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Abstract 

    In this paper, a mathematical model consisting of the prey- predator model with 

disease in both the population is proposed and analyzed. The existence, uniqueness 

and boundedness of the solution are discussed. The existences and the stability 

analysis of all possible equilibrium points are studied. Numerical simulation is 

carried out to investigate the global dynamical behavior of the system.  
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 فولتيرا لمفريسة والمفترس والمتضمن مرض معدي في كل مجتمع-نمذجة واستقرارية نظام لتكا
 

 *عمي نضال فيصل ،جيرائد كامل نا
 العراق ،بغداد ،جامعة بغداد ،كمية العموم ،قسم الرياضيات

 
: الخلاصة

 .جود مرض في كميهمافريسة والمفترس عند و يتكون من نموذج رياضيدراسة و، تم اقتراح في هذا البحث     
كما تــم . الممكنة قمنا بدراسة وجود و تحميل الاستقرارية لجميع  نقاط التوازن. وحدانية وقيد الحل،  ناقشنا وجود

 .لبحث السموك الديناميكي الشامل لمنظام العددية المحاكاة داماستخــ
 

1. Introduction:  

    The effect of disease in ecological system is now becoming an important issue of research as 

infectious disease becomes an important factor to regulate human and animal population size. 

Anderson and May [1]; Chattopadhyay and Arino [2]; Hadeler and Freedman [3]; Venturino [4]; have 

been devoted to observe the dynamics of such system when prey population is infected with some 

transmissible diseases. Temple [5]; and Van Dobben [6] observed that the predator take a 

disproportionately high number of parasite infected prey. Hethcote et al [7] explained how a prey-

predator model with logistic growth in the prey population is modified to include an SIS parasitic 

infection in the prey population with infected prey being more vulnerable to predation. They observed 

that the infection in prey population could promote coexistence. 

    In the last few decades; mathematical models have become extremely important tools in 

understanding and analyzing the spread and control of infectious disease. To the best of our 

knowledge, Anderson and May [1], Hadelor and Freedman [3]; Venturino [4]; Chattopadhyay and 

Arino [2]; Han  et al [8]; Xiao and Chen [9]; Hethcote et al [7]; Greenhalgh and Haque [10]; Haque 

and Venturino [11] and others have been studied the influence of transmissible diseases in a prey-

predator system. Hilker and Schmitz [12] also studied a prey-predator system with disease in predator 

population. But the studies with disease in both the populations are rare. Hadeler and Freedman [3] 

had previously studied a prey-predator model with parasitic infection where the disease is allowed to 
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cross the species barrier. They also assumed that the predators could get infected by eaten a prey and 

the prey could obtain the disease from parasites spread in to the environment by predators. They 

obtained a threshold condition above which an endemic equilibrium or an endemic periodic solution 

could arise in the case where there is coexistence of the predator with the uninfected prey. 

Furthermore, they also showed that in the case where the predator cannot survive only on the prey in a 

disease–free environment, the perasitization could lead to persistence of the predator. Hsieh and Hsiao 

[13] proposed a prey-predator model with disease in both populations. They observed that ecological 

threshold number for the prey-predator ecosystem always determines the coexistence of predator and 

prey whereas disease basic reproduction number dictates whether the disease would become endemic 

in the ecosystem or not. Under one of the coupled conditions, a highly infectious disease could drive 

the predators to extinction, when predators and prey would have coexisted without the disease. For 

another combination of the conditions, the predation of the more vulnerable infected prey could cause 

the disease to be eradicated in the ecosystem. 

    In this paper a consideration is given to prey-predator model where both the prey and predator 

population are infected simultaneously by same or different diseases infection. On contrast to all of the 

above studies, in this chapter a prey-predator model involving SIS infectious disease in both the prey 

and the predator species is proposed and analyzed. It is assumed that the disease doesn’t spreads 

outside the specific species (prey and predator). Instead the disease transmitted within the same 

species by contact, between susceptible individuals and infected individuals, in additional to the 

external sources from the environment. Further, in this model, linear type of functional response as 

well as linear incidence rate for describing the transition of disease are used. 

