

ISSN: 0067-2904

Strong and Weak Forms of $\boldsymbol{\mu}$-Kc-Spaces

Nadia A. Nadhim ${ }^{1 *}$, Haider J. Ali ${ }^{\mathbf{2}}$, Rasha N. Majeed ${ }^{\mathbf{3}}$
${ }^{1}$ Department of Mathematics, Faculty of Education for Pure Sciences, University of AL-Anbar, AL-Anbar, Iraq
${ }^{2}$ Department of Mathematics, College of Science, University of AL-Mustansiriyah, Baghdad, Iraq
${ }^{3}$ Department of Mathematics, Faculty of Education for pure sciences Abn AL-Haitham, University of Baghdad, Baghdad, Iraq

Received: 5/5/2019
Accepted: 21/9/2019

Abstract

In this paper, we provide some types of μ-Kc-spaces, namely, $\mu-K(\alpha c)$ (respectively, $\mu-\alpha K(\alpha c)-, \mu-\alpha K(c)$ - and $\mu-\theta K(c)-$) spaces for minimal structure spaces which are denoted by (m-spaces). Some properties and examples are given. The relationships between a number of types of μ - $K c$-spaces and the other existing types of weaker and stronger forms of m-spaces are investigated. Finally, new types of open (respectively, closed) functions of m-spaces are introduced and some of their properties are studied.

Keywords: $K c$-space, minimal structure spaces, μ - $K c$-space, α-open, θ-open.

ناديه علي ناظم *"، حيدر جبر علي²، رشا ناصر مجيد³ ${ }^{3}$ ²
1 ${ }^{1}$ قسم الرياضيات، كليه التربية للعلوم الصرفة ،جامعله الانبار ، الانبار ،العراق.
2 قسم الرياضيات ،كليه العلوم ،الجامعة المستصصرية ،بغذاد ،العراق
33
الخلاصة
$\mu-\alpha K(\alpha c)^{-}$, $\mu-\alpha K(c)-$ - في هدا البحث قمنا بغض الانواع من فضاءات- $\mu-K c$ اي فضاءاء (minimal structure والاي رمزنا لله (فضاء- $\mu-\theta K(c)-)^{-} \mu-K(\alpha c)$,
واعطيت بعض الخصائص والامثلة. العلاقات بين بضض الانواع من فضاءات μ مات μ والانواع الموجودة
الاخرى من الصيغ الاضعف و الاقوى لضضاء-m حقتّ. اخيرا انواع جديدة من الدوال المتتوحة (المغلقة على
التوالي) في فضاء-m قدمت ودرست بعض صفاتها.

1. Introduction

The concept of $K c$-space was introduced by Wilansky [1], that is "A topological space (X, \mathcal{T}) is said to be $K c$-space if every compact subset of \mathcal{X} is closed". Also, many important properties were provided by that study, e.g., "Every $K c$-space is T_{1}-space" and "every T_{2}-space is $K c$-space". In 1996, Maki [2] introduced the minimal structure spaces, shortly m-spaces, that is " A sub collection μ of $P(\mathcal{X})$ is called the minimal structure of \mathcal{X}, if $\emptyset \in \mu$ and $\mathcal{X} \in \mu,(X, \mu)$ is said to be m-structure space". The elements of μ are called μ-open sets and their complements are μ-closed sets, which is a generalization of topological spaces. Popa and Noiri [3] studied the m-spaces and defined the notion of continuous functions between them. In 2015, Ali et al. [4] defined the concept of $K c$-space with

[^0]respect to the m-space to obtain a new space which they called the $\mu-K c$-space. A weaker and stronger form of open sets plays an important role in topological spaces. In 1965, Najasted [5] introduced the concept of α-open sets as a generalization of open sets. That is, let $(\mathcal{X}, \mathcal{T})$ be a topological space and a nonempty subset \mathcal{A} of \mathcal{X} is said to be α-open set, if $\mathcal{A} \subseteq \operatorname{Int}(\operatorname{Cl}(\operatorname{Int}(\mathcal{A})))$. In 2010, Min [6] generalized the concept of α-open sets to m-spaces. On the other hand, in 1968, Velicko [7] introduced the concept of θ-open sets. That is "Let $(\mathcal{X}, \mathcal{T})$ be a topological space, $\mathcal{N} \subseteq \mathcal{X}$, a point $b \in X$ is said to be an $\theta \mu$-adherent point for a subset \mathcal{N} of \mathcal{X}, if $\mathcal{N} \cap \operatorname{Cl}(G) \neq \emptyset$ for any open set G of \mathcal{X} and $b \in \mathcal{N}$. The set of θ-adherent point is said to be an θ-closure of \mathcal{N} which is denoted by $\theta C l(\mathcal{N})$. A subset \mathcal{N} of \mathcal{X} is called θ-closed set if every point to \mathcal{N} is an θ-adherent point. Also, in 2018, Makki [8] defined θ-open sets in m-space. The aim of the present paper is to introduce and study new type of μ-Kc-spaces, namely, $\mu-K(\alpha c)$ - (resp. $\mu-\alpha K(c)-, \mu-\alpha K(\alpha c)$ - and $\mu-\theta K(c)-$) spaces by using the concept of α-open, respectively θ-open sets, with respect to the m-space. We study the basic properties of each space and give the relationships between them. Also, we introduce new kinds of continuous, open (respectively closed) functions on m-spaces and investigate their properties.

2.Preliminaries

Let us recall the following definitions, properties and theorems which we need in this work
Definition 2.1 [3] Let \mathcal{X} be a non-empty set and $P(X)$ be the power set of \mathcal{X}. A sub collection μ of $P(\mathcal{X})$ is called the minimal structure of \mathcal{X}, if $\emptyset \in \mu$ and $\mathcal{X} \in \mu,(\mathcal{X}, \mu)$ is said to be m-structure space (shortly, m-spaces). The elements of μ are called μ-open sets and their complements are μ-closed sets. For a subset \mathcal{B} in an m-space on (\mathcal{X}, μ), the interior (respectively, closure) of \mathcal{B} denoted by $\mu \operatorname{Int}(\mathcal{B})$ (respectively, $\mu \operatorname{Cl}(\mathcal{B})$) is defined as follows:
$\mu \operatorname{Int}(\mathcal{B})=U\{U: U \subseteq \mathcal{B}, U \in \mu\}$ and $\mu C l(\mathcal{B})=\cap\left\{F: \mathcal{B} \subseteq \mathcal{F}, \mathcal{F}^{c} \in \mu\right\}$.
Remark 2.2 Note that according to a previous study [9], $\mu \operatorname{Int}(\mathcal{B})$ (respectively, $\mu \operatorname{Cl}(\mathcal{B})$) is not necessarily μ-open (respectively, μ-closed), but if \mathcal{B} is μ-open then $\mathcal{B}=\mu \operatorname{Int}(\mathcal{B})$, respectively, and if \mathcal{B} is μ-closed, then
$\mathcal{B}=\mu C l(\mathcal{B})$.
Definition 2.3 [10] an m-space (\mathcal{X}, μ) has a property β (respectively Υ) if the union (respectively intersection) of any family (respectively finite subsets) of μ also belongs to μ.
Definition 2.4 [6] A subset A of an m-space (\mathcal{X}, μ) is said to be an $\alpha \mu$-open, if $A \subseteq \mu \operatorname{Int}(\mu \operatorname{Cl}(\mu \operatorname{Int}(A)))$.The complement of $\alpha \mu$-open set is called $\alpha \mu$-closed set or, equivalently, $\mu C l(\mu \operatorname{Int}(\mu C l(A))) \subseteq A$.
Definition 2.5 [6] An m-space (\mathcal{X}, μ) has a property $\alpha \Upsilon$, if the intersection of finite $\alpha \mu$-open sets is an $\alpha \mu$-open set in \mathcal{X}.
Remark 2.6 [6] From Definition 2.4, it is clear that every μ-open (respectively μ-closed) set is an $\alpha \mu$ open (respectively $\alpha \mu$-closed) set.
Definition 2.7 [10] Let (\mathcal{X}, μ) be an m-space. A point $x \in \mathcal{X}$ is called an $\alpha \mu$-adherent point of a set $A \subseteq \mathcal{X}$ if and only if $G \cap A \neq \emptyset$ for all $G \in \mu$ such that $x \in G$. The set of all $\alpha \mu$-adherent points of a set A is denoted by $\alpha \mu \operatorname{ICl}(A)$, where $\alpha \mu C l(A)=\cap\{F: A \subseteq F, F$ is $\alpha \mu$-closed set $\}$.
Proposition 2.8 [6] A subset F of m-space \mathcal{X} is $\alpha \mu$-closed set in \mathcal{X} iff $\mathrm{F}=\alpha \mu C l(F)$.
Definition 2.9 [7] Let (\mathcal{X}, μ) be an m-space, $\mathcal{A} \subseteq \mathcal{X}$. Then $a \in \mathcal{X}$ is said to be $\alpha \mu$-interior point to \mathcal{A} iff $\in U \subseteq \mathcal{A}$, for some $\alpha \mu$-open set U and $x \in U$. The $\alpha \mu$-interior point of a set \mathcal{A} is all $\alpha \mu$ interior point to \mathcal{A} and denoted by $\alpha \mu \operatorname{Int}(\mathcal{A})$, where $\alpha \mu \operatorname{Int}(\mathcal{A})=\bigcup\{U: U \subseteq \mathcal{A}, U$ is $\alpha \mu$-open set $\}$.
Proposition 2.10 [6] any subset of m-space \mathcal{X} is $\alpha \mu$-open set iff every point in it is $\alpha \mu$-interior point.
Remark 2.11 [6] If (\mathcal{X}, μ) is an m-space, then:

1. The union of any family of $\alpha \mu$-open sets is $\alpha \mu$-open set.
2. The intersection of any two $\alpha \mu$-open sets may be not $\alpha \mu$-open set.

Definition 2.12 [12] An m-space, (\mathcal{X}, μ) is called μ-compact if any μ-open cover of \mathcal{X} has a finite subcover. A subset \mathcal{H} of an m-space is said to be μ-compact in \mathcal{X}, if for any cover by μ-open of \mathcal{X}, there is a finite subcover of \mathcal{H}.
Proposition 2.13 [11] Every μ-closed set in μ-compact space is an μ-compact set.

Definition 2.14 [6] An m-space (\mathcal{X}, μ) is said to be $\alpha \mu$-compact space if any $\alpha \mu$-open cover of \mathcal{X} has a finite subcover. A subset \mathcal{B} of m-space \mathcal{X} is called $\alpha \mu$-compact, if any $\alpha \mu$-open set of \mathcal{X} which covers \mathcal{B} has a finite subcover of \mathcal{B}.
Remark 2.15 Any $\alpha \mu$-compact is μ-compact set. However the converse is not necessarily true as shown by the following example.
Example 2.16 Let \mathcal{R} be the set of real numbers and \mathcal{X} be a non-empty set such that $\mathcal{X}=\{x\} \cup$ $\{r: r \in \mathcal{R}\}$, where $x \in \mathcal{X}$. Also $\mu=\{\phi, \mathcal{X},\{x\}\}$, then $\mathbb{C}=\{\{x, r\}: r \in \mathcal{R}\}$ is an $\alpha \mu$-open cover to \mathcal{X}. Since $\{x, r\} \subseteq \mu \operatorname{Int}(\mu \operatorname{Cl}(\mu \operatorname{Int}(\{x, r\})))=\mathcal{X}$, so $\{x, r\}$ is an $\alpha \mu$-open set. Now, \mathbb{C} is an $\alpha \mu$-open cover to \mathcal{X}, but it has no finite subcover to \mathcal{X}, since, if we remove $\{\mathrm{x}, 50\}$ then the reminder is not cover \mathcal{X} (cover all \mathcal{X} except 50), and it is infinite cover. Hence, \mathcal{X} is not $\alpha \mu$-compact space and it is clear that \mathcal{X} is μ-compact space, since the only μ-open cover of \mathcal{X} is \mathcal{X} itself, which is one set, that is, a finite open cover to \mathcal{X}.
Definition 2.17 [10] An m-space is called an μ - T_{1}-space, if for any two points a, b in $\mathcal{X}, a \neq b$ there is two μ-open sets N, M such that $a \in \mathrm{~N}$, but $b \notin \mathrm{~N}$ and $b \in \mathrm{M}$ but $a \notin \mathrm{M}$.
Proposition 2.18 [4] An m-space is μ - T_{1}-space if and only if every singleton set is μ-closed set, whenever \mathcal{X} has β property.
Definition 2.19 [10] An m-space is said to be $\alpha \mu-T_{1}$-space, if for every two t points c, d in \mathcal{X}, there are two $\alpha \mu$-open sets \mathcal{K}, \mathcal{H} with $c \in \mathcal{K}$, but $c \notin \mathcal{H}$ and $d \in \mathcal{H}$ but $d \notin \mathcal{K}$.
Remark 2.20 [10] Every μ - T_{1}-space is $\alpha \mu-T_{1}$-space.
Definition 2.21 [10] An m-space (\mathcal{X},) is called μ - T_{2}-space (respectively $\alpha \mu-T_{2}$-space), if for any two distinct points x, y in \mathcal{X}, there are two μ-open (respectively $\alpha \mu$-open) U, V, such that $x \in U, y \in$ V, and $U \cap V=\emptyset$.
Definition 2.22 [4] An m-space (\mathcal{X}, μ) is said to be μ - $K c$-space if any μ-compact subset of \mathcal{X} is μ closed set.
Example 2.23 Let \mathcal{R} be the real numbers, $\left(\mathcal{R}, \mu_{\mathrm{U}}\right)$ is the usual μ-space which is μ-Kc-space.
Proposition 2.24 [12] Every μ-compact set in μ - T_{2}-space, that has the property β and Υ, is μ-closed set.

Remark 2.25 [4]

1. Every $\mu-K c$ space is $\mu-T_{1}$-space.
2. Every μ - T_{2}-space with the property β and Υ is $\mu-K c$-space.

Definition 2.26 Let $f:(\mathcal{X}, \mu) \rightarrow\left(\mathcal{Y}, \mu^{\prime}\right)$ be a function. Then f is called:

1. m-continuous [15] iff for any μ^{\prime}-open \mathcal{N} in , the inverse image $f^{-1}(\mathcal{N})$ is an μ-open set in \mathcal{X}.
2. αm-continuous [6] iff for any μ^{\prime}-open set \mathcal{M} in \mathcal{Y}, the inverse image $f^{-1}(\mathcal{M})$ is an $\alpha \mu$-open set in X.
Proposition 2.27 [14] The m-continuous image of μ-compact is μ^{\prime}-compact.
Definition 2.28 [4] A function $f:(\mathcal{X}, \mu) \rightarrow\left(\mathcal{Y}, \mu^{\prime}\right)$ is said to be m-homeomorphism, if f is injective, surjective, continuous and f^{-1} continuous. If there exists an m-homeomorphism between (\mathcal{X}, μ) and $\left(\mathcal{Y}, \mu^{\prime}\right)$ then we say that $(\mathcal{X}, \mu) m$-homeomorphic to $\left(\mathcal{Y}, \mu^{\prime}\right)$.
Definition 2.29 [13] Let (\mathcal{X}, μ) be m-space, \mathcal{F} be a subset of \mathcal{X} and $x \in \mathcal{X}$. A point x is called an $\theta \mu$ interior point of \mathcal{F} if there is $\mathcal{C} \in \mu$ such that $x \in \mathcal{C}$ and $x \in \mu C l(\mathcal{C}) \subseteq \mathcal{F}$. And $\theta \mu$-interior set which is denoted by $\theta \mu \operatorname{Int}(\mathcal{F})$ is the set of all $\theta \mu$-interior points. A subset \mathcal{F} of \mathcal{X} is called an $\theta \mu$ open set if every point of \mathcal{F} is an $\theta \mu$-interior point.
Definition 2.30 [13] Let (\mathcal{X}, μ) be m-space, $H \subseteq \mathcal{X}$, a point $b \in X$ is said to be an $\theta \mu$-adherent point for a subset H of \mathcal{X}, if $H \cap \mu C l(G) \neq \emptyset$ for any μ-open set G of \mathcal{X} and $b \in H$. The set of $\theta \mu$-adherent point is said to be an $\theta \mu$-closure of H, which is denoted by $\theta \mu C l(H)$. A subset H of X is called $\theta \mu$ closed set if every point to H is an $\theta \mu$-adherent point.
Example 2.31 Any subset of a discrete m-space $\left(\mathcal{R}, \mu_{D}\right)$ on a real number \mathcal{R} is $\theta \mu$-closed set and $\theta \mu$ open set.
Definition 2.32 [8] An m-space (\mathcal{X}, μ) is said to have the property $\theta \Upsilon$ (respectively $\theta \beta$) if the intersection (respectively union) of any finite number (respectively family) of $\theta \mu$-open sets is an $\theta \mu$ open set.
Remark 2.33 [8] If an m-space (\mathcal{X}, μ) has $\theta \Upsilon$ property, then every $\theta \mu$-closed is an μ-closed.

Definition 2.34 [8] Let (\mathcal{X}, μ) be m-space, \mathcal{X} is said to be $\theta \mu$-compact if any $\theta \mu$-open cover of X has a finite subcover. A subset A of an m-space (\mathcal{X}, μ) is said to be $\theta \mu$-compact if for any $\theta \mu$-open cover $\left\{V_{\alpha}: \alpha \in I\right\}$ of \mathcal{X} and cover A then there is a finite subset $\left\{\alpha_{0}, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}$ such that $A \subseteq \bigcup_{i=1}^{n} V_{\alpha_{i}}$. Example 2.35 Let $\left(\mathcal{R}, \mu_{\text {ind }}\right)$ be an m-space where $\mu_{\text {ind }}$ be indiscrete m-space on a real number \mathcal{R}, so is $\theta \mu$-compact.
Remark 2.36 [8] Every μ-compact with the property $\theta \beta$ is $\theta \mu$-compact.
Definition 2.37 [8] An m-space (\mathcal{X}, μ) is called $\theta \mu-T_{2}$-space, if for every two points a, b that belong to $\mathcal{X}, a \neq b$, there is $\theta \mu$-open sets M and N containing a and b , respectively, such that $M \cap N=\emptyset$.
Definition 2.38 [8] Let (\mathcal{X}, μ) and $\left(\mathcal{Y}, \mu^{\prime}\right)$ be two m-spaces and $f:(\mathcal{X}, \mu) \rightarrow\left(\mathcal{Y}, \mu^{\prime}\right)$ be a function. Then f is called:

1. θm-continuous function iff for any μ^{\prime}-closed (μ^{\prime}-open) subset \mathcal{K} of \mathcal{Y}, the inverse image $f^{-1}(\mathcal{K})$ is $\theta \mu$-closed $(\theta \mu$-open $)$ set in \mathcal{X}.
2. $\theta^{*} m$-continuous function iff for every $\theta \mu^{\prime}$-closed $\left(\theta \mu^{\prime}\right.$-open) \mathcal{M} subset of \mathcal{Y}, the inverse image $f^{-1}(\mathcal{M})$ is μ-closed (μ-open) set in \mathcal{X}.
3. $\theta^{* *} m$-continuous function iff for any $\mathcal{N} \theta \mu^{\prime}$-closed $\left(\theta \mu^{\prime}\right.$-open) \mathcal{N} subset of \mathcal{Y}, the inverse image $f^{-1}(\mathcal{N})$ is $\theta \mu$-closed $(\theta \mu$-open $)$ set in \mathcal{X}.
4. θm-closed function if $f(F)$ is $\theta \mu^{\prime}$-closed set in \mathcal{Y} for each μ-closed subset F of \mathcal{X}.
5. $\quad \theta^{*} m$-closed function if $f(F)$ is μ^{\prime}-closed set in \mathcal{Y} for each $\theta \mu$-closed subset F of X.

Proposition 2.39 [8] The $\theta^{* *} m$-continuous image of $\theta \mu$-compact is $\theta \mu^{\prime}$-compact.
Proposition 2.40[8] If $f:(\mathcal{X}, \mu) \rightarrow\left(\mathcal{Y}, \mu^{\prime}\right)$ is an m-homeomorphism and \mathcal{B} is an $\theta \mu^{\prime}$-compact set in \mathcal{Y} then $f^{-1}(\mathcal{B})$ is an $\theta \mu$-compact set in \mathcal{X}, with \mathcal{X} has the property $\theta \mathcal{B}$.

3. Strong and weak forms of $\boldsymbol{\mu}$ - $K c$-spaces

In this section, we provide some weak forms of μ - $K c$-space, namely μ - $K(\alpha c)$-space, $\mu-\alpha K(c)$-space and μ - $\alpha K(\alpha c)$-space. In addition, we introduce $\mu-\theta K(c)$-space as a strong form of μ - $K c$-space.
Definition 3.1 An m-space (\mathcal{X}, μ) is said to be $\mu-K(\alpha c)$-space if every μ-compact set in \mathcal{X} is an $\alpha \mu$ closed set.
Now, we give some examples to explain the concept of $\mu-K(\alpha c)$-space.
Example 3.2 The discrete m-space $\left(\mathcal{X}, \mu_{D}\right)$ is μ - $K(\alpha c)$-space.
Example 3.3 Let $\mathcal{X}=\{1,2,3\}$ and let $\mu=\{\varnothing, \mathcal{X},\{1\}\}$. Then (\mathcal{X}, μ) is not $\mu-K(\alpha c)$-space, since there exists an μ-compact set $\{1,2\}$ in \mathcal{X} but it is not $\alpha \mu$-closed.
To show that Definition 3.1 is well defined, we give the following example to illustrate that there is no relation between the concepts of μ-compact set and $\alpha \mu$-closed set.

Example 3.4

1. In the discrete m-space $\left(\mathcal{R}, \mu_{\boldsymbol{D}}\right)$ where \mathcal{R} is a real number, \mathbb{Q} is the rational numbers subset of \mathcal{R}, \mathbb{Q} is $\alpha \mu$-closed but not μ-compact set.
2. In the indiscrete m-space $\left(\mathcal{R}, \mu_{\text {ind }}\right), \mathbb{Q}$ is μ-compact but not $\alpha \mu$-closed set.

Remark 3.5

1. Every $\mu-K c$ space is $\mu-K(\alpha c)$-space.
2. In discrete m-space, the two definitions of $\mu-K c$-space and $\mu-K(\alpha c)$-paces are satisfied.

