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Abstract  

     The wave functions of converted harmonic-oscillator in local scaling 

transformations are employed to evaluate charge distributions and elastic charge 

electron scattering form structures for 6,7Li, 9Be, 14,15N and 16O nuclei. The nuclear 

shell-model was fulfilled using Warburton-Brown  psd-shell (WBP) interaction with 
(0 + 2 + 4)ћ𝜔 truncation in 𝑠𝑝𝑠𝑑𝑝𝑓 model space. Very good agreements with the 

experimental data were obtained for the aforementioned quantities.  

 PACS number(s): 21.10.Gv, 21.60.Cs, 25.30.Bf, 21.10.Ky 

 

Keywords: Transformed Harmonic-Oscillator Wave functions, Longitudinal 

Electron Scattering  Form Factors, Charge Density Distributions, Size radii 

 

دراسة عوامل التشكل للأستطارة الألكترونية الطولية مع الدوال الموجية القطرية للمتذبذب التوافقي  
 المحور لبعض النوى الخفيفة 

 

 علي خالد عبود ، *أركان رفعه رضا

 العراق  ، كلية العلوم، جامعة بغداد، بغداد  ، قسم الفيزياء 
 

 الخلاصة 
الدوال الموجية القطرية للمتذبذب التوافقي المحور بتحويلات المقياس الموضعي استخدمت لحساب توزيعات       

. انجزت  O16و    N14,15و    Be9و    Li6,7الكثافة الشحنية وعوامل التشكل للاستطارة الالكترونية المرنة للنوى   
0)مع قطع  فضاء الحركة بمقدار  WBPحسابات انموذج القشرة النووي باستخدام تفاعل  + 2 + 4)ћ𝜔   في

 . استحصلت تطابقات جيدة جدا بالمقارنة مع القيم العملية للكميات المذكورة.𝑠𝑝𝑠𝑑𝑝𝑓انموذج فضاء القشرة  
 

1. Introduction 

     The proper use of wave functions in nuclear physics is essential in studying nuclear bulk 

properties, such as size radii, density distributions, electromagnetic form factors, total binding 

energy, magnetic dipole, and electric quadrupole moments [1]. The use of bare oscillator wave 

functions is not acceptable because such potential has a Gaussian steep-slope performance at 

the asymptotic region; besides the potential goes to infinity for large 𝑟. A realistic potential or 

a modification must be adopted. Elton and Swift [2] used the radial wave functions of Woods-

Saxon (WS) potential with great success for some light and medium nuclei. Noori and Ridha 
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[3] used the WS to calculate Charge Density Distributions (CDDs) and elastic longitudinal 

electron scattering form structures with very good results for some stable and exotic nuclei. The 

 Local-Scaling Transformation (LST) was used by Karataglidis and Amos [4] to study 

the halo nuclei with results similar to WS potential. Mohammed and Ridha [5] used the LST 

successfully to study stable and unstable boron isotopes. The effect of correlation among 

nucleons on the density distributions and Coulomb form factors are a good approach used in 

the works of Al-Rahmani et al. [6] and Hussein and Flaiyh [7] obtaining good results when 

compared with empirical data for some stable and exotic nuclei. The inclusion of occupation 

numbers was used by Raheem and Abdulhasan [8] to investigate some nuclei in 1f-2p shell 

with very good results. Mohammed and Fatah [9] obtained good results for studying the elastic 

and inelastic Coulomb transitions in 17O using the theory of Hartree-Fock. Besides, one of the 

important mean fields which was used by Odah and Ridha [10] with excellent agreement with 

laboratory data for nitrogen isotopes is the Cosh potential. Finally, another treatment to amend 

the theoretical calculations was done by Khalaf and Ridha [11] by connecting the interior 

harmonic-oscillator part with the exterior modified Bessel part; such an approach gave very 

good results on stable and exotic fluorine isotopes. 

In the current work, the technique of LST is adopted and applied to Harmonic Oscillator Wave 

Functions (HO WFs), then tested to evaluate CDDs and elastic form structures for the stable 
6,7Li, 9Be, 14,15N and 16O nuclei using Warburton-Brown psd-shell (WBP) interaction in 

enlarged model with (0 + 2 + 4)ћ𝜔 truncation.      