2. Mathematical Model: 

    In this section, an eco-epidemiological model is proposed for study. The model consists of a prey, 

whose total population density at time T  is denoted by )(TN , interacting with predator whose total 

population density at time T  is denoted by )(TP . It is assumed that both the prey and the predator 

populations are infected by different infectious diseases. Further, the following assumptions are made 

in formulating the basic eco-epidemiological model: 

1. There is an SIS epidemic disease in prey population divides the prey population into two classes 

namely )(TX  that represents the density of susceptible prey species at time T  and )(TY  which 

represents the density of infected prey species at time T . Therefore at any T , we 

have )()()( TYTXTN  . 

2. There is an SIS epidemic disease in predator population divides the predator population into two 

classes namely )(TZ  that represents the density of susceptible predator species at time T  and )(TW  

which represents the density of infected predator species at time T . Therefore at any T  we have 

)()()( TWTZTP  . 

3. The susceptible and the infected prey are capable of reproducing in logistic fashion with carrying 

capacity 0K , intrinsic growth rates 01 r  and 02 r  respectively. In addition the disease 

prevents the infected individual to compete with the susceptible however the susceptible individuals 

have the capability for competition. 

 4. Disease dose not spread outside the specific species (prey or predator)   instead the disease 

transmitted within the same species by contact with an infected individual at infection rates 01   

and 03   for the prey and predator respectively. In addition, there is an external source of disease 

causes incidence with the disease within the specific population at an external infection rates 02   

and 04   for the prey and predator respectively. Further the disease disappears and infected 

individuals become susceptible again at the recover rates 0  and 0  for prey and predator 

species, respectively. 

5. In the absence of the prey the susceptible and infected predator decay exponentially with natural 

death rates 0  and 0  respectively. 

6. The disease in prey may causes mortality with a constant mortality rate represented by 0m . 
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7. The predator (susceptible and infected) consume the prey (susceptible and infected) according to 

Lotka-Volterra type of functional response at constant consumption rats 0  (from susceptible 

prey) and 0  (from infected prey), respectively. 

      Considering the above basic assumptions the prey-predator model can be represented in the 

following set of differential equations. 
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with 0)0(;0)0(;0)0(;0)0(  WZYX  and 10  ie ; 4,3,2,1i  represent the conversion 

rate constants. Consequently, the flow of the food and disease in system (1) can be describe in the 

following block diagram. 
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Figure 1- Block diagram of the prey-predator model given by system (1). 

 

Cleary, system (1) included (18) parameters which make the analysis difficult. So, in order to simplify 

the system the number of parameters is reduced by using the following dimensionless variables 
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represent the dimensionless parameters of the system (2). Moreover the initial condition of system (2) 

may be taken as any point in the region 
4
R . Obviously, the interaction functions in the right hand side 

of system (2) are continuously differentiable function on 
4
R , hence they are Lipschitizian. Therefore 

the solution of system (2) exists and is unique. Further, all the solutions of system (2) with non-

negative initial condition are uniformly bounded as shown in the following theorem. 

Theorem (1) All solutions of system (2) are uniformly bounded.  

Proof: Let )(),(),(),( twtztytx  be any solution of the system (2). Define the function 

)()()()()( twtztytxtM  , then the time derivative of  tM  along the solution of the system 

(2), gives 

nMHnMs
dt

dM
 51  

where  121075 ,,,1min ssssn   and 51 sH  . Now, by using Gromwell lemma, it obtains 

that: 

0 )1()0()( ntnt e
n

H
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which yields   
n
H

t tM lim  that is independent of the initial conditions. Thus the proof is 

complete■ 

3. Existence of equilibrium points: 

    It is observed that, system (2) has at most three biologically feasible equilibrium points, namely 

),,,( wzyxEi  , 2,1,0i . The existence conditions for each of these equilibrium points are 

discussed in the following: 

1- The vanishing equilibrium point  0,0,0,00 E   always exists. 