The following example indicates that the converse of Remark 3.5 part (1) is not necessarily hold.
Example 3.6 Let (\mathcal{X}, μ) be an m-space, $\mathcal{X}=\{a, b, c\}, \mu=\{\varnothing, \mathcal{X},\{a\}\}$, so $\{c\}$ is μ-compact since $\{c\}$ is finite set. Also it is $\alpha \mu$-closed set since $\mu \operatorname{Cl}(\mu \operatorname{Int}(\mu C l\{c\}))=\emptyset \subseteq\{c\}$, so \mathcal{X} is μ-K($\alpha c)$-space, but not μ-Kc-space since $\{c\}$ is not μ-closed set.
Proposition 3.7 An $\alpha \mu$-compact subset of $\alpha \mu-T_{2}$-space is $\alpha \mu$-closed, whenever \mathcal{X} has $\alpha \Upsilon$ property.
Proof: Let \mathcal{B} be $\alpha \mu$-compact in $\alpha \mu$ - T_{2}-space. To show that \mathcal{B} is $\alpha \mu$-closed, let $p \in \mathcal{B}^{c}$, since \mathcal{X} is $\alpha \mu$ -T_{2}-space. So for every $q \in \mathcal{B}, p \neq q$, there exist $\alpha \mu$-open sets G, H with $p \in H, q \in G$, such that $G \cap H=\emptyset$,. Now the collection $\left\{G_{q_{i}}: q_{i} \in \mathcal{B}, i \in I\right\}$ is $\alpha \mu$-open cover of \mathcal{B}.Since \mathcal{B} is $\alpha \mu$-compact set, then there is a finite subcover of \mathcal{B}, so $\mathcal{B} \subseteq \bigcup_{i=1}^{n} G_{q_{i}}$. Let $H^{*}=\bigcap_{i=1}^{m} H_{q_{i}}(p)$ and $G^{*}=\bigcup_{i=1}^{m} G_{q_{i}}$, then H^{*} is an $\alpha \mu$-open set $p \in H^{*}$ (since \mathcal{X} has property $\alpha \Upsilon$). Claim that $G^{*} \cap H^{*}=\emptyset$, let $x \in G^{*}$, then $x \in$ $G_{q_{i}}$, for some q_{i}, and suppose that $x \in H^{*}, \mathcal{B} \cap H^{*} \neq \emptyset$. This is a contradiction, then $p \in H^{*} \subseteq \mathcal{B}^{c}$, so \mathcal{B}^{c} is $\alpha \mu$-open set in \mathcal{X}, hence \mathcal{B} is $\alpha \mu$-closed set.
Theorem 3.8 Every $\alpha \mu$-closed set in $\alpha \mu$-compact space is $\alpha \mu$-compact set.

Proof: Let (\mathcal{X}, μ) be $\alpha \mu$-compact, A is $\alpha \mu$-closed set in \mathcal{X}, and $\left\{\mathrm{V}_{\alpha}\right\}_{\alpha \in \mathrm{I}}$ is an $\alpha \mu$-open cover of A, that is $A \subseteq \cup_{\alpha \in I} V_{\alpha}$, where V_{α} is $\alpha \mu$-open in $X . \forall \alpha \in I$, since $X=A \cup A^{c} \subseteq \cup_{\alpha \in \Lambda} V_{\alpha} \cup A^{c}$, also A^{c} is $\alpha \mu$ -open (since A is $\alpha \mu$-closed set in \mathcal{X}). So $\mathrm{U}_{\alpha \in I} V_{\alpha} \cup A^{c}$ is $\alpha \mu$-open cover for \mathcal{X} which is $\alpha \mu$-compact space, then there exists $\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots, \alpha_{n}$ such that $X \subseteq \bigcup_{i=1}^{n} V_{\alpha_{i}} \cup A^{c}$, so $A \subseteq \bigcup_{i=1}^{n} V_{\alpha_{i}}$. Then $\cup_{i=1}^{n} V_{\alpha_{i}}, i=1,2,3, \ldots, n$ is a finite subcover of A. Therefore , A is $\alpha \mu$-compact set.
Remark 3.9 In the above theorem, if we replace the $\alpha \mu$-compact by μ-compact, the theorem will not be true.
Now, we introduce the weak form of $\mu-K(\alpha c)$-space which was introduced in Definition 3.1.
Definition 3.10 A space X is said to be $\mu-\alpha K(\alpha c)$-space if any $\alpha \mu$-compact subset of X is $\alpha \mu$-closed set.
Example 3.11 Let $\left(\mathcal{R}, \mu_{\boldsymbol{D}}\right)$ be a discrete m-space where \mathcal{R} is a real number. Let \mathbb{Q} is $\alpha \mu$-compact subset of \mathcal{R}, then \mathbb{Q} is μ-compact in \mathcal{R} from Remark 2.15 , and \mathbb{Q} is μ-closed so it is $\alpha \mu$-closed by Remark 2.6. Hence (\mathcal{R}, μ_{D}) is $\mu-\alpha K(\alpha c)$-space.
Proposition 3.12 Every $\mu-\alpha K(c)$-space is $\mu-\alpha K(\alpha c)$-space.
Proof: Let (\mathcal{X}, μ) be m-space and \mathcal{K} be $\alpha \mu$-compact subset of \mathcal{X}, which is μ - $\alpha K(c)$-space, so \mathcal{K} is μ closed subset of \mathcal{X} and, by Remark 2.6, \mathcal{K} is $\alpha \mu$-closed set. Hence \mathcal{X} is μ - $\alpha K(\alpha c)$-space.
Theorem $3.13(X, \mu)$ is $\alpha \mu-T_{1}$-space iff $\{x\}$ is $\alpha \mu$-closed subset of \mathcal{X} for all $x \in X$.
Proof: Let $\{x\}$ be $\alpha \mu$-closed set $\forall x \in \mathcal{X}$, let $a, d \in \mathcal{X}$ with $a \neq d$, and $\{a\}$ and $\{d\}$ are $\alpha \mu$-closed sets, then $\{a\}^{c}$ is $\alpha \mu$-open subset of \mathcal{X}, with $d \in\{a\}^{c}$ and $a \notin\{a\}^{c}$. Also $\{d\}^{c}$ is $\alpha \mu$-open subset of \mathcal{X}, with $a \in\{d\}^{c}$ and $d \notin\{d\}^{c}$, so \mathcal{X} is $\alpha \mu-T_{1}$-space.
Conversely, we must prove that $\{x\}$ is $\alpha \mu$-closed subset of \mathcal{X}, that is $\alpha \mu \mathrm{Cl}(\{x\})=\{x\}$, since $\{x\} \subseteq$ $\alpha \mu \mathrm{Cl}(\{x\}) \ldots$ (1). Let $y \in \alpha \mu \mathrm{Cl}(\{x\})$ and $y \notin\{x\}$, so $x \neq y$, but \mathcal{X} is $\alpha \mu$ - T_{1}-space, so there exist two $\alpha \mu$-open sets U_{x} and V_{y} containing x and y, respectively, with $y \notin U_{x}$ and $x \notin V_{y}$. Then V_{y} containing y, so y is not $\alpha \mu$-adherent point to $\{x\}$, that is $y \notin \alpha \mu \mathrm{Cl}(\{x\})$, and this is contradiction. Therefore, $y \in\{x\}$ and $\alpha \mu \mathrm{Cl}(\{x\}) \subseteq\{x\} \ldots$ (2), so by (1) and (2) we get $\alpha \mu \mathrm{Cl}(\{x\})=\{x\}$, and by Proposition 2.8, $\{x\}$ is $\alpha \mu$-closed subset of \mathcal{X}.
Proposition 3.14 Every $\mu-\alpha K(\alpha c)$-space is $\alpha \mu-T_{1}$-space.
Proof: Let $x \in \mathcal{X}$ and let $\{x\}$ be $\alpha \mu$-compact set in \mathcal{X}, since \mathcal{X} is μ - $\alpha K(\alpha c)$-space, hence $\{x\}$ is $\alpha \mu$ closed set, so X is $\alpha \mu-T_{1}$-space by Theorem 2.18.

