



# Synthesis and Characterization of Several New Homopolymers, Copolymers and Phenolic Resins of N-Substituted Citraconisoimides

# Ahlam Marouf Al-Azzawi<sup>1\*</sup>, Mustafa Adnan Yaseen<sup>2</sup>

<sup>1</sup>Department of Chemistry, College of Science, University of Baghdad, Baghdad, Iraq <sup>2</sup>Department of Applied Chemistry Division, University of Technology, Baghdad, Iraq

## Abstract

Four N-substituted citraconisoimides were prepared via dehydration of the corresponding prepared citraconamic acids using N,N<sup>\</sup>-dicyclohexylcarbodiimide as dehydrating agent. The prepared citraconisoimides were introduced in free radical homopolymerization producing four new poly citraconisoimides. Also the prepared citraconisoimides were introduced in free radical copolymerization with three vinylic monomers including acrylonitrile, methylmethacrylate and methylacrylate producing new copolymers having different physical properties. Moreover two new phenolic resins containing pendent citraconisoimide moiety were prepared via condensation polymerization of N-(hydroxyphenol)citraconisoimide with formaldehyde. The new homopolymers and copolymers are of great importance since they contain isoimide ring in their repeating units which exhibit better processing properties and can rearrange gradually with time and use to the more stable structure of the corresponding imides having thermosetting properties.

**Keywords**: citracoisoimides, homopolymerization, copolymerization, phenolic resins

# تحضير وتشخيص عدد من البوليمرات الذاتية والمشتركة والراتنجات الفينولية الجديدة لمركبات N-معوض ستراكون ايسوايمايد

احلام معروف العزاوي<sup>1</sup>\* ، مصطفى عدنان ياسين<sup>2</sup> <sup>1</sup>قسم الكيمياء، كلية العلوم، جامعة بغداد، <sup>2</sup>قسم العلوم التطبيقية،الجامعة التكنولوجية، بغداد ، العراق

## الخلاصة

تضمن البحث تحضير عدد من مركبات N-معوض-ستراكون ايسوايمايدات عن طريق سحب الماء من حوامض الستراكون آميك المقابلة باستخدام N,N/-ثنائي سايكلوهكسيل كاربوثنائي ايمايد كعامل ساحب للماء بعد ذلك تم ادخال الستراكون ايسوايمايدات المحضرة في بلمرة ذاتية انتج ت اربعة من البوليمرات الذاتية (بولي ستراكون ايسوايمايد). كذلك فقد تم ادخال مركبات الستراكون ايسوايمايدات المحضرة في بلمرة مشتركة مع ثلاث مونوميرات فاينيلية هي اكريلونايترايل، مثيل ميث اكريلات ومثيل اكريلات للحصول على بوليمرات مشتركة جديدة ذات صفات فيزيائية مختلفة مما يسمح بتطبيقها في مجالات مختلفة . اضافة الى ذلك فقد تضمن البحث تحضير رانتجات فينول-فورمالديهايد جديدة حاوية على مجاميع متدلية من الستراكون ايسوايمايدات وذلك من المدير رانتجات فينول-فورمالديهايد جديدة حاوية على مجاميع متدلية من الستراكون ايسوايمايدات وذلك من خلال البلمرة التكثيفية لمركبات المحسوكسي فنيل ستراكون ايسوايمايد مع الفورمالديهايد . يعنتو البوليمرات الذاتية والمشتركة المحضرة ضمن هذا البحث غاية في الاهمية نظراً لاحتواءها على حلقة الإيسوايمايد في وحداتها البنائية والتي تمنح البوليمرات خصائص تصنيعية افضل كما انها تترتب مع مرور الوقت والاستخدام الى تركيب الايمايد المقابل ذو الثبات المحراي المنيعية افضل كما انها تترتب مع مرور الوقت والاستخدام

## Introduction

Polyimides have been noted for their outstanding thermal stability and electrical properties [1,2]. Some of these materials have been widely used in industry as structural materials and integrated circuit insulators [3-7]. However they are usually difficult to directly process in their imidized forms because of their high glass transition ( $T_g$ ) and melting temperatures and their limited solubility, which limits their usefulness for many applications.

Efforts have been directed toward the synthesis of polyisoimides in order to develop novel soluble precursors of polyimides since polyisoimides possess general advantages in their processing properties including higher solubility, lower glass transition temperatures and can be converted to polimides without the formation of water or other volatile by products [8-10].

The present work reports free radical homopolymerization of several N-substituted citraconisoimides. The work involves also introducing of the mentioned citraconisoimides in free radical copolymerization with selected vinylic monomers. Moreover condensation polymerization of citraconisoimides with formaldehyde is performed producing new phenolic resins have pendent citraconisoimide moiety in their repeating units. A series of the analogus N-substituted citraconimides and their homopolymers were synthesized also and used for comparison.

## Experimental

All chemicals employed were purchased from BDH, Merk, Fluka and were used without further purification. Melting points were determined on Thomas Hoover apparatus and were uncorrected. FTIR spectra were recorded on SHIMADZU FTIR-8400 Fourier Transform Infrared Spectrophotometer as KBr disc. U.V spectra were recorded on SHIMADZU U.V-Visble recording spectrophotometer U.V 160. <sup>1</sup>H-NMR spectra were recorded on Bruker 300MHz instrument using DMSO-d<sub>6</sub>, CDCl<sub>3</sub> as solvents and TMS as internal reference. Elemental analyses were performed on Perkin Elmer 240 element analyzer. Intrinsic viscosities were determined with Automatic viscometer Tafesa ubbelohde viscometer at 25°C using DMSO and CHCl<sub>3</sub> as solvents. Softening points were determined on thermal microscope Riecher thermover.

#### **1-** Preparation of N-Substituted Citraconamic Acids (1-4)

N-substituted citraconamic acids were prepared via reaction of equimolar amounts of citraconic anhydride and substituted primary aromatic amine according to literature procedures [11]. Purification was performed by recystallization from ethanol, dioxane or acetone. Physical properties and FTIR spectral data of compounds (1-4) are listed in table-1.