2- The predator free equilibrium point  0,0,ˆ,ˆ1 yxE   where  
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while x̂  represents a positive root of the following third order polynomial equation  
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Consequently, straightforward computation shows that 1E  exists uniquely in the  
4. RInt  if and only if 

the following conditions are hold.  
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3. The positive equilibrium point ),,,( ***
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The positive equilibrium point 2E  exists in the 
4. RInt  if and only if there is a positive solution of the 

following set of algebraic equations 
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Then by using (6e) and (6f) in (6a) and (6b) yield the following two isoclines. 
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Now from (6g) we notice that, when y 0 , then either 0x  or x  represents a positive root of the 

following fourth order polynomial equation. 
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Straightforward computation shows that Eq. (7) has a unique positive root namely 1x  if and only if 

one set of the following sets of conditions holds. 
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Moreover from Eq. (6g) we have    
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Further, from (6h) we notice that, when 0y  then 0x , in addition since we have 
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Then the two isoclines (6g) and (6h) intersect at a unique positive point ),( ** yx  in the 2
Int.R  of xy -

plane. Substituting the value of 
*x and 

*y  in Eq. (6e) and (6f) yield that 
*** ),( zyxz  and 

*** ),( wyxw   which are positive if and only if one set of the following sets of conditions holds. 
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Accordingly, the positive equilibrium point 2E  exists uniquely in the 
4
Int.R  if in addition to the 

conditions (8) - (11) the isoclinic 0),(1 yxg  intersect the x-axis at the positive value namely 1x  

4. The local Stability Analysis: 
   In this section, the local stability analyses of system (2) around each of the above equilibrium points 

are discussed through computing the Jacobian matrix  wzyxJ ,,,  of the system (2) at each of them. 
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where ifi , 1,2,3,4 are given in system (2) and  
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f





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


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
















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


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

























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8
4
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4
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8
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2
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62
3
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3

4

w
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w

f

w

s
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z

f
se

y

f
se

x

f

s
z

s

w

f

z

ws

z

f
se

y

f
se

x

f









































 

Consequently, the Jacobian matrix of system (2) at 0E   can be written as 

 































)(00

)(00

00)(

001

12119

11199

7452

42

00

sss

sss

ssss

ss

EJJ                             (13)   

Note that the characteristic equation of this Jacobian matrix is given by 

    
     0)(

)()(1

1211101291211109
2

52747257425
2





sssssssss

sssssssssss




  

Hence, straightforward computations show that, the eigenvalues of  0EJ  satisfy the following 

relations 

)(1 7425 ssssyx                                                                                          (14a) 

)(. 5274725 sssssssyx                                                                                   (14b) 
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0)( 1211109  sssswz                                                                                 (14c) 

0)(. 121110129  ssssswz                                                                                     (14d) 

Here wzyx  and,,  denote to the eigenvalues in the x - direction y -direction, z -direction and 

w -direction, respectively. So it easy to verify that, all the eigenvalues have negative real parts and 

hence the equilibrium point 0E  is locally asymptotically stable in 
4
R  if and only if the following 

conditions hold. 

72527452 )1(1 ssssssss                                                                           (15) 

 However it is unstable otherwise. 

The Jacobian matrix of system (2.2) at 1E   can be written as: 

   
4411 

 ijbEJJ                                                                                                            (16) 

here: 

).(ˆˆ;;0;

);(ˆˆ;0;ˆ;
ˆ

ˆ
ˆ

);(ˆ;ˆ;ˆ;
ˆ

ˆ
ˆ

121164334493442411134

109623133323162423
2

522

51221314131412
4

11

ssysexsebsbbbsb

ssysexsebbbysbb
y

xs
ysb

ssysbxsbbxss
x

ys
xb b























 

 Clearly the characteristic equation of 1J  can be written as: 

      011944334433
2

211222112211
2  ssbbbbbbbbbb   

 Therefore, the eigenvalus of 1J  satisfy the following relations: 

02211  bbyx                                                                                                           (17a) 

21122211. bbbbyx                                                                                                      (17b) 

4433 bbwz                                                                                                             (17c)  

1194433. ssbbwz                                                                                                       (17d) 

where 
wzyx  and,,  denote to the eigenvalues in the x - direction y -direction, z -direction and 

w -direction, respectively. So it easy to verify that, all the eigenvalues have negative real part and 

then the equilibrium point 1E  is locally asymptotically stable in 
4
R  if and only if the following 

conditions hold. 