The next example shows that the converse of Proposition 3.14 is not true.
Example 3.15 Let $\left(\mathcal{R}, \mu_{c o f}\right)$ be a co-finite m-space on a real number \mathcal{R} which is $\alpha \mu$ - T_{1}-space, if we take $\mathbb{Q} \subseteq \mathcal{R}$ as $\alpha \mu$-compact (since there exists one $\alpha \mu$-open cover of \mathbb{Q} which is R), but \mathbb{Q} is not $\alpha \mu$ closed in $\mathcal{R}($ since $\mu C l(\mu \operatorname{Int}(\mu C l(\mathbb{Q})))=\mathcal{R} \not \subset \mathbb{Q}$.
Proposition 3.16 Every $\alpha \mu$ - T_{2}-space is $\mu-\alpha K(\alpha c)$-space, whenever \mathcal{X} has $\alpha \Upsilon$ property.
Proof: Let (\mathcal{X}, μ) be an m-space and \mathcal{P} be an $\alpha \mu$-compact subset in \mathcal{X}. Also \mathcal{X} is $\alpha \mu-T_{2}$-space, so \mathcal{P} is an $\alpha \mu$-closed set from Proposition 3.7. Therefore, \mathcal{X} is $\mu-\alpha K(\alpha c)$-space.

The converse of Proposition 3.16 may not be hold. The following example explains that.

Example 3.17

Let ($\mathcal{R}, \mu_{c o c}$) be a co-countable m-space on a real number \mathcal{R}, which is $\mu-\alpha K(\alpha c)$-space, but not $\alpha \mu$ -T_{2}-space, since the μ-compact set in it are just the finite set, if we μ-compact set then it is finite, so it is countable, then it is μ-closed since in $\mu_{c o c}$ the closed take sets are \emptyset, \mathcal{R} and countable sets. Now suppose that it is $\alpha \mu-T_{2}$-space, $\forall x, y \in \mathcal{R}, x \neq y$, there are U_{x}, V_{y} as two $\alpha \mu$-open sets such that $x \in U_{x}$, $y \in V_{y}$ and $U_{x} \cap V_{y}=\emptyset,\left(U_{x} \cap V_{y}\right)^{c}=\emptyset^{c},\left(U_{x}\right)^{c} \cup\left(V_{y}\right)^{c}=\mathcal{R}$, but this is a contradiction. Since U_{x} and V_{y} are countable, the union also countable, but \mathcal{R} is not countable so it is not $\alpha \mu$ - T_{2}-space. Therefore $\left(\mathcal{R}, \mu_{c o c}\right)$ are $\mu-K c-, \mu-K(\alpha c)$ - and $\mu-\alpha K(\alpha c)$-spaces.
Proposition 3.18 A subset \mathcal{F} of an m-space \mathcal{X} is $\alpha \mu$-closed set in X if and only if there exists an μ closed set M such that $\mu C l(\mu \operatorname{Int}(M)) \subseteq \mathcal{F} \subseteq M$.
Proof: Suppose that \mathcal{F} is $\alpha \mu$-closed set in \mathcal{X}, so $\mu \operatorname{Cl}(\mu \operatorname{Int}(\mu \operatorname{Cl}(\mathcal{F})) \subseteq \mathcal{F}$, by Definition 2.3, and $\mathcal{F} \subseteq(\mu C l(\mathcal{F})$, then $\mu C l(\mu \operatorname{Int}(\mu C l(\mathcal{F})) \subseteq \mathcal{F} \subseteq \mu C l(\mathcal{F})$, put $\mu C l(\mathcal{F})=M$, so $\mu C l(\mu \operatorname{Int}(M)) \subseteq$ $\mathcal{F} \subseteq M$.

Conversely, suppose that $\mu \operatorname{Cl}(\mu \operatorname{Int}(M)) \subseteq \mathcal{F} \subseteq M$. To prove that \mathcal{F} is $\alpha \mu$-closed set whenever M is μ-closed set, $\mu C l(\mu \operatorname{Cl}(\mu \operatorname{Int}(M)) \subseteq \mu \operatorname{Cl}(\mathcal{F}) \subseteq \mu \operatorname{Cl}(M)=M$, then $\mu \operatorname{Cl}(\mu \operatorname{Int}(M)) \subseteq \mu C l(\mathcal{F}) \subseteq$ M, and $\mu \operatorname{Int}(\mu C l(\mu \operatorname{Int}(M))) \subseteq \mu \operatorname{Int}(\mu C l(\mathcal{F})) \subseteq \mu \operatorname{Int}(M)$, by hypothesis $\mu \operatorname{Cl}(\mu \operatorname{Int}(M)) \subseteq \mathcal{F} \subseteq$ M, we get $\mu C l(\mu \operatorname{Int}(\mu C l(\mathcal{F}))) \subseteq \mathcal{F}$.Therefore \mathcal{F} is $\alpha \mu$-closed set.
Definition 3.19 An m-space \mathcal{X} is called μ - $\alpha K(c)$-space if any $\alpha \mu$-compact subset in \mathcal{X} is μ-closed set. Example 3.20 Let (, μ_{D}) be a discrete m-space on any space \mathcal{X}, it is μ - $\alpha K(c)$-space.

Remark 3.21

1. Every $\mu-K c$-space is μ - $\alpha K(c)$-space.
2. Every $\mu-\alpha K(c)$-space is $\mu-\alpha K(\alpha c)$-space.
3. Every $\mu-T_{2}$-space is μ - $\alpha K(c)$-space.
4. Every $\mu-\alpha K(c)$-space is $\alpha \mu-T_{1}$-space.

Now, we define a strong form of $\mu-K c$-space which is $\mu-\theta K(c)$-space.
Definition 3.22 An m-space (\mathcal{X}, μ) is called $\mu-\theta K(c)$-space, if every $\theta \mu$-compact of \mathcal{X} is μ-closed set.
Example 3.23 Let $\left(\mathcal{R}, \mu_{c o f}\right)$ be a co-finite m-space on a real line \mathcal{R}. Then $\left(\mathcal{R}, \mu_{c o f}\right)$ is an $\mu-\theta K(c)-$ space.
Proposition 3.24 Every $\theta \mu$-compact subset of $\theta \mu-T_{2}$-space is $\theta \mu$-closed, whenever that space has $\theta \Upsilon$ property.
Proof: Let A be an $\theta \mu$-compact set in \mathcal{X}. Let $p \notin \notin A$, so for each $q \in A$ then $p \neq q$. But \mathcal{X} is $\theta \mu-T_{2^{-}}$ space, so there exist two $\theta \mu$-open sets U and V containing q and p, respectively, then $A=\mathrm{U}_{\alpha \in I}\left\{U_{q_{\alpha}}\right\}$. But A is $\theta \mu$-compact, so $A=\bigcup_{i=1}^{n}\left\{U_{q_{\alpha_{i}}}\right\}=U^{*}$ and $V^{*}=\bigcap_{i=1}^{n} V_{q_{i}}(p)$ is $\theta \mu$-open (since X has $\theta \Upsilon$ property). Claim that $U^{*} \cap V^{*}=\emptyset$, and suppose that $U^{*} \cap V^{*} \neq \emptyset$, since $p \in V^{*}$, let $p \in U^{*}$, that is $p \in A$, but this is a contradiction. So $U^{*} \cap V^{*}=\emptyset$ and then there exists V^{*} containing p and $V^{*} \subseteq A^{c}$, that is $p \in \mu \operatorname{Int}\left(A^{c}\right)$, then A^{c} is $\theta \mu$-open, by Proposition 2.10 , so A is $\theta \mu$-closed.
Proposition 3.25 If an μ-space has $\theta \Upsilon$ property, then every $\theta \mu$ - T_{2}-space is μ - $\theta K(c)$-space.
Proof: Let H be an $\theta \mu$-compact subset of \mathcal{X}. To prove that H is μ-closed set, since \mathcal{X} is $\theta \mu$ - T_{2}-space, so by proposition 3.24, we get H is $\theta \mu$-closed set and by Remark 2.33, we get H is μ-closed, hence \mathcal{X} is $\mu-\theta K(c)$-space.
Proposition 3.26 If an μ-space has $\theta \beta$ property, then every $\mu-\theta K(c)$-space is μ - $k c$-space.
Proof: Let (\mathcal{X}, μ) be m-space, A be μ-compact of \mathcal{X} by Remark 2.36, A is $\theta \mu$-compact and since \mathcal{X} is $\mu-\theta K(c)$-space, so A is μ-closed subset of \mathcal{X}, hence \mathcal{X} is μ - $k c$-space.
Remark 3.27 The following diagram shows the relationships between the stronger and weaker forms of μ - $k c$-space.

