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Abstract

In this paper, a mathematical model consisting of the prey- predator model with
disease in both the population is proposed and analyzed. The existence, unigqueness
and boundedness of the solution are discussed. The existences and the stability
analysis of all possible equilibrium points are studied. Numerical simulation is
carried out to investigate the global dynamical behavior of the system.

Keywords: eco-epidemiological model, SIS epidemics disease, prey-predator
model, stability analysis.

i JS (B (g aa (aga Cracaially (uially du B il g LS S Ay )iy dadad

* e Juad Jldai (b Jals il

éLud\ ¢alazy ¢l daala ‘e_,lﬂ\ R_;SS “'"_:L..\m\:l)“ ?‘mﬁ

T EL

aglS (B (age dgas die Guyitally Al e O5Sh (oalyy zasad Ao L) a0 el I b
o5 LS Sl 3l Ll qend AhE] G 5 3y Bl Lk . Jal) 38 dglany c3pay il
oLl Jalal)  Saalisall @ sld) Cind Apoaall slSladl Hasid

1. Introduction:

The effect of disease in ecological system is now becoming an important issue of research as
infectious disease becomes an important factor to regulate human and animal population size.
Anderson and May [1]; Chattopadhyay and Arino [2]; Hadeler and Freedman [3]; Venturino [4]; have
been devoted to observe the dynamics of such system when prey population is infected with some
transmissible diseases. Temple [5]; and Van Dobben [6] observed that the predator take a
disproportionately high number of parasite infected prey. Hethcote et al [7] explained how a prey-
predator model with logistic growth in the prey population is modified to include an SIS parasitic
infection in the prey population with infected prey being more vulnerable to predation. They observed
that the infection in prey population could promote coexistence.

In the last few decades; mathematical models have become extremely important tools in
understanding and analyzing the spread and control of infectious disease. To the best of our
knowledge, Anderson and May [1], Hadelor and Freedman [3]; Venturino [4]; Chattopadhyay and
Arino [2]; Han et al [8]; Xiao and Chen [9]; Hethcote et al [7]; Greenhalgh and Haque [10]; Haque
and Venturino [11] and others have been studied the influence of transmissible diseases in a prey-
predator system. Hilker and Schmitz [12] also studied a prey-predator system with disease in predator
population. But the studies with disease in both the populations are rare. Hadeler and Freedman [3]
had previously studied a prey-predator model with parasitic infection where the disease is allowed to
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cross the species barrier. They also assumed that the predators could get infected by eaten a prey and
the prey could obtain the disease from parasites spread in to the environment by predators. They
obtained a threshold condition above which an endemic equilibrium or an endemic periodic solution
could arise in the case where there is coexistence of the predator with the uninfected prey.
Furthermore, they also showed that in the case where the predator cannot survive only on the prey in a
disease—free environment, the perasitization could lead to persistence of the predator. Hsieh and Hsiao
[13] proposed a prey-predator model with disease in both populations. They observed that ecological
threshold number for the prey-predator ecosystem always determines the coexistence of predator and
prey whereas disease basic reproduction number dictates whether the disease would become endemic
in the ecosystem or not. Under one of the coupled conditions, a highly infectious disease could drive
the predators to extinction, when predators and prey would have coexisted without the disease. For
another combination of the conditions, the predation of the more vulnerable infected prey could cause
the disease to be eradicated in the ecosystem.

In this paper a consideration is given to prey-predator model where both the prey and predator
population are infected simultaneously by same or different diseases infection. On contrast to all of the
above studies, in this chapter a prey-predator model involving SIS infectious disease in both the prey
and the predator species is proposed and analyzed. It is assumed that the disease doesn’t spreads
outside the specific species (prey and predator). Instead the disease transmitted within the same
species by contact, between susceptible individuals and infected individuals, in additional to the
external sources from the environment. Further, in this model, linear type of functional response as
well as linear incidence rate for describing the transition of disease are used.