## 2- Preparation of N-Substituted Citraconisoimides (5-8)

The titled compounds were prepared by dehydration of citraconamic acids (1-4) using  $N,N^{-}$  dicyclohexyl carbodeiimide (DCC) as dehydrating agent as follows [12]:

A solution of (0.01 mole) of (DCC) in (20 mL) of dichloromethane was added dropwise to a slurry of (0.01 mole) of N-substituted citraconamic acid in (20 mL) of dichloromethane with stirring and cooling to zero°C. when addition was completed the mixture was stirred for (24 hrs.) at room temperature followed by removal of the precipitate by filtration. The filtrate was concentrated then left until precipitation of isoimide which filtered and purified by recrystallization from a suitable solvent. Table-2 lists physical properties and spectral data of the prepared isoimides.

# 3- Preparation of N-Substituted Citraconimides (9-12)

N-substituted citraconimides were prepared by dehydration of citraconamic acids (1-4) using fusion technique according to literatures [13]. The resulted citraconimides were purified by recystallization from a suitable solvent and their physical properties are listed in table-3.

## 4- Preparation of Poly(N-Substituted Citraconisoimides) (13, 14)

The titled polymers were prepared via free radical chain growth polymerization as follows [14].

In dry polymerization bottle (0.001 mole) of N-substituted citraconisoimide was dissolved in (10 mL) of dioxane then (0.0002 g) of (AIBN) (Azo bisisobutyronitrile) was added (as initiator) and the bottle was flushed with nitrogen and firmly stoppered. The solution was maintained at (70-75°C) for 3 hrs. Then the resulted solution was poured into (20 mL) of methanol. The precipitated polymer was filtered, washed with methanol several times and dried. Physical properties of polymers (13-14) are listed in table-4 and their U.V and FTIR spectral data are listed in table-5.

|              |                    |                 |            | Malting      |                      | FT              | IR abs              | orptions cn          | 1 <sup>-1</sup>     |                          |
|--------------|--------------------|-----------------|------------|--------------|----------------------|-----------------|---------------------|----------------------|---------------------|--------------------------|
| Comp.<br>No. | Compound structure | Color           | Yield<br>% | points<br>°C | v(O-H)<br>carboxylic | v(C=O)<br>amide | v(N-<br>H)<br>amide | v(C=O)<br>carboxylic | v(C=C)<br>aliphatic | Other                    |
| 1            |                    | White           | 90         | 166-168      | 3217                 | 1635            | 3286                | 1704                 | 1535                | -                        |
| 2            |                    | Faint<br>pink   | 85         | 150-152      | 3232                 | 1636            | 3294                | 1697                 | 1535                | -                        |
| 3            |                    | Faint<br>yellow | 95         | 154-155      | 3220                 | 1626            | 3220                | 1701                 | 1606                | vO-H<br>phenolic<br>3355 |
| 4            |                    | Deep<br>yellow  | 94         | 157-159      | 3230                 | 1625            | 3230                | 1710                 | 1590                | vO-H<br>phenolic<br>3340 |

**Table 1-** Physical properties and FTIR spectral data of citraconamic acids

| Comm | Compound                           |                | Viold | Melting      | FTIR ab           | sorption | s cm <sup>-1</sup>  |                    |                          | U.V.                     |
|------|------------------------------------|----------------|-------|--------------|-------------------|----------|---------------------|--------------------|--------------------------|--------------------------|
| No.  | structure                          | Color          | %     | points<br>°C | v(C=O)<br>lactone | v(C=N)   | v(C=C)<br>aliphatic | v(C-H)<br>aromatic | Other                    | λ <sub>max</sub><br>(nm) |
| 5    | H <sub>3</sub> C, O<br>C<br>N<br>N | Light<br>tan   | 90    | 90-92        | 1782              | 1677     | 1636                | 3078               | -                        | 260<br>291               |
| 6    |                                    | Light<br>tan   | 91    | 93-95        | 1782              | 1674     | 1612                | 3060               | -                        | 248<br>345               |
| 7    | H <sub>3</sub> C O<br>C O<br>N     | Light<br>tan   | 85    | 78-80        | 1788              | 1674     | 1625                | 3055               | vO-H<br>phenolic<br>3325 | 242<br>300               |
| 8    | н <sub>3</sub> с_0<br>_с>0<br>_с>0 | Deep<br>yellow | 80    | 104-105      | 1780              | 1675     | 1623                | 3050               | vO-H<br>phenolic<br>3320 | 257<br>302               |

| Table 3- Physical properties and FTIR spectral data of N-substituted citr | aconimides |
|---------------------------------------------------------------------------|------------|
|---------------------------------------------------------------------------|------------|

| Comm         | Commound                                                                                                           |        | Viold | Melting      | FTIR ab         | sorptio    | ns cm <sup>-1</sup> |                    |                          | U.V.                     |
|--------------|--------------------------------------------------------------------------------------------------------------------|--------|-------|--------------|-----------------|------------|---------------------|--------------------|--------------------------|--------------------------|
| Comp.<br>No. | structure                                                                                                          | Color  | %     | points<br>°C | v(C=O)<br>imide | ν(C-<br>N) | v(C=C)<br>aliphatic | v(C=C)<br>aromatic | Other                    | λ <sub>max</sub><br>(nm) |
| 9            | H <sub>3</sub> C<br>C<br>C<br>N                                                                                    | Yellow | 85    | 176-178      | 1712            | 1373       | 1658                | 1537               | -                        | 260<br>295               |
| 10           | $H_3C$ $O$ $CH_3$ $CH_3$ $CH_3$ $O$ $CH_3$                                                                         | White  | 85    | 143-145      | 1712            | 1381       | 1628                | 1537               | -                        | 255<br>291               |
| 11           | H <sub>3</sub> C $\stackrel{O}{\underset{C}{}}$ HO $\stackrel{O}{\underset{C}{}}$ N $\stackrel{O}{\underset{O}{}}$ | Red    | 80    | 137-139      | 1700            | 1370       | 1610                | 1520               | vO-H<br>phenolic<br>3375 | 244<br>275               |
| 12           | н <sub>3</sub> с 0<br>с № Он                                                                                       | Yellow | 82    | 166-167      | 1690            | 1377       | 1612                | 1525               | vO-H<br>phenolic<br>3360 | 245<br>275               |