4-Some types of continuous, open (closed) function on \boldsymbol{m}-spaces.

Definition 4.1 Let $f:(\mathcal{X}, \mu) \rightarrow\left(\mathcal{Y}, \mu^{\prime}\right)$ be a function, then f is called:

1. m-open (respectively m-closed) function [2], if $f(\mathcal{H})$ is an μ^{\prime}-open respectively μ^{\prime}-closed set in \mathcal{Y} for any μ-open (respectively μ-closed) \mathcal{H} in \mathcal{X}.
2. αm-open (respectively αm-closed) function [6], if $f(A)$ is an $\alpha \mu^{\prime}$-open (respectively $\alpha \mu^{\prime}$-closed) set in \mathcal{Y} for every μ-open (respectively μ-closed) A in \mathcal{X}.
3. $\alpha^{*} m$-open (respectively $\alpha^{*} m$-closed) function, if $f(\mathcal{K})$ is an μ^{\prime}-open (respectively μ^{\prime}-closed) set in \mathcal{Y} for any $\alpha \mu$-open (respectively $\alpha \mu$-closed) subset \mathcal{K} of \mathcal{X}.
4. $\alpha^{* *} m$-open (respectively $\alpha^{* *} m$-closed) function, if $f(\mathcal{N})$ is an $\alpha \mu^{\prime}$-open (respectively $\alpha \mu^{\prime}$-closed) subset of \mathcal{Y} for any $\alpha \mu$-open (respectively $\alpha \mu$-closed) $\operatorname{set} \mathcal{N}$ in \mathcal{X}.
5. $\alpha^{*} m$-continuous iff for any $\alpha \mu^{\prime}$-open set \mathcal{A} in \mathcal{Y}, the inverse image $f^{-1}(\mathcal{A})$ is μ-open set in \mathcal{X}.
6. $\quad \alpha^{* *} m$-continuous iff for every $\alpha \mu^{\prime}$-open set \mathcal{B} in \mathcal{Y}, the inverse image $f^{-1}(\mathcal{B})$ is $\alpha \mu$-open set in X.
Example 4.2 Let $\mathcal{X}=\mathcal{Y}=\{a, b, c\}, \mu=\mu^{\prime}=\{\varnothing, \mathcal{X},\{a\}\}$ and $f:(\mathcal{X}, \mu) \rightarrow\left(\mathcal{Y}, \mu^{\prime}\right)$ defined by $f(a)=f(b)=a$ and $f(c)=c$. Then f is μ-open, $\alpha \mu$-open and $\alpha^{* *} \mu$-open but it is not $\alpha^{*} \mu$-open function (where $\alpha \mu$-open set in μ and μ^{\prime} are $\{\phi, \mathcal{X},\{a\},\{a, b\},\{a, c\}\}$.
Next, we introduce a proposition about $\alpha^{* *} \mu$-closed function. But before that we need to introduce the following proposition:
Proposition 4.3 Let $f:(\mathcal{X}, \mu) \rightarrow\left(\mathcal{Y}, \mu^{\prime}\right)$ be a function. Then for every subset A of \mathcal{X} :
7. f is m-homeomorphism iff $\mu C l(f(A))=f(\mu C l(A))$.
8. f is m-homeomorphism iff $\mu \operatorname{Int}(f(A))=f(\mu \operatorname{Int}(A))$.

Proof: The proof follows directly from the Definition 2.26 part (1) and Definition 4.1 part (1).
Theorem 4.4 If $f:(\mathcal{X}, \mu) \rightarrow\left(\mathcal{Y}, \mu^{\prime}\right)$ is m-homeomorphism, then f is $\alpha^{* *} \mu$-closed function.
Proof: Let \mathcal{F} be $\alpha \mu$-closed subset of \mathcal{X}, by Proposition 3.18 , there exists μ-closed set M such that $\mu C l(\mu \operatorname{Int}(M)) \subseteq \mathcal{F} \subseteq M$. Now, by taking the image, we get $f(\mu \operatorname{Cl}(\mu \operatorname{Int}(M))) \subseteq f(\mathcal{F}) \subseteq f(M)$. But f is m-homeomorphism, so

$$
f(\mu C l((\mu \operatorname{Int}(M))) \subseteq f(\mathcal{F}) \subseteq f(M) \ldots(1)
$$

Also from Proposition $4.3 \quad f(\mu \operatorname{Int}(M))=\mu \operatorname{Int}(f(M)), \quad$ hence

$$
\mu C l(f(\mu \operatorname{Int}(M)))=\mu C l(\mu \operatorname{Int}(f(M))) \ldots(2)
$$

Now, from (1) and (2) we have, $\mu \operatorname{Cl}(\mu \operatorname{Int}(f(M))) \subseteq f(\mathcal{F}) \subseteq f(M)$. Therefore, $f(\mathcal{F})$ is $\alpha \mu$-closed subset of \mathcal{Y}.
Corollary 4.5 If $f:(\mathcal{X}, \mu) \rightarrow\left(\mathcal{Y}, \mu^{\prime}\right)$ is m-homeomorphism, then f is $\alpha^{* *} \mu$-open function.
Proof: Let K be an $\alpha \mu$-open set in \mathcal{X}. To prove that $f(K)$ is $\alpha \mu$-open set in \mathcal{Y}. Now, K^{c} is $\alpha \mu$-closed set in \mathcal{X}, and since f is m-homeomorphism. From Theorem $4.4, f\left(K^{c}\right)$ is $\alpha \mu$-closed set in \mathcal{Y}. But f is surjective, so $f\left(K^{c}\right)=(f(K))^{c}$, which means that $f(K)$ is $\alpha \mu$-open set in \mathcal{Y}. Hence f is $\alpha^{* *} \mu$-open function.
Theorem 4.6 Let $f:(\mathcal{X}, \mu) \rightarrow\left(\mathcal{Y}, \mu^{\prime}\right)$ be $\alpha^{* *} m$-continuous. Then $f(\mathcal{M})$ is $\alpha \mu$-compact in \mathcal{Y}, whenever \mathcal{M} is $\alpha \mu$-compact in \mathcal{X}.
Proof: Let \mathcal{M} be an $\alpha \mu$-compact in \mathcal{X}. To prove that $f(\mathcal{M})$ is $\alpha \mu$-compact in \mathcal{Y}, let $\left\{V_{\alpha}: \alpha \in I\right\}$ be a family of $\alpha \mu$-open cover of $f(\mathcal{M})$. That is $(M) \subseteq \bigcup_{\alpha \in I} V_{\alpha}$, so $f^{-1}\left(V_{\alpha}\right)$ is $\alpha \mu$-open cover of $\mathcal{M}, \forall \alpha \in I$. Also, since \mathcal{M} is $\alpha \mu$-compact in \mathcal{X}, then there exist $\alpha_{1}, \alpha_{2}, \alpha_{3} \ldots, \alpha_{n}$ such that $\mathcal{M} \subseteq \bigcup_{i=1}^{n} f^{-1}\left(V_{\alpha_{i}}\right)$, then $f(\mathcal{M}) \subseteq f\left(\bigcup_{i=1}^{n} f^{-1}\left(V_{\alpha_{i}}\right)\right)=\bigcup_{i=1}^{n} V_{\alpha_{i}}$. Therefore, $f(\mathcal{M})$ is $\alpha \mu$-compact in \mathcal{Y}.
Theorem 4.7 Let $f:(\mathcal{X}, \mu) \longrightarrow\left(\mathcal{Y}, \mu^{\prime}\right)$ be $\alpha^{*} \mu$-continuous function. Then $f(\mathcal{N})$ is μ-compact in \mathcal{Y}, whenever \mathcal{N} is $\alpha \mu$-compact in \mathcal{X}.
Proof: Let \mathcal{N} be an $\alpha \mu$-compact in \mathcal{X}. To prove that $f(\mathcal{N})$ is μ-compact in \mathcal{Y}, let $\left\{V_{\alpha}: \alpha \in I\right\}$ be a family of μ-open cover of $f(\mathcal{N})$. That is $(\mathcal{N}) \subseteq \bigcup_{\alpha \in I} V_{\alpha}$, so $f^{-1}\left(V_{\alpha}\right)$ is an $\alpha \mu$-open cover of $\mathcal{N}, \forall \alpha \in I$. Also, since \mathcal{N} is $\alpha \mu$-compact in \mathcal{X}, then $\mathcal{N} \subseteq \bigcup_{i=1}^{m} f^{-1}\left(V_{\alpha_{i}}\right)$. This implies that $f(\mathcal{N}) \subseteq$ $f\left(\cup_{i=1}^{m} f^{-1}\left(V_{\alpha_{i}}\right)\right)=\bigcup_{i=1}^{m} V_{\alpha_{i}}$. Therefore, $f(\mathcal{N})$ is μ-compact in \mathcal{Y}.
Theorem 4.8 Let $f:(\mathcal{X}, \mu) \rightarrow\left(\mathcal{Y}, \mu^{\prime}\right)$ be $\alpha^{* *} \mu$-continuous function. If a space \mathcal{X} is $\alpha \mu$-compact and a space \mathcal{Y} is $\alpha \mu-T_{2}$, then the function f is $\alpha^{* *} \mu$-closed, whenever \mathcal{X} has $\alpha \Upsilon$ property.