2. Mathematical Model:
In this section, an eco-epidemiological model is proposed for study. The model consists of a prey,

whose total population density at time T is denoted by N(T), interacting with predator whose total

population density at time T is denoted by P(T). It is assumed that both the prey and the predator

populations are infected by different infectious diseases. Further, the following assumptions are made
in formulating the basic eco-epidemiological model:

1. There is an SIS epidemic disease in prey population divides the prey population into two classes
namely X(T) that represents the density of susceptible prey species at time T and Y (T) which

represents the density of infected prey species at time T. Therefore at any T, we
have N(T)=X(T)+Y(T).

2. There is an SIS epidemic disease in predator population divides the predator population into two
classes namely Z(T) that represents the density of susceptible predator species at time T and W (T)
which represents the density of infected predator species at time T . Therefore at any T we have
P(T)=Z(T)+W(T).

3. The susceptible and the infected prey are capable of reproducing in logistic fashion with carrying
capacity K >0, intrinsic growth rates 1, >0 and r, >0 respectively. In addition the disease

prevents the infected individual to compete with the susceptible however the susceptible individuals
have the capability for competition.
4. Disease dose not spread outside the specific species (prey or predator) instead the disease

transmitted within the same species by contact with an infected individual at infection rates A >0
and Az >0 for the prey and predator respectively. In addition, there is an external source of disease
causes incidence with the disease within the specific population at an external infection rates A, >0
and A, >0 for the prey and predator respectively. Further the disease disappears and infected
individuals become susceptible again at the recover rates y >0 and & >0 for prey and predator
species, respectively.

5. In the absence of the prey the susceptible and infected predator decay exponentially with natural
death rates 42>0 and 6 > 0 respectively.

6. The disease in prey may causes mortality with a constant mortality rate represented by m > 0.
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7. The predator (susceptible and infected) consume the prey (susceptible and infected) according to
Lotka-Volterra type of functional response at constant consumption rats « >0 (from susceptible

prey) and £ >0 (from infected prey), respectively.
Considering the above basic assumptions the prey-predator model can be represented in the

following set of differential equations.
‘;—>T( = rlx(l—éJ—(ﬂlY + )X —aX (Z +W) + Y

dy X+Y

—=nrY|1-
dT 2(

j—$=e1axz + € NZ — (W + 14)Z — 1 + O

]+(/11Y + X)X = BY(Z +W)—mY —p¥
(1)

d—\_/]\_/:e3aXW + 8, YW + (W + 14)Z — W — AW

with X (0)>0;Y(0)>0;Z(0) >0;W(0) >0 and O<e <1; i =1,2,3,4 represent the conversion
rate constants. Consequently, the flow of the food and disease in system (1) can be describe in the
following block diagram.

X X+Y
nX/l-— nY|1-
h [ kjl l 2 [ K
Susceptible prey -_— Infective prey my
X —_— Y
7Y

es YW

J

eaXZ

(AW +44)Z
Susceptible predator e —— Infective Predator
z —_— w
y7; Z oW SW

Figure 1- Block diagram of the prey-predator model given by system (1).

Cleary, system (1) included (18) parameters which make the analysis difficult. So, in order to simplify
the system the number of parameters is reduced by using the following dimensionless variables

X Y Z wW
t=nT , X=—,y=—,Z2=—,W=—.

K K K K
Thus we obtain the following dimensionless form of the system(1):

%: X(L—=X) = (S1y +S9)X—S3(Z+ W)X +5S4Y = xf; (X, ¥, Z,W)

d
d_)t/ =85y (L= (X+Y)) +(81Y +85)X =S5 (2 + W)y =S7y =84y = Yo (X, y,Z,W)
)

dz
e €1S3XZ + €586 YZ — (SgW+Sg)Z — S1gZ + S1qW = zf5(X, ¥, Z, W)

dw
E26333XW+e486yW+(88W+Sg)2—311W+ oW =wf, (X, y,Z,w)
here:
k I
51:21—>0,32 :ﬁ>0,53 :%>0,S4 :Z>O,55 :—2>O,56 :&>O,
n I n n n n
m k A 0
s;=—>0,5 :%—>O,Sg =24 50,5,=2505,=2>0,5,=2>0
n n n h n n
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represent the dimensionless parameters of the system (2). Moreover the initial condition of system (2)
may be taken as any point in the region Rf . Obviously, the interaction functions in the right hand side

of system (2) are continuously differentiable function on Rf , hence they are Lipschitizian. Therefore
the solution of system (2) exists and is unique. Further, all the solutions of system (2) with non-
negative initial condition are uniformly bounded as shown in the following theorem.
Theorem (1) All solutions of system (2) are uniformly bounded.
Proof: Let X(t),y(t),z(t),w(t) be any solution of the system (2). Define the function
M (t) = x(t) + y(t) + z(t) + w(t) , then the time derivative of M (t) along the solution of the system
(2), gives
d—M£1+35—nM =H -nM

dt
where N =min{1,ss + 5,509,512} and H =1+ss. Now, by using Gromwell lemma, it obtains
that:

0<M@O<M©@e ™+ 1™

which yields lim;_,., M (t)S % that is independent of the initial conditions. Thus the proof is

completem
3. Existence of equilibrium points:
It is observed that, system (2) has at most three biologically feasible equilibrium points, namely

Ei=(X,y,z,w), 1=0,1,2. The existence conditions for each of these equilibrium points are
discussed in the following:

1- The vanishing equilibrium point Ej = (0,0,0,0) always exists.

2- The predator free equilibrium point E; = ()2 )7,0,0) where

. X@A-(X+s5)).

y= W S1X # S ©)
while X represents a positive root of the following third order polynomial equation

B3+ B,x? +Byx+ B, =0 4)
where:

2.
By =85(8; —1)-5,°;
B, = 5;(S; +254 + S, + 5,55 )+ 255 — S5 (25, +54 +25,);
By = 55(S; +2(S4 +55))+5:57(Sp —1) —S5(S5 (Sy +Sp +54) +1)—54(25; + 54 +S7);
By = 54((5285 + 54 +57) — (5257 +S5))
Consequently, straightforward computation shows that E; exists uniquely in the Int.Rﬁ' if and only if
the following conditions are hold.
X+5, <1 and s4 < ;X
OR (52)
X+5s, >1 and s, > $X
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B,>0,B,>0 and B, <0

OR

B, >0,B;<0 and B, <0

OR (5b)
B;<0,B3>0 and B, >0

OR

B, <0,B,<0 and B, >0

3. The positive equilibrium point E, = (x", y*, z*,w*)
The positive equilibrium point E, exists in the Int.Rf if and only if there is a positive solution of the
following set of algebraic equations

fi(%y,Z,w) =(1—-Xx)—(S1y+5,) —S3(z +W)x+s"'7y =0 (6a)

fo(X, Y, Z,W) = S5(1— (X +y))+ slx+%—ss(z +W)=0

(6b) f3(X,Y,Z,W) =€S3X +€5SgyY —SgW—(Sq + S;) + % =0 (6¢)
fa (X, y,LW)23353X+e456y+582—(511+312)+SLWZZO (6d)
By solving (6¢) and (6d), we obtain that
z(x,y):i; A=0 (6e)
SgA
(A-sq)B |
WX, y) = — 2= B, A (6f)
s3(B—511A) '
where:

A =853 +8,55Y — Sy
B =(S11+512) A— (€353 +€4S5Y) (A—Sg) —SoS12
Then by using (6e) and (6f) in (6a) and (6b) yield the following two isoclines.

s.B( 1 A-s
91(X,y)=>{1—>(—(51y+52 _é_g(x-i_B—SlfAﬂ-’_sﬂ'y:O (69)
s:B(1 A-s
X, V)=V sc(1-(x SX—B=| = 9 |—(s4+5) |+5,x=0 6h
g2(x,Y) y{ s(L—(x+Y))+5, 5 (A+B—511A] (s4+ 7)}+ 2 (6h)

Now from (6g) we notice that, when y— 0O, then either X =0 or X represents a positive root of the
following fourth order polynomial equation.