| Comp. | Compound structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Color           | Yield | Softening | [η]  |      |      |      | Sol     | ubility |            |         |      |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------|-----------|------|------|------|------|---------|---------|------------|---------|------|
| No.   | Compound structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Color           | %     | point °C  | dL/g | THF  | DMF  | DMSO | Benzene | Dioxane | $CH_2Cl_2$ | acetone | EtOH |
| 13    | $ \begin{array}{c} O = C \\ & \bigcirc \\ & \frown \\ & \frown \\ & \frown \\ & \bigcirc \\ & & \bigcirc \\ & \bigcirc \\ & & \bigcirc \\ & & \bigcirc \\ & & \bigcirc \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & & & & & & & & & & & &$ | Deep<br>brown   | 75    | 200-208   | 0.79 | Sol. | Sol. | Sol. | Ps.     | Psh.    | Ps.        | Ins.    | Ins. |
| 14    | $\begin{array}{c} O = C \\ \sim \\ \sim \\ C \\ C \\ C \\ H_3 \end{array} \xrightarrow{C} C \\ n \end{array} \xrightarrow{C} C \\ C \\ n \\ C \\ n \\ C \\ n \\ n \\ C \\ n \\ n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Faint<br>yellow | 77    | 215-220   | 0.87 | Sol. | Sol. | Sol. | Psh.    | Psh.    | Ps.        | Ins.    | Ins. |
| 15    | $ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Brown           | 75    | 240-245   | 0.9  | Psh. | Sol. | Sol. | Ps.     | Psh.    | Psh.       | Psh.    | Ps.  |
| 16    | $\overbrace{\begin{subarray}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Deep<br>brown   | 78    | 255-265   | 0.95 | Psh. | Sol. | Sol. | Ps.     | Psh.    | Psh.       | Psh.    | Ps.  |

Table 4- Physical properties of poly citraconisoimides and poly citraconimides

Sol. = soluble, Ps. = partial soluble, Ins. = Insoluble, Psh. = partial soluble in hot solvent

| Comm |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>^</b>          | FTI    | R absorptions cm <sup>-1</sup> |                  | TI X7 A    |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------|--------------------------------|------------------|------------|
| No.  | Compound structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | v(C=O)<br>lactone | v(C=N) | v(C=C) aromatic                | v(C-H) aliphatic | (nm)       |
| 13   | $ \begin{array}{c} O = C \\ & \bigcirc \\ & & \bigcirc \\ & & \bigcirc \\ & & \bigcirc \\ & & & \\ & & & \\ & & & \\ & & & &$ | 1744              | 1650   | 1535                           | 2932             | 240<br>295 |
| 14   | $O=C$ $C=N$ $CH_3$ $CH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1745              | 1675   | 1570                           | 2937             | 245<br>291 |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | v(C=O) imide      | v(C-N) | v(C=C) aromatic                | v(C-H) aliphatic |            |
| 15   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1712              | 1373   | 1542                           | 2970             | 250        |
| 16   | $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1713              | 1396   | 1566                           | 2936             | 255        |

**Table 5-** Spectral data of poly citraconisoimides and poly citraconimides

# 5- Preparation of Poly (N-Substituted Citraconimides) (15, 16)

The titled polymers were prepared by introducing N-substituted citraconimide in free radical chain growth polymerization following the same procedure used in preparation of polymers (13, 14). Physical properties of polymers (15, 16) are listed in table-4 and their U.V and FTIR spectral data are listed in table-5.

## 6- Preparation of (Citraconisoimide-acrylonitrile) Copolymers (17-20)

In a screw-capped polymerization bottle equimolar amounts (0.001 mole) of N-substituted citraconisoimide and acrylonitrile were dissolved in (10 mL) of dioxane then (0.0002 g) of AIBN was added (as initiator). The bottle was flushed with nitrogen for few minutes then firmly stoppered and maintained at (70-75)°C for 4hrs. The resulted solution was poured into (30 mL) of methanol and the precipitated polymer was filtered, washed with methanol and dried. Physical properties of copolymers (17-20) are listed in table-6 and their U.V and FTIR spectral data are listed in table-7.

# 7- Preparation of (Citraconisoimide-methylmethacrylate) Copolymers (21, 22)

The titled copolymers were prepared by following the same procedure used in synthesis of copolymers (17-20) except using of methylmethacrylate instead of acrylonitrile. Physical properties of copolymers (21, 22) are listed in table-6 and their U.V and FTIR spectral data are listed in table-7.

# 8- Preparation of (Citraconisoimide-methylacrylate) Copolymers (23, 24)

The lilted copolymers were prepared by following the same procedure used in synthesis of copolymers (17-20) except using of methylacrylate instead of acrylonitrile. Physical properties of copolymers (23, 24) are listed in table-6.

# 9- Preparation of Phenol-Formaldehyde Resins Containing Pendant Citraconisoimide (25, 26)

A mixture of (0.01 mole) of N-hydroxyphenyl) citraconisoimide, (0.01 mole) of (37%) formaldehyde and (10 mL) of DMF was placed in a three neck round bottomed flask equipped with reflux condenser, thermometer and dropping funnel. To this mixture a solution of (0.1 mL) Conc.  $H_2SO_4$  dissolved in (0.5 mL) of distilled water was added drop wise with continuous stirring followed by reflux at (70°C) for 3hrs. [15].

The resulted mixture was poured into cold water with stirring and the obtained precipitate was filtered, washed with petroleum ether and dried. Physical properties of polymers (25, 26) are listed in table-8.