 

2. Theoretical bases 

The transition proton/neutron density distribution is given by [3]: 

𝜌𝐽,𝑡𝑧
(𝑟) =

1

√4𝜋

1

√2𝐽𝑖 + 1
∑

𝑎𝑏

𝑋𝑎,𝑏,𝑡𝑧

𝐽𝑓, 𝐽𝑖,𝐽⟨𝑗𝑏‖𝑌𝐽‖𝑗𝑎⟩𝑅𝑛𝑎𝑙𝑎𝑗𝑎,𝑡𝑧(𝑟)𝑅𝑛𝑏𝑙𝑏𝑗𝑏,𝑡𝑧(𝑟)             (1) 

      

     The terms, 𝑛, 𝑙, 𝑗 and 𝑡𝑧  (𝑡𝑧 =
1

2
 𝑓𝑜𝑟 𝑝𝑟𝑜𝑡𝑜𝑛𝑠 𝑎𝑛𝑑 𝑡𝑧 = −

1

2
 𝑓𝑜𝑟 𝑛𝑒𝑢𝑡𝑟𝑜𝑛𝑠) denote the 

principle, orbital, total spin and isospin’s projection quantum numbers, respectively, for  

individual nucleon; 𝐽𝑖 and 𝐽  are the overall initial nucleus spin and multiplicity, respectively; 𝑎 

and 𝑏 stand for nuclear states in the initial and final cases, respectively; 𝑋𝑎,𝑏,𝑡𝑧

𝐽𝑓 , 𝐽𝑖,𝐽
 is the single-

nucleon transition matrix element obtained from shell model calculations for an opted effective 

interaction and model space; ⟨𝑗𝑏‖𝑌𝐽‖𝑗𝑎⟩ represents the spherical-harmonics matrix element as 

given by Brussard and Glademans [12]; and 𝑅𝑛𝑎𝑙𝑎𝑗𝑎,𝑡𝑧(𝑟) is the radial wave function of an 

individual nucleon in a state 𝑎. In the LST, the transformed HO (THO) wave functions can be 

written as [7]: 

 

𝑅𝑛𝑙
𝑇𝐻𝑂(𝑟, 𝑏𝑡𝑧) = 𝑠(𝑟)𝑅𝑛𝑙

𝐻𝑂(𝑓(𝑟), 𝑏𝑡𝑧)                                                                                (2) 

                                

Where: 𝑏 is the HO size parameter and 𝑠(𝑟) is the wave function scale, which can be written as 

[7]: 

𝑠(𝑟) =
𝑓(𝑟)

𝑟
√

𝑑𝑓(𝑟)

𝑑𝑟
                                                                                                          (3) 

                                                                 

The scalar function (𝑓(𝑟)) in Eqs. (2) and (3) is assumed to take the following form [7]: 
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𝑓(𝑟) =

[
 
 
 
 

1

(
1
𝑟)

𝑚

+ (
1

𝛾√𝑟
)

𝑚

]
 
 
 
 

1
𝑚

                                                                                         (4) 

                                                      

The 𝑚 and 𝛾 in Eq. (4) are numerical numbers governor how gradually the tail of wave function 

will be. The root-mean square radius (𝑟𝑚𝑠), 〈𝑟2〉𝑥
1/2

, can be written as [13]: 

                              

                〈𝑟2〉𝑥
1/2

= √
4𝜋

𝑥
∫

∞

0
𝜌𝑥(𝑟)𝑟4𝑑𝑟                                                                                       (5) 

                            

𝑥 stands for either 𝑁 (number of neutrons), or 𝑍 (number of protons) or 𝐴 (number of nucleons). 

 

The Charge Density Distribution (CDD) is given by: 

                                 𝜌𝑐ℎ(𝑟) = 𝜌𝑐ℎ,𝑡𝑧=1/2(𝑟) + 𝜌𝑐ℎ,𝑡𝑧=−1/2(𝑟)                                                     (6) 

 

      The first and second parts in Eq. (6) represent the contribution to CDD from protons [13] 

and neutrons [14] respectively, both are given by:  

                

                            𝜌𝑐ℎ,𝑡𝑧=1/2(𝑟) = ∫ 𝜌𝐽=0,𝑡𝑧=1/2(𝑟)𝜌𝑝𝑟(𝑟 − 𝑟′)𝑑𝑟′                                       (7) 

               

                

                           𝜌𝑐ℎ,𝑡𝑧=−1/2(𝑟) = ∫ 𝜌𝐽=0,𝑡𝑧=−1/2(𝑟)𝜌𝑛𝑒𝑢(𝑟 − 𝑟′)𝑑𝑟′                                (8) 

𝜌𝑝𝑟(𝑟) and 𝜌𝑛𝑒𝑢(𝑟) in Eqs. (7) and (8) are given by:    

                

                                   𝜌𝑝𝑟(𝑟) =
1

(√𝜋𝑎𝑝𝑟)
3 𝑒

(
−𝑟2

𝑎𝑝𝑟
2 )