Mx* + Mox3 + M3x? + Myx+ Mg =0 @)
here:
M = 71S[e (Sg +€1S3) — 4]
M, = —sgle1s37a + 71(e153(L—$5) + S10)|+ S3[71.(72 + 74) — €183 (75 + S1071)]
M3 = S381(Sg +S10) (€158 — 71) + Sa[7a (€155 (L= 2) — 72 )— 7173 + €197 ]
+510[Sg(74 + 72(1—55) + 375
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Mg =(Sg +S10) [~ SgS12(€183 (L= 55) +S10) + S3(S1272 — €15373)] + S37374
—S10[Sg74(1—52) + 5356 ]

My = (Sg + S10) [SgS10S12(L— S2) — S373(S10 + S12)]

and

2

71 = ©1€333

¥2 = S3le1(Sy1+ $12) +€3(Sg + Sy0)]

73 =S10(S11+ S12) + SgS12

V4 =33 [91512 +e3(Sg + 510)]

V5 = €1S372 + 71(Sg + S10)

76 = €15373 + 72(Sq + S10)
Straightforward computation shows that Eq. (7) has a unique positive root namely X, if and only if
one set of the following sets of conditions holds.

M;>0,M,>0,M3>0 and M;5<O0
OR
M;>0,M, >0,M, <0 and M5<0
OR
M;>0,M3<0,M, <0 and Mg<0
OR (8)
M;<0,M3>0,M;>0 and M5>0
OR
M;<0,M;,<0,M,>0 and Mg>0
OR
M;<0,M,<0,M3<0 and Mg >0

Moreover from Eq. (6g) we have j—;: —(%)/(%). So, d dy X <0 if one set of the following sets of
conditions holds.

agl>o,f,jy9’1>00R591<o,56,9y1<0 9)

Further, from (6h) we notice that, when y—0 then Xx=0, in addition since we have

X
d— = —(89—2)/(89—2). So, g-; > 0 if one set of the following sets of conditions holds.

dy oy OX
692 a9, 09y 09
>0’6y<0 OR <0’6’y>0 (10)

Then the two isoclines (6g) and (6h) intersect at a unique positive point (x*, y*) in the Int.Rf of Xy -
plane. Substituting the value of X and y* in Eq. (6e) and (6f) yield that Z(X*,y*):z*and

W(X*, y*) =W which are positive if and only if one set of the following sets of conditions holds.
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A>sqy and B>s4A

OR

0<A<sg and 0<B<sj4A (11)
OR

$/A>B

Accordingly, the positive equilibrium point E2 exists uniquely in the Int.Rj1 if in addition to the

conditions (8) - (11) the isoclinic g;(X, y) =0 intersect the x-axis at the positive value namely x;

4. The local Stability Analysis:
In this section, the local stability analyses of system (2) around each of the above equilibrium points

are discussed through computing the Jacobian matrix J (x, Y, z,w) of the system (2) at each of them.
The general Jacobian matrix of system (2) at the point (X, Yy, z,w) can be written

f1+x% xﬁ—]cl x% x%
OX oy 0z ow
of of of of
Yoo Yy Ya Y
Ieyzw)= of of of (12)
p) s farz—2 12
3
OX oy oz ow
W% % W% f4+W%
OX oy 0z ow
where f;,1=1,2,3,4 are given in system (2) and
ofy S4Y ). ofy Sq4. My ofy
—=—{1+—= || —=-§+—; —=—-S3; — =—S3;
OX [ x? j T & Yow 2
%251"'5_2_55;%:_35"'%;%:_SG;%:_SG;
OX y oy y 0z ow
of of of —sw ofy s
T3 sy I3 ey T2 = 3121 3% g
OX oy /4 Z ow Z
of
_429333; %29455; %:SS +S_9, %:_E’
X dy oz woow  w?
Consequently, the Jacobian matrix of system (2) at E, can be written as
1-s, S4 0 0
S Sc—(Sq+S 0 0
3 :J(Eo)= 2 5 —(S4+57) (13)
0 0 —(Sg + S19) S11
0 0 Sg —(S11+512)

Note that the characteristic equation of this Jacobian matrix is given by
2
[ﬂ — (L4355 (sp+54 +57) )+ (S5 + 5557 — (4. + 57 + 5,55))
2
[ﬂ +(So + 10+ S11.+ S12)a + (SgS12 + So(S11 + 512))] =0
Hence, straightforward computations show that, the eigenvalues of J (EO) satisfy the following

relations
My +ﬂy =14+ SS_(SZ +S4+S7) (143)

Hy-fy = S5+ S87 — (4 + S7 +5,55) (14b)
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My + phy =—(Sg + 810+ 811+ 912) <0 (14c)
M-y =Sg812 +S10(S11+512) >0 (14d)
Here iy, pty, 1, and 4, denote to the eigenvalues in the X - direction Y -direction, z -direction and
W -direction, respectively. So it easy to verify that, all the eigenvalues have negative real parts and

hence the equilibrium point Ej is locally asymptotically stable in Rf if and only if the following
conditions hold.