Proof: Let \mathcal{H} be an $\alpha \mu$-closed set in \mathcal{X}. Since \mathcal{X} is $\alpha \mu$-compact, then \mathcal{H} is $\alpha \mu$-compact in \mathcal{X} by Theorem 3.8 and the function f is $\alpha^{* *} \mu$-continuous. Then $f(\mathcal{H})$ is $\alpha \mu^{\prime}$-compact subset of \mathcal{Y} from Theorem 4.6, and since \mathcal{Y} is $\alpha \mu-T_{2}$-space, so $f(\mathcal{H})$ is $\alpha \mu^{\prime}$-closed set of \mathcal{Y} by proposition 3.7. Therefore f is $\alpha^{* *} \mu$-closed function.
Theorem 4.9 Let $f:(\mathcal{X}, \mu) \rightarrow\left(\mathcal{Y}, \mu^{\prime}\right)$ be a $\alpha^{*} \mu$-continuous function, from $\alpha \mu$-compact space \mathcal{X} into μ - $K c$-space \mathcal{Y}, then f is $\alpha^{*} \mu$-closed function.
Proof: Let \mathcal{B} be $\alpha \mu$-closed set in \mathcal{X} which is $\alpha \mu$-compact, so \mathcal{B} is $\alpha \mu$-compact in \mathcal{X} from Theorem 3.8. Also, from the hypotheses, f is $\alpha^{*} \mu$-continuous, then $f(\mathcal{B})$ is μ-compact in \mathcal{Y} by Theorem 4.7. But \mathcal{Y} is μ - $K c$-space, hence $f(\mathcal{B})$ is μ^{\prime}-closed set of \mathcal{Y}. Therefore, f is $\alpha \mu^{*}$-closed function.
Proposition 4.10 Let the function $f:(\mathcal{X}, \mu) \rightarrow\left(\mathcal{Y}, \mu^{\prime}\right)$ be m-continuous. If (\mathcal{X}, μ) is μ-compact and $\left(\mathcal{Y}, \mu^{\prime}\right)$ is $\mu-K(\alpha c)$-space, then f is $\alpha \mu$-closed function.
Proof: Let \mathcal{S} be an μ-closed set in \mathcal{X}, also \mathcal{X} is μ-compact, then \mathcal{S} is μ-compact subset of \mathcal{X} from Proposition 2.13, and f is m-continuous function, then $f(\mathcal{S})$ is μ-compact set in \mathcal{Y} from Proposition 2.27. Also \mathcal{Y} is μ-K (αc)-space, so $f(\mathcal{S})$ is $\alpha \mu$-closed in \mathcal{Y}, therefore f is $\alpha \mu$-closed .

