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Abstract

The wave functions of converted harmonic-oscillator in local scaling
transformations are employed to evaluate charge distributions and elastic charge
electron scattering form structures for 87Li, °Be, **1°N and %O nuclei. The nuclear
shell-model was fulfilled using Warburton-Brown psd-shell (WBP) interaction with
(0 + 2 + 4)how truncation in spsdpf model space. Very good agreements with the
experimental data were obtained for the aforementioned quantities.
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1. Introduction

The proper use of wave functions in nuclear physics is essential in studying nuclear bulk
properties, such as size radii, density distributions, electromagnetic form factors, total binding
energy, magnetic dipole, and electric quadrupole moments [1]. The use of bare oscillator wave
functions is not acceptable because such potential has a Gaussian steep-slope performance at
the asymptotic region; besides the potential goes to infinity for large r. A realistic potential or
a modification must be adopted. Elton and Swift [2] used the radial wave functions of Woods-
Saxon (WS) potential with great success for some light and medium nuclei. Noori and Ridha
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[3] used the WS to calculate Charge Density Distributions (CDDs) and elastic longitudinal
electron scattering form structures with very good results for some stable and exotic nuclei. The
Local-Scaling Transformation (LST) was used by Karataglidis and Amos [4] to study
the halo nuclei with results similar to WS potential. Mohammed and Ridha [5] used the LST
successfully to study stable and unstable boron isotopes. The effect of correlation among
nucleons on the density distributions and Coulomb form factors are a good approach used in
the works of Al-Rahmani et al. [6] and Hussein and Flaiyh [7] obtaining good results when
compared with empirical data for some stable and exotic nuclei. The inclusion of occupation
numbers was used by Raheem and Abdulhasan [8] to investigate some nuclei in 1f-2p shell
with very good results. Mohammed and Fatah [9] obtained good results for studying the elastic
and inelastic Coulomb transitions in 1’0 using the theory of Hartree-Fock. Besides, one of the
important mean fields which was used by Odah and Ridha [10] with excellent agreement with
laboratory data for nitrogen isotopes is the Cosh potential. Finally, another treatment to amend
the theoretical calculations was done by Khalaf and Ridha [11] by connecting the interior
harmonic-oscillator part with the exterior modified Bessel part; such an approach gave very
good results on stable and exotic fluorine isotopes.
In the current work, the technique of LST is adopted and applied to Harmonic Oscillator Wave
Functions (HO WFs), then tested to evaluate CDDs and elastic form structures for the stable
®7Li, °Be, N and °0 nuclei using Warburton-Brown psd-shell (WBP) interaction in
enlarged model with (0 + 2 + 4)hw truncation.

2. Theoretical bases
The transition proton/neutron density distribution is given by [3]:

Ir Jid
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The terms, n, [, j and ¢, (tz = % for protons and t, = —% for neutrons) denote the
principle, orbital, total spin and isospin’s projection quantum numbers, respectively, for
individual nucleon; J; and J are the overall initial nucleus spin and multiplicity, respectively; a

and b stand for nuclear states in the initial and final cases, respectively; Xi’;' i;] is the single-

nucleon transition matrix element obtained from shell model calculations for an opted effective
interaction and model space; (j, ||Y;|lj,) represents the spherical-harmonics matrix element as

given by Brussard and Glademans [12]; and R, ;_;. ., (r) is the radial wave function of an

individual nucleon in a state a. In the LST, the transformed HO (THO) wave functions can be
written as [7]:

RIHO(r,by,) = s(OREC(F (), br,) @

Where: b is the HO size parameter and s(r) is the wave function scale, which can be written as

[7]:

d
sty =10 |70 ©

The scalar function (f (r)) in Egs. (2) and (3) is assumed to take the following form [7]:
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The m and y in Eq. (4) are numerical numbers governor how gradually the tail of wave function
will be. The root-mean square radius (rms), (rz)l/ 2. can be written as [13]:

2= [T pxyrtdr )

x stands for either N (number of neutrons), or Z (number of protons) or A (number of nucleons).