|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |                       |             |             | Solub        | muy          |      |         |         |            |                                 |         |      |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------|-------------|-------------|--------------|--------------|------|---------|---------|------------|---------------------------------|---------|------|
| No | Compound structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Color           | Softening<br>point °C | Conv<br>. % | [η]<br>dL/g | THF          | DMF          | DMSO | Benzene | Dioxane | $CH_2Cl_2$ |                                 | Acetone | EtOH |
| 17 | $ \begin{array}{c} O = C \\ C = N \\ C = C \\ C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Faint<br>yellow | > 300                 | 75          | 0.75        | Ps.          | Sol.         | Sol. | Ins.    | Psh.    | Ins.       | Ins                             | 5.      | Ins. |
| 18 | $ \begin{array}{c} \begin{array}{c} O = C \\ C = N \\ C \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Light<br>tan    | 250-260               | 75          | 0.71        | Ps.          | Sol.         | Sol. | Ins.    | Psh.    | Ins.       | Ins                             | s.      | Ins. |
| 19 | $ \begin{array}{c} 0 = C \\ C = N \\ C = N \\ C \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Light<br>tan    | 270-277               | 77          | 0.77        | Ps.          | Sol.         | Sol. | Ins.    | Ps.     | Ins.       | Ins                             | i.      | Ins. |
| 20 | $ \begin{array}{c} \begin{array}{c} & & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Faint<br>yellow | > 300                 | 73          | 0.75        | Ps.          | Sol.         | Sol. | Ins.    | Ps.     | Ins.       | Ins                             | 5.      | Ins. |
| 21 | $\begin{array}{c} CH_3  O = C \\ I \\ -C \\ -C \\ -CH_2 \\ -CH_3 \\ COOCH_3 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Deep<br>yellow  | 280-295               | 75          | 0.79        | Psh.         | Sol.         | Sol. | Psh.    | Sol.    | Ins.       | So                              | 1.      | Ins. |
| No | Compound structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Color           | Softening<br>point °C | Conv<br>. % | [η]<br>dL/g | Solub<br>THF | ility<br>DMF | DMSO | Benzene |         | Dioxane    | CH <sub>2</sub> Cl <sub>2</sub> | Acetone | EtOH |
| 22 | $\begin{array}{c} CH_3  O = C \\ C = N \\ C = CH_2 \\ C = CH_3 \\ C =$                     | Yellow          | 245-260               | 75          | 0.83        | Psh.         | Sol.         | Sol. | Psh.    | Sol     | . ]        | Ins.                            | Sol.    | Ins. |
| 23 | $ \begin{array}{c} 0 = C \\ C = N \\ C = CH_2 \\ C = CH_3 $                    | Orange          | Gummy                 | 76          | 0.7         | Sol.         | Sol.         | Sol. | Psh.    | Psh     | I. ]       | Ps.                             | Psh.    | Ins. |
| 24 | $ \begin{array}{c} 0 = C \\ C = N \\ - C + C + 2 \\ - C + 2 \\ C + 2 \\ - C + 3 \\ C + 3 \\ - $ | Yellow          | Gummy                 | 67          | 0.76        | Sol.         | Sol.         | Sol. | Psh.    | Ps.     | ]          | Ps.                             | Psh.    | Ins. |

 Table 6- Physical properties of N-substituted citraconisoimides copolymers (17-24)

Sol. = soluble, Ps. = partial soluble, Ins. = Insoluble, Psh. = partial soluble in hot solvent

| a            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |                      | FTIR abso            | orptions cm          | -1                   |                            | U.V.                                   |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------------|----------------------------------------|
| Comp.<br>No. | Compound structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | v(C=O)<br>lactone    | v(C=N)               | v(C-H)<br>aliphatic  | v(C=C)<br>aromatic   | v(C≡N)               | Others                     | λ <sub>max</sub><br>(nm)               |
| 17           | $ \begin{array}{c} O = C \\ O = C \\ C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1745                 | 1690                 | 2946                 | 1545                 | 2249                 | -                          | 343<br>400                             |
| 18           | $ \begin{array}{c} \begin{array}{c} O = C \\ C = N \\ C \\ C \\ C \\ C \\ C \\ C \\ \end{array} \end{array} \begin{array}{c} O = C \\ \end{array} \begin{array}{c} O = C \\ C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1740                 | 1690                 | 2937                 | 1560                 | 2245                 | -                          | 315<br>340                             |
| 19           | $ \begin{array}{c} O = C \\ O = C \\ C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1745                 | 1660                 | 2937                 | 1545                 | 2249                 | v(O-H)<br>phenolic<br>3350 | 315<br>345                             |
| 20           | $ \begin{array}{c} 0 \\ 0 \\ 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 \\ - 0 $                                                                                                                                                                                                                                                                                                                                                                                       | 1745                 | 1675                 | 2947                 | 1550                 | 2248                 | v(O-H)<br>phenolic<br>3330 | 325<br>367                             |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | v(C=O)<br>lactone    | v(C=N)               | v(C-H)<br>aliphatic  | v(C=C)<br>aromatic   | v(C-O)<br>ester      | Others                     |                                        |
| 21           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |                      |                      |                      |                      |                            | 226                                    |
| 21           | $\begin{array}{c} c_{13} O = C  C = N  \\ \hline \\ \hline \\ \hline \\ c - CH_2  \\ \hline \\ C O O CH_3 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1727                 | 1649                 | 2950                 | 1565                 | 1150                 | -                          | 336<br>360                             |
| 21           | $\begin{array}{c} CH_3 O=C & C=N-\\ \hline C+C+C+L_2 & D^n \\ \hline COOCH_3 & CH_3 \\ \hline CH_3 O=C & C=N-\\ \hline C+C+C+L_2 & D^n \\ \hline COOCH_3 & CH_3 \\ \hline COOCH_3 & D=C \\ \hline C+C+C+L_2 & D^n \\ \hline COOCH_3 & D=C \\ \hline C+C+C+L_2 & D^n \\ \hline C+C+C+C+L_2 & D^n \\ \hline C+C+C+C+L_2 & D^n \\ \hline C+C+C+C+C+C+C+C+C+C+C+C+C+C+C+C+C+C+C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1727<br>1726         | 1649<br>1650         | 2950<br>2923         | 1565<br>1550         | 1150                 | -                          | 336<br>360<br>322<br>373               |
| 21 22 23     | $\begin{array}{c} CH_3 O = C & C = N \\ \hline & C - CH_2 \\ \hline & CH_3 O = C \\ \hline & CH_3 O = C$ | 1727<br>1726<br>1735 | 1649<br>1650<br>1625 | 2950<br>2923<br>2935 | 1565<br>1550<br>1545 | 1150<br>1211<br>1150 | -                          | 336<br>360<br>322<br>373<br>339<br>385 |

Table 7- FTIR and U.V. spectral data of N-substituted citraconisoimides copolymers (17-24)

 Table 8- Physical properties of N-substituted citraconisoimides phenolic resins

|              |                                                         |                |                       |            |             |      |      |      | Solu    | bility  |                                 |         |      |
|--------------|---------------------------------------------------------|----------------|-----------------------|------------|-------------|------|------|------|---------|---------|---------------------------------|---------|------|
| Comp.<br>No. | Compound structure                                      | Color          | Softening<br>point °C | Conv.<br>% | [η]<br>dL/g | THF  | DMF  | DMSO | Benzene | Dioxane | CH <sub>2</sub> Cl <sub>2</sub> | Acetone | EtOH |
| 25           | $H_{3}C \xrightarrow{O}_{C} OH \xrightarrow{C}_{H_{2}}$ | Faint<br>brown | 250-255               | 79         | 0.69        | Psh. | Sol. | Sol. | Ins.    | Psh.    | Ins.                            | Ps.     | Psh. |
| 26           |                                                         | Yellow         | 254-259               | 75         | 0.65        | Psh. | Sol. | Sol. | Ins.    | Psh.    | Ins.                            | Ps.     | Psh. |

#### **Results and Discussion**

Although numerous reports about homopolymerization and copolymerization of cyclic imides are found in literatures [16-21] we could not locate many syntheses of their polyisoimide isomers. This may be attributed to the lack of stability, low yields and difficulties in their purification in comparison with the corresponding imides.