Proposition 4.11 If the function $f:(\mathcal{X}, \mu) \longrightarrow\left(\mathcal{Y}, \mu^{\prime}\right)$ is $\alpha^{* *} m$-continuous, (\mathcal{X}, μ) is $\alpha \mu$-compact and $\left(\mathcal{Y}, \mu^{\prime}\right)$ is $\mu-\alpha K(\alpha c)$-space, then f is $\alpha^{* *} m$-closed function.
Proof: Let F be an $\alpha \mu$-closed set of \mathcal{X}, since \mathcal{X} is αm-compact, so by Theorem 3.8, F is $\alpha \mu$-compact in \mathcal{X} and f is $\alpha^{* *} m$-continuous. Then $f(F)$ is $\alpha \mu$-compact in \mathcal{Y}. Also by Theorem $4.6, \mathcal{Y}$ is μ $\alpha K(\alpha c)$-space, hence $f(F)$ is $\alpha \mu$-closed in \mathcal{Y}. Therefore, f is $\alpha^{* *} m$-closed .
Theorem 4.12 If $f:(\mathcal{X}, \mu) \rightarrow\left(\mathcal{Y}, \mu^{\prime}\right)$ is m-closed, $\alpha^{* *} m$-open bijective function and (\mathcal{X}, μ) is μ $\alpha K(c)$-space, then $\left(Y, \mu^{\prime}\right)$ is μ - $\alpha K(c)$-space.
Proof: Let \mathcal{K} be $\alpha \mu$-compact in \mathcal{Y} and $\left\{V_{\alpha}: \alpha \in I\right\}$ be an $\alpha \mu$-open cover of $f^{-1}(\mathcal{K})$ in \mathcal{X}, that is $f^{-1}(\mathcal{K}) \subseteq \mathrm{U}_{\alpha \in I} V_{\alpha}$. Since f is bijective, so $\mathcal{K}=f\left(f^{-1}(\mathcal{K})\right) \subseteq f\left(\mathrm{U}_{\alpha \in I} V_{\alpha}\right)=\bigcup_{\alpha \in \Lambda} f\left(V_{\alpha}\right)$. And f is $\alpha^{* *} m$-open function, so $\bigcup_{\alpha \in I} f\left(V_{\alpha}\right)$ is $\alpha \mu^{\prime}$-open in \mathcal{Y}, for each $\alpha \in I$. Also, \mathcal{K} is $\alpha \mu^{\prime}$ compact in \mathcal{Y}, so $\mathcal{K} \subseteq \bigcup_{i=1}^{n} f\left(V_{\alpha_{i}}\right)$. This implies that $f^{-1}(\mathcal{K}) \subseteq f^{-1}\left(\bigcup_{i=1}^{n} f\left(V_{\alpha_{i}}\right)\right)=\bigcup_{i=1}^{n} f^{-1}\left(f\left(V_{\alpha_{i}}\right)\right)=\bigcup_{i=1}^{n} V_{\alpha_{i}}$, so $f^{-1}(\mathcal{K})$ is $\alpha \mu$-compact in \mathcal{X}, which is $\mu-K(\alpha c)$-space, so $f^{-1}(\mathcal{K})$ is μ-closed. Also, since f is m-closed function, therefore $f\left(f^{-1}(\mathcal{K})\right)=\mathcal{K}$ is μ^{\prime}-closed in \mathcal{Y}. Hence \mathcal{Y} is $\mu-K(\alpha c)$-space.
Theorem 4.13 Let the injective function $f:(\mathcal{X}, \mu) \rightarrow\left(\mathcal{Y}, \mu^{\prime}\right)$ be m-continuous and $\alpha^{* *} m$-continuous. Then (\mathcal{X}, μ) is $\mu-K(\alpha c)$-space whenever $\left(\mathcal{Y}, \mu^{\prime}\right)$ is $\mu-K(\alpha c)$-space.
Proof: Let K be μ-compact in \mathcal{X}. To prove that K is $\alpha \mu$-closed, let $\left\{V_{\alpha}: \alpha \in I\right\}$ be an μ-open cover to $f(K)$ in \mathcal{Y}, that is $f(K) \subseteq \cup_{\alpha \in I} V_{\alpha}$. But f is m-continuous function, so by Proposition 2.27, $f(K)$ is μ compact in \mathcal{Y}, hence $f(K) \subseteq \bigcup_{i=1}^{n} V_{\alpha_{i}}$. Also f is injective function, so $K=f^{-1}(f(K) \subseteq$ $f^{-1}\left(\bigcup_{i=1}^{n} V_{\alpha_{i}}\right)=\bigcup_{i=1}^{n} f^{-1}\left(V_{\alpha_{i}}\right)$. Also, f is m-continuous, hence $f^{-1}\left(V_{\alpha_{i}}\right)$ is μ-open in $\mathcal{X}, \forall i=$ $1,2,3, \ldots, n$. This implies that $f(K) \subseteq \bigcup_{i=1}^{n} V_{\alpha_{i}}$, hence $f(K)$ is μ-compact set of \mathcal{Y} which is $\mu-K(\alpha c)$ space, that is $f(K)$ is $\alpha \mu$-closed subset of \mathcal{Y}. But f is $\alpha^{* *} m$-continuous and $f^{-1}(f(K))=K$, so K is $\alpha \mu$-closed set in \mathcal{X}. Therefore \mathcal{X} is $\mu-K(\alpha c)$-space.
Theorem 4.14 Let a bijective function $f:(\mathcal{X}, \mu) \rightarrow\left(\mathcal{Y}, \mu^{\prime}\right)$ be $\alpha^{* *} m$-continuous. If \mathcal{Y} is $\mu-\alpha K(\alpha c)-$ space, then \mathcal{X} is μ - $\alpha K(\alpha c)$-space.
Proof: Let A be $\alpha \mu$-compact in \mathcal{X}, so $f(A)$ is $\alpha \mu$-compact in \mathcal{Y} by Theorem 4.6. And since \mathcal{Y} is μ $\alpha K(\alpha c)$-space, so that $f(A)$ is $\alpha \mu^{\prime}$-closed set of \mathcal{Y} and $f^{-1}(f(A))=A(f$ is injective), so A is $\alpha \mu$ closed subset in \mathcal{X} since f is $\alpha^{* *} m$-continuous function. Therefore, \mathcal{X} is $\mu-\alpha K(\alpha c)$-space.
Proposition 4.15 If $f:(\mathcal{X}, \mu) \rightarrow\left(\mathcal{Y}, \mu^{\prime}\right)$ is m-continuous function, \mathcal{X} is μ-compact space and \mathcal{Y} is μ $\theta k(c)$-space, then f is $\theta \mu^{*}$-closed function, whenever \mathcal{X} has $\theta \Upsilon$ property.
Proof: Let \mathcal{N} be $\theta \mu$-closed subset of \mathcal{X}, so that \mathcal{N} is μ-closed in \mathcal{X} by Remark 2.33. And since \mathcal{X} is μ-compact, then \mathcal{N} is μ-compact by Proposition 2.13. Also f is m-continuous function, so by Proposition 2.27, $f(\mathcal{N})$ is μ-compact, hence from Remark 2.36, $f(\mathcal{N})$ is $\theta \mu$-compact in \mathcal{Y} which is $\mu-\theta k(c)$-space. Therefore $f(\mathcal{N})$ is μ^{\prime}-closed. That is f is $\theta^{*} m$-closed function.
Proposition 4.16 Let $f:(\mathcal{X}, \mu) \rightarrow\left(\mathcal{Y}, \mu^{\prime}\right)$ be m-homeomorphsim function. Then $\left(\mathcal{Y}, \mu^{\prime}\right)$ is $\mu-\theta k(c)-$ space, whenever (\mathcal{X}, μ) is μ - $\theta k(c)$-space which has $\theta \beta$ property.

Proof: Let \mathcal{H} be an $\theta \mu$-compact set in \mathcal{Y}, by Proposition $2.40, f^{-1}(\mathcal{H})$ is $\theta \mu$-compact in X which is $\mu-\theta k(c)$-space. So $f^{-1}(\mathcal{H})$ is μ-closed set in \mathcal{X} and $f\left(f^{-1}(\mathcal{H})\right)=\mathcal{H}$ is μ^{\prime}-closed set in \mathcal{Y}. Therefore, $\left(\mathcal{Y}, \mu^{\prime}\right)$ is $\mu-\theta k(c)$-space.

References

1. Wilansky, A. 1967. T_{1} and T_{2}., Amer, Math Monthly, 74: 261-266.
2. Maki, H. 1996. On generalizing semi-open and preopen sets, Report for Meeting on topological spaces theory and its applications, August, Yaatsus hiro College of Technology, 13-18.
3. Popa,V. and Noiri,T. 2000. On m-continuous functions, Anal. Univ. Dunarea de Jos Galati. Ser. Mat. Fiz. Mec. Teor. Fasci., 18(23): 31-41.
4. Ali, H. J. and Dahham,M. M. 2017. When m-compact sets are m_{x}-semi closed. International Journal of Mathematical Archive, 8(4): 116-120.
5. Najasted, O. 1964. On some classes of nearly open sets, Pacific journal of mathematics, 3: 961970.
6. Won, K. M. 2010. $\alpha \mathrm{m}$-open sets and $\alpha \mathrm{m}$-continuous functions, Commum. Korean Math . Soc. $\mathbf{2 5}$ (2): 251-256.
7. Velicko, N. V. 1968. H-closed topological spaces, Trans. Amer.Math .Soc. Transl. 78 (1968): 102118.
8. Das, P. 1973. Note on some application on semi open set, Progress of Math. 7: 33-44.
9. Ali, H. J and Harith, M. 2014. Some types of m-compact functions. Al Mustansiriyah J. Sci. 25(4): 65-74.
10. Carpintero, C., Rosas, E. and Salas, M. 2007. Minimal structure and separation properties, International Journal of Pure and Applied Mathematics, 34(4): 473-488.
11. Muthana, H. A and Ali, H. J. 2014. Some type of μ-compact functions, Journal of sci. Al Mustansiriyah university, 25(4).
12. Ali, H. J. 2010. Strong and weak form of m-lindelof space, Editorial board of Zenco J. for pure and Apple . Sciences, Salahaddin university, Howler-Iraqi Kurdistan Region, special issue 22: 60-64.
13. Hader, J. A. and Marwa, M. D. 2018. When m-Lindelof sets are m_{x}-semi closed, Journal of Physics: Conference series $\mathbf{1 0 0 3} 012044$.
14. Popa, V. and Noiri, T. 2000. On M-continuous functions. Anal. Univ. "Dunarea de Jos" Galati, Ser. Mat. Fiz. Mec. Tcor. Fasc. II, 18(23): 31-41.
15. Popa, V. and Noiri, T. 2001. On the definition of some generalized form of continuity under minimal conditions. Men. Fac. Ser. Kochi. Univ. Ser. Math. 22: 9-19.

[^0]: *Email: na8496292@gmail.com