 













0and0

OR

0and0

2112

2112

bb

bb

                                                                                       (18a)

 0and0 4433  bb                                                                                           (18b) 

 1194433 ssbb                                   (18c) 

However it is unstable point otherwise. 

     In the following theorem, the local stability conditions of the positive equilibrium point 2E  are 

established   

Theorem (2) Assume that ),,( ****
2 wzyxE   exists in the 

4
RInt  and the following condition are 

satisfied 

)()( *
3

*
132

*
51*

*
4* wezessyss
x

ys
x                                                           (19a) 
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 )( *
4

*
26

*
14*

*
2*

5 wezesxss
y

xs
ys                                                                   (19b) 

*
89

*
6

*
3*

*
11 wssysxs
z

ws
                                                                                       (19c) 

*
811

*
6

*
3*

*
9 zssysxs
w

zs
                                                                                   (19d) 

Then the positive equilibrium point 2E  is locally asymptotically stable in the 
4
RtIn  

Proof: The Jacobian matrix of system (2) at the positive equilibrium point 2E  can be written: 

   
4422 

 ijaEJJ                                                                                                             (20) 

where:  

;;;0 *
31413

*
1412*

*
4*

11 xsaaxssa
x

ys
xa 














  

 

0;0;0;0

;;0;;0

0;0;

*

*
9

44
*

8943
*

6442
*

3341

*
8113433

*
6232

*
3131

*
62423*

*
2*

5222
*

5121

*

*
11























w

zs
awssawseawsea

zssaazseazsea

ysaa
y

xs
ysasyssa

z

ws
 

According to Gersgorin theorem the poof is follows if and only if 





4

1
ji

i
ijii aa  

Then all the eigenvalues of 2J  exists in the region 

















 




4

1

** :

ji
i

ijii aaUCU  

Therefore according to the given conditions (19) (a-d) all the eigenvalues of 2J  exists in the left half 

plane and hence 2E  is locally asymptotically stable.■ 

5.  Global stability analysis of system (2) 

      In this section the global stability for the equilibrium points of system (2) is investigated by using 

the Lyapunov method as shown in the following theorems. 

Theorem (3) Assume that the vanishing equilibrium point 0E  of system (2) is locally asymptotically 

stable in the 
4
R  with 

Max






 










 11

12111

2

41

4

5744
31

2

24 )(
,,

)(
Min,

1 s

sse

e

ee

s

ssse
ee

s

se
                         (21a) 

   
3

54

2

15
2

4
1

4
)(

e

se
ss

e

e
s 








                                                                                           (21b) 

Then it is globally asymptotically stable in the
4
R . 

Proof: Consider the following function: 

wczcycxcwzyxV 43210 ),,,(   
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Clearly  RRV 
4

0 :  is 
1C  positive definite function, where )4,3,2,1( ici  are positive constants 

to be determined. Now since the derivative of 0V  along the trajectory of the system (2) can be written 

as 

     
dt

dw
c

dt

dz
c

dt

dy
c

dt

dx
c

dt

dV
4321

0   

   

   

   wscssczscssc

zwsccywseccyzsec

yscscsscxwsecxzsecc

xysscscxscscyscxc
dt

dV

11312114941093

84364426232

524174233413131

152112221
2

52
2

1
0

)()(

)()()(c 

)()()(c 

)()1(









 

So by choosing the positive constants as: 

313

4 1
4

1
321 ,,,1

eee

e
cccc   

It is obtain that: 

 

    

    w
e

s
ss

e
z

e

s
ss

e

zws
ee

yzs
e

e

e

e
ysss

x
e

se
sxyss

e

e
sy

e

se
x

dt

dV

e

se

e

e




















































































1

11
1211

33

9
109

1

8
31

6
1

2

3

4
474

3

24
251

3

..4
1

2

3

5420

11

11

1

3

54

3

4  

Therefore, according to condition (21a) - (21b) we obtain that: 

 

     
11

1

1

11
1211

33

9
109

1

3

54
474

3

4

3

24
2

2

3

540

w
e

s
ss

e
z

e

s
ss

e

y
e

se
sss

e

e

x
e

se
sy

e

se
x

dt

dV



























































































 