So since polymerization of cyclic isoimides are rare in literatures and polymers containing isoimide moiety possess better processing properties the aim of the present work is directed toward synthesis of citraconisoimide homopolymers, copolymers and phenolic resins. Synthesis of the desirable mentioned polymers was performed through many steps described in Scheme (1).



Scheme (1) Synthetic route of the new compounds

The first step in the present work involved synthesis of four N-substituted citraconamic acids via reaction of citraconic anhydride with different aromatic primary amines. Physical properties and FTIR spectral data of amic acids are listed in table-1.

In general dehydration of amic acids produced two isomers imides and isoimides respectively depending on reaction conditions thus correct choice of reaction conditions especially temperature and suitable dehydrating agent could direct the reaction to the desirable product.

Thus the second step involved preparation of four citraconisoimides via dehydration of the prepared citraconamic acids using powerful dehydrating agent (DCC) at zero °C since these conditions were favorable in producing isoimides.

Mechanism for dehydration reaction proceeds by donation a proton from citraconamic acid to (DCC) leading to a ring-closed structure (I) which intern react with (DCC) cation producing six-membered ring transition state (II) which finally decomposed producing citraconisoimide as described in Scheme (2).



## Scheme (2)



The prepared citraconisoimides were characterized by FTIR and U.V. spectroscopy. FTIR spectra of citraconisoimides (5-8) showed disappearance of v(O-H) carboxylic and v(N-H) amide absorption bands which are important characteristic absorptions of amic acids, so their disappearance is a good proof for success of dehydration reaction.

Also FTIR spectra of citraconisoimides showed clear characteristic band at (1780-1788) cm<sup>-1</sup> which belong to v(C=O) lactone ring. Other bands were appeared at (1674-1677) cm<sup>-1</sup> and (1612-1636) cm<sup>-1</sup> due to v(C=N) and v(C=C) aliphatic respectively [22].

On the other hand U.V. spectra of citraconisoimides showed two clear bands at  $\lambda_{max}$  (242-260) nm and (291-345) nm due to  $(\pi \rightarrow \pi^*)$  and  $(n \rightarrow \pi^*)$  transition in conjugated system of isoimide ring with substituted aromatic ring. HNMR spectrum of compound (5) showed signals at  $\delta = (2.2)$ , (6.9) and (7.2-7.4) ppm which were assigned for CH<sub>3</sub> protons, vinylic proton and aromatic protons respectively.

At the same time a series of four corresponding citraconimides were prepared via dehydration of the prepared citraconamic acids by fusion and their physical properties and spectral data were recorded.

Comparison between physical properties and spectral data of citraconisoimides and corresponding citraconimides showed clear differences between them and gave us other proofs for success of citraconisoimide synthesis as shown in table-2 and 3.

In the third step of this work two of the prepared citraconisoimides were introduced in free radical chain growth homopolymerization using dioxane as solvent and (AIBN) as initiator. It is very necessary to mention here that success of free radical homopolymerization of citraconisoimides is very important result due to many reasons first synthesis of polyisoimides is very rare in literatures second free radical homopolymerization of the corresponding maleisoimides is failed completely to afford polymaleisoimide as reported in literatures [12] and instead affording polymaleimide due to the rearrangement to more stable maleimide units.

The reason for success of citraconisoimide hompolymerization may be attributed to the attachment of methyl group to isoimide ring so the monomer here represents stable more substituted vinylic system, moreover methyl group caused formation of stable tertiary free radical active center in initiation stage which introduced successfully in propagation process and exhibit the whole growing polymeric chain enough stability which avoid rearrangement to the corresponding polyimides as described in Scheme (3).



# Scheme (3)

Mechanism of free radical homopolymerization

Free radical homopolymerization of two corresponding citraconimides were performed also and their physical properties and spectral data were recorded and used for comparison. The listed data in table-4 showed that poly citraconisoimides are colored solids having less softening points and less intrinsic viscosities than the corresponding poly citraconimides.

FTIR spectra of poly citraconisoimides showed characteristic absorption band at (1744-1745) cm<sup>-1</sup> due to v(C=O) lactone and other bands at (1650-1675) cm<sup>-1</sup> and (1535-1570) cm<sup>-1</sup> belong to v(C=N) and v(C=C) aromatic, while FTIR spectra of poly citraconimides showed bands at (1712-1713) cm<sup>-1</sup> and (1373-1396) cm<sup>-1</sup> due to v(C=O) imide and v(C-N). U.V. spectra of poly citraconisoimides showed two clear bands at  $\lambda_{max}$  (240-245) nm and (291-295) nm due to ( $\pi \rightarrow \pi^*$ ) and ( $n \rightarrow \pi^*$ ) electronic transitions in isoimide ring conjugated to benzene ring system while U.V. spectra of poly citraconimides showed only one band at  $\lambda_{max}$  (250-255) nm. FTIR spectral data of compounds (13-16) are listed in table-5.

H-NMR spectrum of polymer (14) showed signals at  $\delta = (1.3, 2, 2.25)$  ppm which belong to aliphatic proton, protons of CH<sub>3</sub> group linked to benzene ring and protons of CH<sub>3</sub> group linked to isoimide ring respectively. Signals at  $\delta = (7.3-7.55)$  ppm are belong to aromatic protons.

The other part in this work involved introducing of the prepared citraconisoimides in copolymerization reaction with three vinylic monomers including arcylonitrile, methylmethacrylate and methylacrylate respectively.

This part is very important since it involved many important points first it involved synthesis of new copolymers containing isoimide moiety and this is rare in literatures second we proved in this part that citraconisoimides have good ability for introducing free radical copolymerization successfully producing good yields of the desirable copolymers.