                                                                               (9 ) 

                   

                                     𝜌𝑛𝑒𝑢(𝑟) =
1

(𝜋𝑟𝑖
2)

3
2

∑2
1 𝜃𝑖 𝑒

−𝑟2

𝑟𝑖
2
                                                                  (10) 

                                   

In Eq. (9),  𝑎𝑝𝑟 = 0.65 𝑓𝑚 that rebreed the empirical charge 𝑟𝑚𝑠 of the a single proton;  

〈𝑟2〉𝑝𝑟
1/2

= (
3

2
)
1/2

𝑎𝑝𝑟 ≈ 0.8 𝑓𝑚. The constants  𝜃𝑖  and 𝑟𝑖 are taken from the works of Elton 

[13], and Chandra and Sauer[14]. 

 

The squared coulomb longitudinal form structure in a Plane-Wave Born Approximation 

(PWBA) is given by [15]: 

                                                             |𝐹(𝑞)|2 = ∑𝐽 |𝐹𝐽,𝑐ℎ
𝐶 (𝑞)|

2
                                         (11)  

   

𝐹𝐽,𝑐ℎ
𝐶 (𝑞) in Eq. (11) can be expressed as: 

 

                                 𝐹𝐽,𝑐ℎ
𝐶 (𝑞) =

1

𝑍
√

4𝜋

(2𝐽𝑖+1)
∑𝑡𝑧 ⟨𝐽𝑓‖𝑂𝐽

𝐶(𝑞, 𝑡𝑧)‖𝐽𝑖⟩𝑓𝑡𝑧(𝑞)                              (12)   

and 
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                                              𝐹𝐽
𝐶(𝑞, 𝑡𝑧) =

1

𝑍
√

4𝜋

(2𝐽𝑖+1)
⟨𝐽𝑓‖𝑂𝐽

𝐶(𝑞, 𝑡𝑧)‖𝐽𝑖⟩                                    (13)  

 

Then, Eq.  (11) can be reduced to:           

                              𝐹𝐽,𝑐ℎ
𝐶 (𝑞) = ∑𝑡𝑧 𝐹𝐽

𝐶(𝑞, 𝑡𝑧)𝑓𝑡𝑧(𝑞)                                                                  (14) 

                              𝐹𝐽,𝑐ℎ
𝐶 (𝑞) = ∑𝑡𝑧 𝐹𝐽,𝑐ℎ

𝐶 (𝑞, 𝑡𝑧)                                                                          (15) 

and                

                                      

                       𝐹𝐽,𝑐ℎ
𝐶 (𝑞, 𝑡𝑧) = 𝐹𝐽

𝐶(𝑞, 𝑡𝑧)𝑓𝑡𝑧(𝑞)                                                                                 (16) 

                                                  

     Where: 𝑞 represents momentum transferred to nucleus from electron in scattering process, 

|𝐽𝑖⟩ and |𝐽𝑓⟩ are the initial and final wave functions of the nucleus, respectively, 𝑓𝑡𝑧(𝑞)  

represents the charge form structure of an individual proton or neutron, and 𝑂𝐽
𝐶(𝑞, 𝑡𝑧) is the 

longitudinal multipole operator of electron scattering [15,16].    

In Eq. (12), the many-particle matrix elements is written in terms of the individual-nucleon 

matrix elements by the relation: 

          

              ⟨𝐽𝑓‖𝑂𝐽
𝐶(𝑞, 𝑡𝑧)‖𝐽𝑖⟩ = ∑𝑎𝑏 𝑋

𝑎,𝑏,𝑝/𝑛

𝐽𝑖,𝐽𝑓,𝐽
⟨𝑏, 𝑡𝑧‖𝑂𝐽

𝐶(𝑞, 𝑟, 𝑡𝑧)‖𝑎, 𝑡𝑧⟩                                   (17) 

 since, 

                                     

                  𝑂𝐽
𝐶(𝑞, 𝑟, 𝑡𝑧) = 𝑒𝑡𝑧𝑗𝐽(𝑞𝑟)𝑌𝐽(𝛺𝑟)                                                                                   (18 ) 

     

At photon point(𝑞 = 𝑘 =
𝐸𝑥

ℏ𝑐
), 𝐸𝑥 is the excitation energy, where  𝑞𝑟 ≪ 1: 

 

                            |𝐹𝐽,𝑐ℎ
𝐶 (𝑞 = 𝑘)|

2
=

4𝜋 

𝑍2(2𝐽𝑖+1)
(

𝑞𝐽

(2𝐽+1)‼
)
2

|∫
∞

0
𝜌𝑐ℎ,𝐽(𝑟) 𝑟

𝐽+2𝑑𝑟|
2
               (19) 