The Charge Density Distribution (CDD) is given by:
Pen(T) = Pent,=1/2(r) + Pen,e,=-1/2(T) (6)

The first and second parts in Eq. (6) represent the contribution to CDD from protons [13]
and neutrons [14] respectively, both are given by:

Pchty,=1/2 (r) = f Pj=o0,t,=1/2 (r)Ppr(T —r)dr’ (7
Pcht,=—1/2 (r) = f Pj=o0,t,=-1/2 () Pney(r —r")dr’ (8)
Ppr (7)) and ppe,, (7) in Eqs. (7) and (8) are given by:
&)
Ppr(r) = (ﬁam)a e\’ 9)
1 2 _rLZZ
Preu(r) = ng Oiei (10)
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In Eq. (9), ap- = 0.65 fm that rebreed the empirical charge rms of the a single proton;

1/2
(r3))? = ( ) a,r ~ 0.8 fm. The constants 6; and r; are taken from the works of Elton
[13], and Chandra and Sauer[14].

The squared coulomb longitudinal form structure in a Plane-Wave Born Approximation
(PWBA) is given by [15]:

F@QP=%, |Fn@| (11)

Ff.n(@) in Eq. (11) can be expressed as:

Fien(@ =3 [=—=2%,  UrOf (@, tDidfe, (@) (12)

(21 +1)
and
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Ff(@.t) =5 [ a9 10F (@ 1) (13)
Then, Eq. (11) can be reduced to:
Fion(@) =3¢, FF(@.t)f, (@) (14)
Fion@ =3¢,  Fion(atz) (15)
and
Fin(a,tz) = FF (g, t)fe, (@) (16)

Where: g represents momentum transferred to nucleus from electron in scattering process,
|/;) and |J) are the initial and final wave functions of the nucleus, respectively, f; (q)
represents the charge form structure of an individual proton or neutron, and Of(q, t,) is the
longitudinal multipole operator of electron scattering [15,16].

In Eqg. (12), the many-particle matrix elements is written in terms of the individual-nucleon
matrix elements by the relation:

Jidg.]
(If”OJC(qJ tz)“]i) = Zab Xa_b,;)/n<b' tZ”O]C (q' T, tz)”ar tz) (17)
since,
Ojc (q! T, tZ) = etzj](qr)Y}(.Qr) (18 )

At photon point(q = k = %), E, is the excitation energy, where qr «< 1:

2
|F]€Ch(q k)l 22(2]l+1) ((2]+1)||) |f pCh,](r) T]+2dT| (19)

The reduced transition probability,B(C],]i”i—>]}Tf), is associated to electric multipole

operator by:
[ £110= QU

B(CLJi =) == (20)
Since, quadrupole moment is expressed as [15,16]:
=[50 2] =10 UI0= @) @D
S U0 = Jy pen, (1) r/+2dr (22)
= [202] =JO0D ] pary@)r/+2dr (23)
. Q= \/?T”U 2] —J 0])\/(2]i +1B(ELJ; = Jr) (24)
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In this work, the inclusion of Core-Polarization (CP) effect was needed to improve the
calculated components of the charge form factors. In Eq. (19), the transition distribution was
accounted from the influence from Model-Space (MS) and CP which is given by [16]:

Peny (1) = pé; (1) + pehy (1) (25)

Two mathematical forms of CP were chosen, the Tassie [17] and Bohr-Mottelson [18] models
are given respectively by:

1 d
Py () = Ner 1 L o (1) (26)

d
ngf, ] (r) = Npy 77 Pch (r) (27)

the contribution from MS is given by:

1 1 Irlid .
p}\,dti (r) = \/ﬁ\/ﬁzab Xa'];)’tz (]b) Rnalaja,tz (r)Rnblbijtz (r) (28 )