Moreover the prepared copolymers showed different physical properties which lead to wide using in different applications and finally thermal stability of these copolymers increased with time and use due to rearrangement of isoimide ring to the corresponding stable citraconimide ring.

Softening points, intrinsic viscosities and solubility of the prepared copolymers are listed in table-6 while FTIR and U.V. spectral data for them are listed in table-7.

FTIR spectra of acrylonitrile copolymers (17-20) showed a clear absorption band at (2245-2249)  $\text{cm}^{-1}$  due to v(C=N) and this proved the presence of acrylonitrile units in the prepared copolymers. Other absorption bands are shown in (1740-1745)  $\text{cm}^{-1}$  and (1660-1690)  $\text{cm}^{-1}$  due to v(C=O) lactone and v(C=N) respectively.

<sup>1</sup>H-NMR spectra of copolymers (17) and (18) showed many signals at  $\delta = (1.05-2)$ , 2.35, 3.15 and (6.8-7.35) ppm which belong to aliphatic protons, protons of CH<sub>3</sub> group linked to isoimide ring, (-CH-CN) and aromatic protons. Compound (18) showed signal at  $\delta = (2.1)$  ppm belong to protons of CH<sub>3</sub> group substituted on benzene ring. On the other hand FTIR spectra of copolymers (21-24) revealed clear absorptions at (1726-1744) cm<sup>-1</sup>, (1625-1650) cm<sup>-1</sup> and (1150-1211) cm<sup>-1</sup> due to v(C=O) lactone, v(C=N) and v(C-O-C) ester respectively.

<sup>1</sup>H-NMR spectra of copolymers (21-23) showed many signals at  $\delta = (0.7-1.8)$ , (2.25-2.5), (3.3-3.55) and (6.9-7.85) ppm which belong to aliphatic protons, protons of CH<sub>3</sub> group linked to isoimide ring, (-COO<u>CH<sub>3</sub></u>) protons and aromatic protons. Compounds (21) and (22) showed another signal at  $\delta = (2.5)$  ppm belong to protons of methyl group in methacrylate moiety, while compound (22) showed signal at  $\delta = (2.05)$  ppm belong to protons of CH<sub>3</sub> substituted on aromatic ring (24).

U.V. spectra of the prepared copolymers (17-24) showed bands at  $\lambda_{max}$  (315-343) and (345-400) nm. These absorptions were due to  $(\pi \rightarrow \pi^*)$  and  $(n \rightarrow \pi^*)$  transitions in ester group or cyano groups attached to substituted isoimide moiety.

Copolymers (21-24) gave positive results in characteristic test of esters proving success of copolymerization reaction.

In general copolymerization is very important technique which collects between different monomers together producing new polymers having new physico-chemical properties [25]. Thus prepared copolymers in this work showed different physical properties depending on the nature of vinylic monomers used in building their repeating units. The presence of polar cyano group in the repeating units of acrylonitrile copolymers (17-20) increased intermolecular interactions over all polymeric chains leading to increase crystallinity and this exhibit the polymers high softening points and resistance to solubility in many organic solvents. On the other hand introducing of methylmethacrylate and methylacrylate monomers in copolymerization with citraconisoimides exhibit the resulted copolymers softness, flexibility and good solubility in many organic solvents. These physical properties are fitted with the expected ones since incorporation of flexible moieties like esters decrease crystallinity and intermolecular interactions and this increase flexibility and solubility.

Since phenol-formaldehyde resins are very important polymers with wide spectrum of different applications [26-27] the present work involved also synthesis of new phenolic resins containing pendant citraconisoimide moiety in their repeating units. Synthesis of these resins was performed by condensation polymerization of the prepared N-(hydroxy phenyl)citraconisoimides with formaldehyde under conditions similar to those used in Novolac preparation including reflux at (70°C) for 3 hrs. in the presence of acid catalyst. N-(hydroxy phenyl) citraconisoimides were introduced successfully in this reaction since it represent a modified phenolic moiety which condensed with formaldehyde instead of known phenol producing the new phenolic resins as described in Scheme (4).



Scheme (4) Mechanism steps for synthesis of the new phenolic resins

The first step in mechanism of this reaction involved reaction of proton with formaldehyde producing carbocation which introduced electrophilic substitution reaction on phenolic ring producing (methylol phenol) (I) which inturn introduced electrophilic substitution reaction with another phenolic ring under the influence of acidic medium producing di(hydroxy phenyl citraconisoimidyl)methane (II) which introduce subsequent electrophilic substitution reactions producing the desirable phenolic resins.

The prepared phenolic resins are colored solids having high softening points and their intrinsic viscosities are in the range (0.65-0.69) dL/g.

FTIR spectra of phenolic resins showed many clear absorption bands at (1730-1735) cm<sup>-1</sup>, (1660-1680) cm<sup>-1</sup> and (3330-3525) cm<sup>-1</sup> which belong to v(C=O) lactone, v(C=N) and v(O-H) phenolic respectively while U.V. spectra of these resins revealed two bands at  $\lambda_{max}$  (265-266) and (281-290) nm which are due to ( $\pi \rightarrow \pi^*$ ) and ( $n \rightarrow \pi^*$ ) transitions in phenolic ring attached to isoimide moiety.

<sup>1</sup>H-NMR spectrum of phenolic resin (25) showed signals at  $\delta = (2, 3.3, 5.85, 6.3 \text{ and } 7.1)$  ppm which belong to CH<sub>3</sub> protons, methylol protons, vinylic proton, phenolic OH proton and aromatic protons. Physical properties of the prepared phenolic resins are listed in table-8 and their FTIR and U.V. spectral data are listed in table-9.

<sup>1</sup>H-NMR spectral data and C.H.N analysis for some of the prepared compounds in this work are listed in tables-10 and 11, respectively.

# Conclusions

The present investigation supplies us with very valuable information about the ability of citraconisoimides for chain growth homopolymerization, copolymerization and condensation polymerization. This information include the following:

1- The prepared N-subsituted citraconisoimides introduced successfully in free a radical chain growth homopolymerization producing new stable homopolymers.

2- The prepared N-substituted citraconisoimides introduced successfully in free radical chain growth copolymerization with different vinylic monomers producing new copolymers having different physical properties which may serve different applications.