1-5S,+S5 <S5 +57 <(1—5,)S5 + 5557 (15)

However it is unstable otherwise.

The Jacobian matrix of system (2.2) at E; can be written as:

31 =3(E)=oy),., (16)
here:

5 S4Y 5 5 .
byy = _(H L;(yj;blz =54 —81X;b13 =g = —53%bp1 =55 + Y(51 — S5);

. SHoX R . N
byy = —(S;,y +Lyj§b23 =Dy4 =—SgY;b31 =bgy =0;b33 = €;S3X +€,86 Y — (Sg +S10);

bag = 5113041 =Dy = 0;b34 = Sg;bg4 = €353X+€4S6 Y — (S11 +512)-
Clearly the characteristic equation of Jl can be written as:

2 2
[ﬂ - (bll + b22)/7~ +y4055 — b_L2b21J[/1 - (b33 + b44)/1 + 033044 — S9511J= 0
Therefore, the eigenvalus of J1 satisfy the following relations:

Ay +/1y =by; +byy <0 (17a)
Ax-Ay =briboy —byobyg (17b)
ﬂ“Z + //J'W = b33 + b44 (17C)
Ay A = g3y —SgS14 (17d)

where 4, Ay, A, and 4, denote to the eigenvalues in the X - direction Y -direction, z -direction and
W _direction, respectively. So it easy to verify that, all the eigenvalues have negative real part and

then the equilibrium point El is locally asymptotically stable in Rf if and only if the following

conditions hold.
b, <0and by; >0

OR (18a)
b, >0and by; <0

b3 <0and by, <0 (18b)
bsabyg > S9811 (18¢)

However it is unstable point otherwise.

In the following theorem, the local stability conditions of the positive equilibrium point E, are
established
Theorem (2) Assume that E, = (X*, y*,z*w*) exists in the Int Rf and the following condition are
satisfied

SaY

*

X + > (s — s5)y* + S|+ S3 (elz* + esw*) (19a)
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*

*  SoX * * *
Ssy + -2 >‘s4—slx ‘+36(e22 +eW) (19b)
S
117 > 53X +5gYy +Sg +SgW (19c)
SqZ « « .
9 > s +5gy +‘sll—sgz‘ (19d)

Then the positive equilibrium point E, is locally asymptotically stable in the Int Rf
Proof: The Jacobian matrix of system (2) at the positive equilibrium point E, can be written:

32 = 3(E2)=lay,,, (20)
where:

*

I I cn o o ot
8= X +—5 |<0 8 =8, —§X ; a3 =a4 =X,
X

SoX
* . * 2 i *
ay =(s;—S5)y +521322={55y +—5 ]<0, ayz3=ay =-Sgy <0

*

a31 281832 >O, a32 26‘2562 , a33 =w<0; a34 = Sll_SSZ ,
Z

*
« * - SqZ
Ay, =€3S3W >0; a4, =€,SgW >0; ay3 =S9+SgW >0; a44 =— % <0
w

4

According to Gersgorin theorem the poof is follows if and only if |aii| > 3 ‘aij‘
i=1
i#]

Then all the eigenvalues of J o exists in the region

* * 4
QZ:U U EC:‘U —aii‘< > ‘aij‘
i=1
i#]
Therefore according to the given conditions (19) (a-d) all the eigenvalues of J, exists in the left half

plane and hence E, is locally asymptotically stable.m

5. Global stability analysis of system (2)
In this section the global stability for the equilibrium points of system (2) is investigated by using
the Lyapunov method as shown in the following theorems.