Then 00 
dt

dV
, hence 0V  is strictly Lyapunov function. Therefore 0E  is globally asymptotically 

stable in the 
4
R   .■ 

Theorem (4) Assume that the predator free equilibrium point 1E  of system (2) is locally 

asymptotically stable in the 
4
Int.R , and the following conditions are satisfied: 























































yy

xs
s

xx

ys

e

e

y

s
ss

e

e
s

x

s

ˆ

ˆ

ˆ

ˆ
1

4 2
5

4

1

2

2

2
15

1

2
1

4                                     (22a) 

ysexsess ˆˆ 6231109                                                                                                      (22b) 

 










ysexsess

se
e

e

ee
e

ˆˆ
,,max

6231109

111
1

2

41
3                                                                 (22c) 
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 

116231

12111
3

ˆˆ sysexse

sse
e




                                                                                                    (22d) 

Then 1E  is globally asymptotically stable in the 
4
R .  

Proof: Consider the following function: 

  wczc
y

y
yyyc

x

x
xxxcwzyxV 43211 ˆˆ

ˆ
lnˆˆˆ

ˆ
lnˆˆˆ,,, 

















  

Clearly  RRV 
4

1 :  is 
1C  positive definite function, where )4,3,2,1(ˆ ici  are positive constants 

to be determined. Now since the derivative of  1V  along the trajectory of the system (2) can be written 

as: 

 

 

 wscyscxscssc

zscyscxscssc

zwsccywscec
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yyxx
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s
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)ˆ)(ˆ(ˆˆ

)ˆ(
ˆ

ˆ
ˆ)ˆ(

ˆ

ˆ
1ˆ
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4
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So by choosing the positive constants as: 

3
4

1
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1
ˆ,ˆ,ˆ,1ˆ

11
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e
cccc

ee

e
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Then we get: 
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dt

dV
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here: 
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Now, since the 

conditions (22b) - (22c) guarantee that 13424
ˆ, Banddd  are positive while condition (22d) guarantees 

that 2B̂  is positive. Therefore, by using the given conditions. We obtain that: 

  wBzByydxxd
dt

dV
21

2

2211
1 ˆˆ)ˆ()ˆ(           

Then 01 
dt

dV
 under the given conditions and then 1V  is strictly Lyapunov function. Therefore 1E  is 

globally asymptotically stable in the 
4
R  .■  

In the following theorem, the conditions of the globally asymptotically stable of the positive 

equilibrium point 2E  are established 
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Theorem (5) Assume that the positive equilibrium point 2E  of system (2) is locally asymptotically 

stable in the 
4. RInt  with  

2211
2
12 2 qqq                                                                                                                        (23a) 

4422
2
24 qqq                                                                                                                         (23b) 

4433
2
34 2 qqq                                                                                                                       (23c) 
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Then 2E  is globally asymptotically stable in the
4
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Clearly  RRV 
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1C  positive definite function, where )4,3,2,1(* ici  are positive constants 

to be determined. Now since the derivative of 2V  a long the trajectory of the system (2) can be written 

as: 
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Therefore, according to the conditions (23) (a-c) we obtain that: 
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 So, 02 
dt

dV
 and then 2V  is strictly Lyapunov function. Therefore is globally asymptotically stable in 

the Int 4
R ■ 

5. Numerical analysis of system (2) 
    In this section the dynamical behavior of system (2) is studied numerically for different sets of 

parameters and different sets of initial points. The objectives of this study are: first investigate the 

effect of varying the value of each parameter on the dynamical behavior of system (2) and second 

confirm our obtained analytical results. It is observed that, for the following set of hypothetical 

parameters that satisfies stability conditions (19) (a-d) of the positive equilibrium point, system (2) has 

a globally asymptotically stable positive equilibrium point as shown in following figure.  
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Note that, in Figure-2, we will use that (      ) to describe the trajectory of system (2) that started at 

(0.0, 0.8, 0.7, 0.6, 0.5) and (…..) to describe the trajectory of system (2) that started at (0.0, 0.2, 0.5, 

0.9, 0.1). 
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Figure 2- Time series of the solution of system (2) (a) trajectories of x  as a function of time, (b) 

trajectories of y  as a function of time, (c) trajectories of z  as a function of time,(d) trajectories of w  

as a function of time. 