3- N-(hydroxy phenyl)citraconisoimides introduced successfully in condensation polymerization with formaldehyde under conditions similar to those used in Novolac producing new phenolic resins containing pendant citraconisoimide moiety in their repeating units.

| G             |                                                          |                   |        | FTI                | R absorpti         | ons cm <sup>-1</sup> |                     |                    |                 |
|---------------|----------------------------------------------------------|-------------------|--------|--------------------|--------------------|----------------------|---------------------|--------------------|-----------------|
| Comp<br>. No. | Compound structure                                       | v(C=O)<br>lactone | v(C=N) | v(C-H)<br>aromatic | v(C=C)<br>aromatic | v(C-H)<br>aliphatic  | v(C=C)<br>aliphatic | v(O-H)<br>phenolic | $(\mathbf{nm})$ |
| 25            | $H_{3}C \xrightarrow{O}_{C} O \xrightarrow{O}_{C} H_{2}$ | 1730              | 1660   | 3125               | 1550               | 2955                 | 1610                | 3525               | 266<br>281      |
| 26            | $H_{3}C = CH_{2}$                                        | 1735              | 1680   | 3090               | 1560               | 2945                 | 1630                | 3330               | 265<br>290      |

|--|

|                  | Wilk spectral data for some of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Comp. No.        | Compound Structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <sup>1</sup> HNMR spectral data (δ ppm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| 5                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\delta = 2.2(s, 3H, CH_3 \text{ protons}), \delta = 6.9(s, 1H, vinylic), \delta = (7.2-7.4) \text{ m}, 5H, \text{ aromatic protons}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| 14               | $O=C C=N - CH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $δ = 1.3$ (s, aliphatic proton), $\delta = 2$ (s, 3H, CH <sub>3</sub> protons<br>$\sim )$ ,<br>$\delta = 2.25$ (s, 3H, CH <sub>3</sub> protons<br>$\sim (-)$<br>$\delta = 2.25$ (s, 3H, CH <sub>3</sub> protons)<br>$\delta = (7.3-7.55)$ (m,<br>4H, aromatic protons)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| 17               | $ \begin{array}{c} 0 = C \\ C = N \\ C = N \\ C \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\delta = (1.4-2) \text{ d}$ , aliphatic protons, $\delta = 2.35(\text{s}, 3\text{H}, \text{CH}_3 \text{ protons}, \delta = 3.15(\text{t}, -\text{CHCN proton}), \delta = (7.05-7.3)(\text{m}, 5\text{H}, \text{ aromatic protons})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| Comp. No.        | Compound Structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <sup>1</sup> HNMR spectral data ( $\delta$ ppm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| 18               | $ \begin{array}{c} O = C \\ C = N \\ C \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $δ = (1.05-1.75)$ d, aliphatic protons, $\delta = 2.1$ (s, 3H, CH <sub>3</sub><br>protons $\checkmark$ ),<br>$\delta = 2.35$ (s, 3H, CH <sub>3</sub> protons $\overset{O=C}{\longleftarrow} \overset{O=C}{\longleftarrow} \overset{O=C}{\longrightarrow} \overset{O=C}{\to} \overset{O=C}{\to} \overset{O=C}{\to} O=$ |  |  |  |
| 21               | $\begin{array}{c} CH_3  O = C \\ I \\ - C \\ - C \\ - C \\ - CH_2 \\ CH_3 \\ COOCH_3 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | δ = (1-1.65) d, aliphatic protons, $δ = 2.3$ (s, 3H, CH <sub>3</sub> protons)<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$<br>$(-C_{C=N})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| 22               | $\begin{array}{c} CH_3 & O = C \\ I \\ - C \\ - C \\ - C \\ - CH_2 \\ - CH_3 \\ COOCH_3 \end{array} \xrightarrow{O}_{n} CH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\delta = (0.8-1.7) \text{ m, aliphatic protons, } \delta = 2.05(\text{s, 3H, CH}_3 \text{ protons}),$<br>$\delta = 2.25(\text{s, 3H, CH}_3 \text{ protons}), \delta = 2.5(\text{s, 3H, CH}_3 \text{ protons}), \delta = 2.5(\text{s, 3H, CH}_3 \text{ protons}), \delta = 3.35(\text{s, 3H, OCH}_3 \text{ protons}), \delta = (6.9-7.5) \text{ (m, 4H, aromatic protons)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| 23               | $\begin{array}{c} 0 = C \\ C = N \\ C = CH_2 \\ C = CH_3 \\$                       | δ = (0.7-1.8) m, aliphatic protons, $δ = 2.5$ (s, 3H, CH <sub>3</sub><br>protons $(CH_3)$<br>β = 3.55(s, 3H, OCH <sub>3</sub> protons), $δ = (7.2-7.85)$ (m, 5H, aromatic protons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| 25<br>s: singlet | $ \begin{array}{c}  H_{3}C \\  CH_{2} \\  H_{3}C \\  CH_{2} \\  H_{2} \\  CH_{2} \\  H_{2} \\  CH_{2} \\  H_{3} \\  CH_{3} \\  CH_{3} \\  H_{3} \\  CH_{3} \\  CH$ | $\delta = 2(s, 3H, CH_3 \text{ protons}), \ \delta = 3.3(m, 4H, \underbrace{CH_2}_{n}), \ \delta = 5.85(s, 1H, \text{ vinylic}), \ \delta = 6.3(s, OH \text{ phenolic}), \ \delta = 7.1(2H, aromatic \text{ protons}).$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| 5. Singlet       | u. uoubici                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | m. maple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |

**Table 10-** <sup>1</sup>HNMR spectral data for some of the prepared compounds

| Comp. No. | Calculated |      |       | Found |      |       |
|-----------|------------|------|-------|-------|------|-------|
|           | %C         | %H   | %N    | %C    | %H   | %N    |
| 6         | 71.64      | 5.47 | 6.96  | 71.78 | 5.26 | 7.14  |
| 8         | 65.02      | 4.43 | 6.89  | 64.90 | 4.66 | 7.04  |
| 14        | 71.64      | 5.47 | 6.96  | 71.93 | 5.74 | 6.74  |
| 20        | 65.62      | 4.68 | 10.93 | 65.79 | 4.54 | 11.20 |
| 21        | 66.89      | 5.92 | 4.87  | 66.65 | 6.22 | 5.00  |
| 24        | 66.89      | 5.92 | 4.87  | 67.18 | 6.17 | 4.71  |
| 25        | 68.12      | 4.80 | 6.11  | 68.38 | 5.07 | 6.23  |