Theorem (3) Assume that the vanishing equilibrium point EO of system (2) is locally asymptotically

stable in the R with

e,S . e (s4+S7—S:) ee, e(Sq+S

Max {42 o <e; <Min 4(S4+S7 5)’ 184 1(S11+512) (21a)
s -1 S4 € S11
e 2 4e,S

Sp+—(S5—8) | <——2 (21b)
€ €3

Then it is globally asymptotically stable in the Rf .
Proof: Consider the following function:
Vo (X, Y,Z,W) =C X+CyY +C3Z+CyW
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Clearly Vj: RJF4 S Ris Ct positive definite function, where ¢; (i =1,2,3,4) are positive constants

to be determined. Now since the derivative of V; along the trajectory of the system (2) can be written
as

dVy dx dy dz dw
—==C—+Cy) —+C3—+Cq—
dt dt dt dt dt

dv,
d_to = —CyX? —CpS5Y 2 — (€1 (S5 =) — Cp8p X+ (=18 — C5 (S5 — 1) )Xy
- (Cl —C36 )33XZ — (€1 —C4€3)S3xW — (Cz (S4+57)—(CS4+ 0255)))’
—(Cp —C3€7)SYZ —(Cy —C48€4)Sg YW —(C3 —C4)SgZW

—(C3(Sg +510) —C459 )2~ (C4(S11+512) —Ca811 W
So by choosing the positive constants as:

_ 84 01 o 1
Cl—l,Cz—ea,C3—el;C4_e3

It is obtain that:

3 €
Therefore, according to condition (21a) - (21b) we obtain that:

2
%S_ X — %y — 52_ 1+ﬁ X
dt €3 €3
€4 €455
—| (s, +57)—| S, +—=
(e3(4 7) [4 e Dy

| _Se|, (1 S
[e (59+510) o JZ (e (511+512) o jW

1 3 3 1
Then d—t0<0, hence V; is strictly Lyapunov function. Therefore Eg is globally asymptotically

stable in the Rf -
Theorem (4) Assume that the predator free equilibrium point E; of system (2) is locally

asymptotically stable in the Int. Rﬁ', and the following conditions are satisfied:

2
=
X e y e XK Wi

Sg +S10 > €S3X + €55 Y (22b)
ee €S
€3 > max{ 174 e, 1L . } (22¢)
€ Sg + 510~ (€133% +€,56 )
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e1(511 + S12) (22d)
€1S3X + €555y + 511

e3<

Then E; is globally asymptotically stable in the Rf.
Proof: Consider the following function:

Vi (X, y,z,w):é{x—i—klnéj+éz(y—y—yln¥J+é3z+é4W
X y

Clearly V: RJr4 — R is C* positive definite function, where ¢; (1=12,3,4) are positive constants
to be determined. Now since the derivative of V, along the trajectory of the system (2) can be written
as:

% (1+ j(x X) —cz[s5+s—j(y )2
XX yy

dt
+(—él(sl—874]—62(55 (514'7}]]()( X)(y y)

— (€1 —e1€3)s532x — (€1 —€3€4)S3xW — (C; —€5€3)S6 Yz
— (€5 —4C4)S6 YW — (C3 — €4 JsgZW
—(C3(Sg +510) — (C133% +€,56 ¥ +C4Sg) )2
— (€4 (s11+512) — (€153% + €56 § +Ca511) W

So by choosing the positive constants as: ¢, =1, 6, =2 ,6;, =1, ¢, = 1,
& & e;
Then we get:
dv. ) ) . .
d_tl = —dy3(X—X)* —dpa(y — ¥)* +dpo(x— %)y - 9)
—dy YW —dguzw— Bz — Bw
here:

dll—[iJr yj>0?d22=e—2( szxj d12=s—4—51—e—2[55 [S +S—2D;
XX el yy X el y
e, € 1 1)+ Sg +5 . €559V S .
d24236(—2——4] d34_58(___]; Blz(—g 10 —[S3X+—2 6y+—glj, Now, since the
el 93 el e3 e]_ el e3

5 Si1+S . €85y +S
B,=| 21732 |g g, %2 6Y TS11
€ &

conditions (22b) - (22c) guarantee that d,,,d3, and I§1 are positive while condition (22d) guarantees

that I.3>2 is positive. Therefore, by using the given conditions. We obtain that:
dV
o <—\/dl (x=2) Ay (y ) ~Biz~Bow
Then Tt L <0 under the given conditions and then V| is strictly Lyapunov function. Therefore E; is

globally asymptotically stable in the R+
In the following theorem, the conditions of the globally asymptotically stable of the positive
equilibrium point E, are established
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Theorem (5) Assume that the positive equilibrium point E, of system (2) is locally asymptotically
stable in the Int.Rf with