 

The reduced transition probability, 𝐵 (𝐶𝐽, 𝐽𝑖
𝜋𝑖 → 𝐽

𝑓

𝜋𝑓), is associated to electric multipole 

operator by: 

                         𝐵(𝐶𝐽, 𝐽𝑖 → 𝐽𝑓) =
|⟨𝐽𝑓‖𝑂𝐽=2(𝑟)‖𝐽𝑖⟩|

2

(2𝐽𝑖+1)
                                                                         (20) 

 

Since, quadrupole moment is expressed as [15,16]: 

                   

                ∵  𝑄 = √
16𝜋

5
(𝐽 2 𝐽 − 𝐽 0 𝐽 )⟨𝐽𝑓‖𝑂𝐽=2(𝑟)‖𝐽𝑖⟩                                                               (21) 

  

              ∵  ⟨𝐽𝑓‖𝑂𝐽=2(𝑟)‖𝐽𝑖⟩ = ∫
∞

0
𝜌𝑐ℎ,𝐽(𝑟) 𝑟

𝐽+2𝑑𝑟                                                                  (22) 

    

          ∴  𝑄 = √
16𝜋

5
(𝐽 2 𝐽 − 𝐽 0 𝐽 ) ∫

∞

0
𝜌𝑐ℎ,𝐽(𝑟) 𝑟

𝐽+2𝑑𝑟                                                          (23) 

          

              ∴  𝑄 = √
16𝜋

5
(𝐽 2 𝐽 − 𝐽 0 𝐽 )√(2𝐽𝑖 + 1)𝐵(𝐸𝐽, 𝐽𝑖 → 𝐽𝑓)                                               (24) 
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     In this work, the inclusion of Core-Polarization (CP) effect was needed to improve the 

calculated components of the charge form factors. In Eq. (19), the transition distribution was 

accounted from the influence from Model-Space (MS) and CP which is given by [16]: 

                

                 𝜌𝑐ℎ,𝐽(𝑟) = 𝜌𝑐ℎ,𝐽
𝐶𝑃 (𝑟) + 𝜌𝑐ℎ,𝐽

𝑀𝑆 (𝑟)                                                                                        (25) 

   

Two mathematical forms of CP were chosen, the Tassie [17] and Bohr-Mottelson [18] models 

are given respectively by:                                      

                     

               𝜌𝑐ℎ,𝐽
𝐶𝑃 (𝑟) = 𝑁𝑇𝑟𝐽−1 𝑑

𝑑𝑟
𝜌𝑐ℎ(𝑟)                                                                                             (26) 

                         

              𝜌𝑐ℎ,𝐽
𝐶𝑃 (𝑟) = 𝑁𝐵𝑀

𝑑

𝑑𝑟
𝜌𝑐ℎ(𝑟)                                                                                                    (27) 

    

the contribution from MS is given by: 

 

                        𝜌𝐽,𝑡𝑧
𝑀𝑆 (𝑟) =

1

√4𝜋

1

√2𝐽𝑖+1
∑𝑎𝑏 𝑋𝑎,𝑏,𝑡𝑧

𝐽𝑓  𝐽𝑖  𝐽 ⟨𝑗𝑏⟩ 𝑅𝑛𝑎𝑙𝑎𝑗𝑎,𝑡𝑧
(𝑟)𝑅𝑛𝑏𝑙𝑏𝑗𝑏,𝑡𝑧

(𝑟)             (28 ) 

     

      The constants in Eqs. (26) and (27) are chosen to reproduce the experimental quadrupole 

moments calculated by Eqs. (23) and (24) and are given below: 

 

                          𝑁𝑇 =
√(2𝐽𝑖+1)𝐵(𝐸𝐽,𝐽𝑖→𝐽𝑓)−∫

∞
0 𝑟𝐽+2𝜌𝐽,𝑐ℎ

𝑀𝑆 (𝑟)𝑑𝑟

∫
∞
0 𝑟2𝐽+1𝑑𝜌𝑐ℎ(𝑟)

𝑑𝑟
𝑑𝑟

                                                  (29) 

    

𝑁𝐵𝑀 =

√(2𝐽𝑖 + 1)𝐵(𝐸𝐽, 𝐽𝑖 → 𝐽𝑓) − ∫
∞

0
𝑟𝐽+2𝜌𝐽,𝑐ℎ

𝑀𝑆 (𝑟)𝑑𝑟

∫
∞

0
𝑟𝐽+1 𝑑𝜌𝑐ℎ(𝑟)

𝑑𝑟
𝑑𝑟

                                                (30) 

                                                                                                     

3. Outcomes and discussion 

     The nuclear shell model was fulfilled using Nushell code [19] with WBP interaction [20] 

and 𝑠𝑝𝑠𝑑𝑝𝑓 model space. The (0 + 2 + 4)ћ𝜔 truncation for 6,7Li, 9Be, 14,15N and 16O nuclei 

was adopted. In Table 1, the total spin, total isospin and the parameters of THO were tabulated. 