Table 11- C.H.N. Analyses for some of the prepared compounds

# References

- 1. Shau M., Tsai P., Teng W. and Hsu W., 2006. New bismaleimide containing cyclic phosphine oxide and an epox unit: synthesis, characterization, thermal and flame properties. *European Polym. J.*, 42, pp:1899-1908.
- 2. Chen K., Chen X., Yaguchi K., N. Endo, M. Higa and K. Okamoto. 2009. Synthesis and properties of novel sulfonated polyimides bearing sulfophenyl pendant groups for fuel cell application. *Polymer*, 50, pp:510-516.
- **3.** Koywncu F.B., Koyuncu S. and Ozdemir E., **2010.** A novel donor-acceptor polymeric electrochromic material containing carbazole and 1,8-naphthalimide as subunit. *Electro Chim. Acta*, 55, pp:4935-4940.
- 4. Gaurys P., Boudinet D., Zagorska M., Djurado D. and Verilhac J. M., **2009.** Solution processible naphthalene and perylene bisimides: synthesis, electrochemical characterization and application to organic field effect transistors fabrication. *Synthetic Metals*, 159, pp:1478-1488.
- 5. Zhang S.J., Li Y. F., Wang X. L. and Yin D. X., 2005. Synthesis and characterization of novel polyimide based on pyridine-containing diamine. *Chinese Chem. Lett.*, 16, pp:1165-1172.
- 6. Grabchev I., Bosch P., Mckenna M. and Nedelcheva A., 2007. Synthesis and spectral properties of new green fluorescent poly(propylene imine) dendrimers modified with 1,8-naphthalimide as sensor for metal cations. *Polymer*, 48, pp:6755-6764.
- 7. Zhang F., Cui Z., Li N., Dai L. and Zhang S., 2008. Synthesis of sulfonated poly(acrylene-co-naphthalimide) as a novel polymers for proton exchange membranes. *Polymer*, 49, pp:3272-3279.
- **8.** Haval K. P. and Argade N. P., **2006.** Haval-Argade contra thermodynamic rearrangement of alkylidene succinimides to alkyl maleimides via the corresponding isoimides a general approach to alkyl and dialkyl substituted maleimides. *Tetrahedron*, 62, pp:3557-3563.
- 9. Oh S. B., Kim B. S. and Kim J. H., 2006. Preparation and properties of polyimide / organo clay nanocomposites from soluble polyisoimide. *J. Ind. Eng. Chem.*, 12, pp:275-282.
- **10.** Xenopoulos C., Mascia L. and Shaw S. J., **2002.** Polyimide-silica hybrids derived from an isoimide oligomer precursor. *J. Mat. Chem.*, 12, pp:213-223.
- **11.** Al-Azzawi A. M. and Al-Obydi K. K., **2003.** Synthesis and polymerization of N-subtituted phthalimidyl acrylate. *National J. Chem.*, 12, pp:576-585.
- **12.** Al-Azzawi A. M. and Yaseen M.A., **2009.** Synthesis and characterization of N-substituted maleisoimides homopolymers and copolymers with some vinylic monomer. *Iraqi J. of Sci.*, 50, pp:431-444.
- **13.** Pyriadi T. M. and Al-Azzawi A. M., **1999.** Synthesis, polymerization and curing of N-substituted citraconimidyl acrylates. *J. Poly. Sci.*, 37, pp:427-435.
- 14. Hamad A.S., 1996. Synthesis and polymerization of several N-substituted maleimides. J. Poly. Sci., 34, pp:5283-5289.
- **15.** Al-Azzawi A. M. and Ali M.S., **2008.** Synthesis and curing of novel phenol-formaldehyde resins containing pendant citraconimides. *J. Al-Nahrain Univ. Sci.*, 11, pp:15-30.
- 16. Schab E., Grobelny L., Sobolewska A. and Miniewicz A., 2006. Cycloaliphatic-aromatic polyimides based on diamines with azobenzene unit. *Eur. Poly. J.*, 42, pp:2859-2866.
- Hsiao S. H., Yang C. P. and Chen S. H., 2000. Synthesis and properties of ortho-linked aromatic polyimide based on 1,2-bis(4-aminophenoxyl)-4-tertbutylbenzene. J. Poly. Sci., 38, pp:1551-1556.

- **18.** Mehdipour S. and Zigheimat F., **2007.** Soluble poly(amide imide)s containing oligoether spacers. *Eur. Poly. J.*, 43, pp:1020-1027.
- **19.** Chhabra P. and Choudhary V., **2009.** Synthesis and characterization of sulfonated naphthalenic polyimides based on 4,4<sup>\</sup>-diaminodiphenylether-2,2<sup>\</sup>-disulfonic acid. *Eur. Poly. J.*, 45, pp:1467-1476.
- **20.** Maggioni G., Carturan S., Tonezzer M. and Buffa M., **2008.** Porphyrin-containing polyimide films deposited by high vacuum co-evaporation. *Eur. Polym. J.*, 44, pp:3628-3639.
- **21.** Zhang C., Zhang M., Cao H. and Wang Z., **2007.** Synthesis and properties of a novel isomeric polyimide/SiO<sub>2</sub> hybrid material. *Composites Sci. and Tech.*, 67, pp:380-389.
- **22.** Silverstien R. M., Bassler G. C. and Morill T. C., **1981.** Spectrometric identification of organic compounds. 4<sup>th</sup> Edition, John Wiley Sons, New.
- **23.** Cottup N. B., Daly L. H. and Wiberley S. E., **1975.** *Introduction to infrared and Raman spectroscopy*. 2<sup>nd</sup> Edition, New York and London Academic Press.
- 24. Abraham R. J. and Loftus P., 1978. Proton and <sup>13</sup>C-NMR spectroscopy, London Heyden.
- **25.** Liu C., Xu X. and Huang J., **2004.** Spontaneous copolymerization of N-butyl maleimide and ethyl α-phenylacrylate with high alternating tendency., *J. Apply. Poly. Sci.*, 94, pp:335-360.
- 26. Liu Y. G. and Gao J G., 2002. Synthesis, characterization and thermal properties of novel phenolic resins, Polym. *Degradation and stability*, 77, pp:945-954.
- 27. Vaughn J. G., Lackey E. and Green D., 2004. New fast cure for phenolic resins, *Composites*, 4, pp:720-726.