 

Clearly, figure-2, shows that the solution of system (2) approaches asymptotically to the positive 

equilibrium point ),,,( ***** wzyxE   starting from two different initial points and this is 

confirming our obtained analytical results. 

       Now in order to discuss the effect of the parameters values of system (2) on the dynamical 

behavior of the system, the system is solved numerically for the data given in Eq. (24) with varying 

one parameter each time. It is observed that varying the parameters values 12,11,10,9,8,5,4,2; isi  
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and 4,3,2,1; iei  do not have any effect on the dynamical behavior of system (2) and the system still 

approaches to positive equilibrium point. However, varying the attack rates of susceptible and infected 

predator 63 and ss , respectively keeping other parameters fixed as given in equation (24), leads  to 

extinction in predator species as shown in figure-3, for the parameters  given by Eq. (24) with 

075.0,20.0 63  ss , . 
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Figure 3- Time series of the solution of system (2) 

 

    From the above figure it is clear that as the attack rates of susceptible and infected predator decrease 

the trajectory of the system (2) approaches asymptotically to the predator free equilibrium 

point )0,0.ˆ,ˆ(2 yxE  . 

    Finally, the dynamical behavior at the vanishing equilibrium point 0E  is investigated by choosing 

2and1 72  ss  and keeping other parameters fixed as given in Eq. (24), and then the solution of 

system (2) is drawn in figure- 4. 
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Figure 4- Time series of the solution of system (2) choosing 2and1 72  ss  

 

Obviously, figure-4, shows clearly the convergence of the solution of system (2) to the vanishing 

equilibrium point 0E =(0,0,0,0) when the parameters  increase up to a specific values. Clearly the used 

values in figure-4, satisfy the stability conditions of the vanishing equilibrium point. 

6. Conclusions and Discussion 

    In this paper, we proposed and analyzed an eco-epidemiological model that described the dynamical 

behavior of prey-predator model with Lotka-Volterra type of functional response and linear incidence 
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rate for the disease in prey and predator respectively. It is assumed that the disease doesn’t spread 

outside the specific species (prey or predator), while the disease may be transmitted within the 

individuals of prey and within the individuals of predator by two ways: from an external source as 

well as through contact between the individuals of prey and those of predator respectively. The model 

included four non-linear autonomous differential equations that describe the dynamics of four different 

population namely susceptible prey x , infected prey y , susceptible predator z , infected predator w . 

The boundedness of the system (2) has been discussed. The dynamical behavior of system (2) has 

been investigated locally as well as globally. Further , it is observed that the vanishing equilibrium 

point ( 0E ) always exist , and it is locally asymptotically stable point if and only if conditions (15) 

hold, in addition to that it is globally if the conditions (21a) - (21b) hold. The predator free equilibrium 

point ( 1E ) exists under the conditions (5a)-(5b), and it is locally asymptotically stable point if and 

only if the conditions (18) (a-c) hold as well as it is globally if the conditions (22) (a-d) hold. The 

positive equilibrium point of system (2) exists provided that the conditions (8) - (11) are hold and the 

isoclinic 0),(1 yxg  intersect the x-axis at the positive value namely 1x . It is locally asymptotically 

stable point if and only if conditions (19) (a-d) hold, in addition it is globally if the conditions (23) (a-

c) hold. To understand the effect of varying each parameter on the global dynamics of system (2) and 

to confirm our above analytical results, system (2) has been solved numerically and the following 

results are obtained: 

1. The system (2) dose not have periodic dynamic. 

2. For the set of hypothetical parameters values given Eq. (24), system (2) approaches 

asymptotically to a globally asymptotically stable point ),,,( ****
2 wzyxE  . 

3. As the attack rates parameters 63 and ss  for susceptible and infected predator in system (2) 

decreases, then the solution of the system (2) still stable and approaches asymptotically to the predator 

free equilibrium point )0,0.ˆ,ˆ(2 yxE  . Clearly decreasing the value of  63 and ss  leads to increasing 

in the value of (susceptible and infected) prey population. 
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