2
iz < 2011022 (232)
2
024 <022044 (230)
2
034 < 2033044 (23¢)
where:
S,y sS4 € S, ) 32x :
Gy =1+ -2~ ,qlz——51+———(55—51——J o2="~|Ss+— |
€1 € | Sg  S11, S8, So . SW S92
q24:_56(___],q34:——+—+—+—. 33=— = 0as = *
3 el el elz e3 E3W elzz e3WW

Then E, is globally asymptotically stable in the Int.Rf.
Proof: Consider the following function:

V2(x,y,z,w)=cf[x—x*—x"lné}+c§[y—y*—y*lnl*J
X y

* * * Z * * * w
+C3l z2—2 —z In—| |+C4| W—W —-wW In—
z w

Clearly V,: RJF4 S RiscC! positive definite function, where Ci*(i =1,2,3,4) are positive constants

to be determined. Now since the derivative of V2 a long the trajectory of the system (2) can be written
as:

dt XX
+ (— cfsl + G154 _ c;s5 + c;sl + ﬁ](x — x*)(y - y*)
. » y

* S X * * * * *
—02[35 +L*j(y— y )2 +Sg(Caer —Co)(Yy-Yy Nz—-12)
yy
+5g(Cats —Co)(Y =Y YW—W")+55(c3e; — 1 Yx—x )z -2")

CaSi1  CuSq . w. CaSjqW .
+(c4s8+ =t “Tg—Ce,sg](z—z )W —w )—%(z—z )?

* * * CZSQZ* * 2
+83(Cs83 —C ) (X=X JW-W ) ————(W-w)
. oy * * 62 1 * 1
By choosing the positive constants as: ¢, =1, ¢, = —= C3 = —, C4 = —, then we get
& & €3

d;/tz = (X=X)2 + 0 (X=X )Y = y) = Ao (Y = ¥ )2 — Gas(z — 2%)?

* * * * * 2
+0a(Y -y YW=W )+034(z—-2 )J(W=W ) —gg(W-W)
Therefore, according to the conditions (23) (a-c) we obtain that:
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2
dv%{ﬁ(x x")- q22(y y)}

2
{ 2 (y-y)- %m-w*)}

2
* q
[ a9t
ddtz <0 and then V, is strictly Lyapunov function. Therefore is globally asymptotically stable in

the INtR? m

5. Numerical analysis of system (2)

In this section the dynamical behavior of system (2) is studied numerically for different sets of
parameters and different sets of initial points. The objectives of this study are: first investigate the
effect of varying the value of each parameter on the dynamical behavior of system (2) and second
confirm our obtained analytical results. It is observed that, for the following set of hypothetical
parameters that satisfies stability conditions (19) (a-d) of the positive equilibrium point, system (2) has
a globally asymptotically stable positive equilibrium point as shown in following figure.

Sl = 02, 52 = 01, 33 :0.75, 34 = 02, SS =1, 36 :1, S7 =0.05, S8 =0.2,
Sg =0.1,5,0=0.15,=0.2, 5,,=0.15¢ =0.5,e, =0.7,85=0.4,¢, =0
Note that, in Figure-2, we will use that ( — ) to describe the trajectory of system (2) that started at

(0.0, 0.8, 0.7, 0.6, 0.5) and (.....) to describe the trajectory of system (2) that started at (0.0, 0.2, 0.5,
0.9,0.1).

So,

(24)
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Figure 2- Time series of the solution of system (2) (a) trajectories of X as a function of time, (b)
trajectories of Y as a function of time, (c) trajectories of Z as a function of time,(d) trajectories of W

as a function of time.

Clearly, figure-2, shows that the solution of system (2) approaches asymptotically to the positive

equilibrium point E*=(x*,y*,z*,w*) starting from two different initial points and this is
confirming our obtained analytical results.

