in 

Eq. (42), the competitor host faces extinction and the solution of system (2) approaches asymptotically 

to the equilibrium point )0,,,(8 zyxE


  in the first octant of xyz space. However, increasing 7u  will 

causes destabilizing of system (2) and the solution approaches to a limit cycle in 
4. RInt .  

8. As the inverse of the carrying capacity rate 8u  of the host competitor species decreases 

keeping the rest of parameters as in Eq. (42), the host species faces extinction and the solution of 

system (2) approaches asymptotically to the limit cycle in the first octant of xyw space.  

9. As the host competitor intensity of competition rate 9u  decreases keeping the rest of 

parameters as in Eq. (42), the positive equilibrium point will be unstable and the solution of system (2) 

approaches asymptotically to a limit cycle in the 
4. RInt . However increasing the parameter 9u  
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causes extinction in the host competitor species and the solution of system (2) approaches to 

)0,,,(8 zyxE


  in the first octant of xyz space.  

10.  For the parameters values given by Eq. (42) with 4.0,25.1 15  uu  it is observed that all the 

stability conditions of 9E  are satisfied and the solution approaches asymptotically to  wyxE ˆ,0,ˆ,ˆ9   in 

the first octant of xyw space. However further decreasing the attack rate parameter 1u  causes 

extinction in predator species too and the solution of system (2) approaches asymptotically to 

 wxE ,0,0,7   in the first quadrant of xw plane. 

11.  Finally, for the parameters values given by Eq. (42) with 1.0,0.1 17  uu  it is observed that 

all the stability conditions of 6E  are satisfied and the solution approaches asymptotically to 

 0,,0,6 zxE   in the first quadrant of xz plane.  
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