The constants in Egs. (26) and (27) are chosen to reproduce the experimental quadrupole
moments calculated by Egs. (23) and (24) and are given below:

J(2]i+1)B(E]']i—>]f)—f:° rl+2pS (rar

© 57+12Pch(r)
I T Gy —ar

(29)

T:

J @+ DB(ELL ~ Jp) — [ 7+ pMs,(r)dr

o dpen(r)
fo r1+1a—rdr

Npy = (30)

3. Outcomes and discussion

The nuclear shell model was fulfilled using Nushell code [19] with WBP interaction [20]
and spsdpf model space. The (0 + 2 + 4)hw truncation for 8’Li, °Be, >N and °0O nuclei
was adopted. In Table 1, the total spin, total isospin and the parameters of THO were tabulated.
The constants of THO were chosen to rebreed the available size radii. The evaluated size radii
are given in Table 2.

In Figure 1, the evaluated CDDs are depicted and compared with the empirical data. The
solid curves stand for the theoretical computations using THO wave functions. The dotted
curves represent the empirical data. In general, very good agreement with empirical data was
noted. In Figure 2, the evaluated charge form structures (solid curves) are presented and
compared with the available empirical data (dotted curves). It was clear from calculations that
the inclusion of the CP effect was highly improved with the Bohr-Mottelson than with the
Tassie model. The constants in Egs. (26) and (27) were adjusted so as to reproduce the empirical
quadrupole moments of 5Li (—0.082 4 0.002 e. fm?) [21], ‘Li (—4.06 & 0.08 e. fm?) [21]
and °Be (5.29 + 0.04 e. fm?) [21].
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Table 1: The total spin, isospin and the parameters of THO
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ZAXy J'T[22] | by(fm) by (fm) m Ya(fm™) | 1 (fm™)
36Li; 170 1.627 1.6 10 1.784 1.737
37Liy %_% 1.68 1.66 14 2.624 2.182
49Be; %_% 1.75 1.69 20 2.678 2.544
714N, 170 1.664 1.62 24 2.804 2.650
715N, _— 1.7 1.699 16 2.945 2.691
8160g 0t0 1.733 1.736 18 3.005 2.846

Table 2: The evaluated rms proton, neutron, charge and matter radii in fm unit for ®’Li, °Be,
415N and %0 nuclei

zaxy | @arre | BPERT | g | e | gane | e e e
36Li; 2.560 2.56(5) 2.457 2.463 2.460 246 +0.21
37Li, 2.390 2.39(3) 2.288 2.396 2.350 2.334+0.02
49Be; | 2.509 2.50(9) 2410 | 2553 | 2.490 2.53 + 0.072
714N, 2.541 2.524(23) 2.437 2.503 2.470 2.47 £ 0.03
715N, 2.650 2.650 2.554 2.575 2.565 242 +0.1
81605 | 2730 | 2730(25) | 2633 | 2629 | 2.631 2.631 + 0.061
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Figure 2: Charge form factors for ®’Li, °Be, N and 0 nuclei.

430



Ridha and Abood Iragi Journal of Science, 2025, Vol. 66, No. /(Sl), pp: 423- 432

4. Conclusions

The converted harmonic-oscillator wave functions in the local-scaling transformation (LST)
were harnessed to evaluate the charge density distributions (CDDs) and elastic form structures
of electron scattering. The constants of THO were adjusted to rebreed the size radii for 8'Li,
Be, 41N and %0 nuclei. These nuclei were studied in the shell model using WBP interaction
with (0 + 2 + 4)hw truncation in spsdpf model space. Such extended model space, alongside
using the radial wave functions of THO improved the calculated CDDs and form factors. The
use of the core-polarization (CP) effect has highly improved the evaluated charge form
structures, especially when using the Bohr-Mottelson model; in the Tassie model, the
calculations were rather good.
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