Now in order to discuss the effect of the parameters values of system (2) on the dynamical
behavior of the system, the system is solved numerically for the data given in Eq. (24) with varying

one parameter each time. It is observed that varying the parameters values s;; i = 2,4,5,8,9,1011,12
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and e;; 1 =1,2,3,4 do not have any effect on the dynamical behavior of system (2) and the system still
approaches to positive equilibrium point. However, varying the attack rates of susceptible and infected
predator S3 and Sg » respectively keeping other parameters fixed as given in equation (24), leads to

extinction in predator species as shown in figure-3, for the parameters given by Eq. (24) with
53 20.20,36 :0075, .
1

r ¥ r r ¥ r ¥ r
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0.3 T T T T T T T e mmmmmmmmmmmmeeo
1%
0.214%
t

\

0.1-5™

0 '"‘.-'L'.'.'eu. Iy L I L L L L L
0 0.2 0.4 0.6 0.8 1 1.2 1.4 16 1.8 2
time

Figure 3- Time series of the solution of system (2)

x 10°

From the above figure it is clear that as the attack rates of susceptible and infected predator decrease
the trajectory of the system (2) approaches asymptotically to the predator free equilibrium
point E, =(X,¥.0,0).

Finally, the dynamical behavior at the vanishing equilibrium point E; is investigated by choosing
S, =1and s; =2 and keeping other parameters fixed as given in Eq. (24), and then the solution of
system (2) is drawn in figure- 4.

0.8 T T T T T T T T
b X
07§ ] e y
0.6 8 z
' _________ w
"
- 0.5 *‘ -
2 15
= 1
= 04 § .
s it
a [}
0.3F 1% —
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\5 e
o I N“;'.“,‘g i [ 4 I3 4 4 4 4
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time x 10°

Figure 4- Time series of the solution of system (2) choosing S, =1and s; =2

Obviously, figure-4, shows clearly the convergence of the solution of system (2) to the vanishing
equilibrium point E;=(0,0,0,0) when the parameters increase up to a specific values. Clearly the used

values in figure-4, satisfy the stability conditions of the vanishing equilibrium point.
6. Conclusions and Discussion

In this paper, we proposed and analyzed an eco-epidemiological model that described the dynamical
behavior of prey-predator model with Lotka-Volterra type of functional response and linear incidence

504



Naji & Ali Iragi Journal of Science, 2014, Vol 55, No.2A, pp:491-505

rate for the disease in prey and predator respectively. It is assumed that the disease doesn’t spread
outside the specific species (prey or predator), while the disease may be transmitted within the
individuals of prey and within the individuals of predator by two ways: from an external source as
well as through contact between the individuals of prey and those of predator respectively. The model
included four non-linear autonomous differential equations that describe the dynamics of four different
population namely susceptible prey X, infected prey Y, susceptible predator z , infected predator W.

The boundedness of the system (2) has been discussed. The dynamical behavior of system (2) has
been investigated locally as well as globally. Further , it is observed that the vanishing equilibrium
point (Eg) always exist , and it is locally asymptotically stable point if and only if conditions (15)
hold, in addition to that it is globally if the conditions (21a) - (21b) hold. The predator free equilibrium
point (E;) exists under the conditions (5a)-(5b), and it is locally asymptotically stable point if and
only if the conditions (18) (a-c) hold as well as it is globally if the conditions (22) (a-d) hold. The
positive equilibrium point of system (2) exists provided that the conditions (8) - (11) are hold and the
isoclinic g;(x,y) =0 intersect the x-axis at the positive value namely X; . It is locally asymptotically
stable point if and only if conditions (19) (a-d) hold, in addition it is globally if the conditions (23) (a-
c) hold. To understand the effect of varying each parameter on the global dynamics of system (2) and

to confirm our above analytical results, system (2) has been solved numerically and the following
results are obtained:

1. The system (2) dose not have periodic dynamic.

2. For the set of hypothetical parameters values given Eq. (24), system (2) approaches
asymptotically to a globally asymptotically stable point E, = (x*, y*, z*,w*) .

3. As the attack rates parameters S3 and Sg for susceptible and infected predator in system (2)

decreases, then the solution of the system (2) still stable and approaches asymptotically to the predator
free equilibrium point E, = (X, ¥.0,0). Clearly decreasing the value of S3 and sg leads to increasing

in the value of (susceptible and infected) prey population.
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