The constants of THO were chosen to rebreed the available size radii. The evaluated size radii 

are given in Table 2. 

 

     In Figure 1, the evaluated CDDs are depicted and compared with the empirical data. The 

solid curves stand for the theoretical computations using THO wave functions. The dotted 

curves represent the empirical data. In general, very good agreement with empirical data was 

noted. In Figure 2, the evaluated charge form structures (solid curves) are presented and 

compared with the available empirical data (dotted curves). It was clear from calculations that 

the inclusion of the CP effect was highly improved with the Bohr-Mottelson than with the 

Tassie model. The constants in Eqs. (26) and (27) were adjusted so as to reproduce the empirical 

quadrupole moments of 6Li (−0.082 ± 0.002 𝑒. 𝑓𝑚2) [21], 7Li (−4.06 ± 0.08 𝑒. 𝑓𝑚2) [21] 

and 9Be (5.29 ± 0.04 𝑒. 𝑓𝑚2) [21]. 
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Table 1: The total spin, isospin and the parameters of THO 

𝑍𝐴𝑋𝑁 𝐽𝜋𝑇 [22] 𝑏𝑛(𝑓𝑚) 𝑏𝑝(𝑓𝑚) 𝑚 𝛾𝑛(𝑓𝑚−1) 𝛾𝑝(𝑓𝑚−1) 

36𝐿𝑖3 1+0 1.627 1.6 10 1.784 1.737 

37𝐿𝑖4 
3

2

− 1

2
 1.68 1.66 14 2.624 

2.182 

 

49𝐵𝑒5 
3

2

− 1

2
 1.75 1.69 20 2.678 2.544 

714𝑁7 1+0 1.664 1.62 24 2.804 2.650 

715𝑁8 
1

2

− 1

2
 1.7 1.699 16 2.945 2.691 

816𝑂8 0+0 1.733 1.736 18 3.005 2.846 

 

Table 2: The evaluated 𝑟𝑚𝑠 proton, neutron, charge and matter radii in fm unit for 6,7Li, 9Be, 
14,15N and 16O nuclei 

𝑍𝐴𝑋𝑁 〈𝑟𝑐ℎ
2 〉1/2 

Exp. 〈𝑟𝑐ℎ
2 〉1/2 

[23] 
〈𝑟𝑝

2〉1/2 〈𝑟𝑛
2〉1/2 〈𝑟𝑚

2 〉1/2 Exp. 〈𝑟𝑚
2 〉1/2 [24] 

36𝐿𝑖3 2.560 2.56(5) 2.457 2.463 2.460 2.46 ± 0.21 

37𝐿𝑖4 2.390 2.39(3) 2.288 2.396 2.350 2.33 ± 0.02 

49𝐵𝑒5 2.509 2.50(9) 2.410 2.553 2.490 2.53 ± 0.072 

714𝑁7 2.541 2.524(23) 2.437 2.503 2.470 2.47 ± 0.03 

715𝑁8 2.650 2.650 2.554 2.575 2.565 2.42 ± 0.1 

816𝑂8 2.730 2.730(25) 2.633 2.629 2.631 2.631 ± 0.061 
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Figure 1: CDDs for 6,7Li, 9Be, 14,15N and 16O nuclei. The dotted curves are The experimental 

data [23]. 
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Figure 2: Charge form factors for 6,7Li, 9Be, 14,15N and 16O nuclei. 
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4. Conclusions 

     The converted harmonic-oscillator wave functions in the local-scaling transformation (LST) 

were harnessed to evaluate the charge density distributions (CDDs) and elastic form structures 

of electron scattering.  The constants of THO were adjusted to rebreed the size radii for 6,7Li, 
9Be, 14,15N and 16O nuclei. These nuclei were studied in the shell model using WBP interaction 

with (0 + 2 + 4)ћ𝜔 truncation in 𝑠𝑝𝑠𝑑𝑝𝑓 model space. Such extended model space, alongside 

using the radial wave functions of THO improved the calculated CDDs and form factors. The 

use of the core-polarization (CP) effect has highly improved the evaluated charge form 

structures, especially when using the Bohr-Mottelson model; in the Tassie model, the 

calculations were rather good.  
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