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Abstract 

       In this paper, we provide some types of  -  -spaces, namely,  - (  )- 

(respectively,  -  (  )- ,  -  ( )- and   -  ( )-) spaces for minimal structure 

spaces which are denoted by ( -spaces). Some properties and examples are given. 

The relationships between a number of types of   -  -spaces and the other existing 

types of weaker and stronger forms of  -spaces are investigated. Finally, new types 

of open (respectively, closed) functions of  -spaces are introduced and some of 

their properties are studied. 
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 Kc-  الضعيفة للفضاء الصيغ القوية و
 

                           3رشا ناصر مجيد  ،2حيدر جبر علي ،*1علي ناظمناديه                  
 .العراق،الانبار  ،جامعه الانبار،كميه التربية لمعمهم الصرفة  ،قدم الرياضيات 1

 .العراق،بغجاد ،الطدتظصرية  الجامعة،قدم الرياضيات ،كميه العمهم   2
 .ابن الهيثم ،جامعه بغجاد، بغجاد ،العراققدم الرياضيات ،كميه التربية لمعمهم الصرفة 3

 الخلاصة
 -( )  -  , -(  )  -  فضاءاتاي  -  -  في هجا البحث قجمظا بعض الانهاع من فضاءات     
(. m-والجي رمزنا له )فضاء minimal structureعمى التهالي( لفضاءات  (  ) -  (-( )  -   ,

والانهاع الطهجهدة    - بعض الخصائص والامثمة. العلاقات بين بعض الانهاع من فضاءات  واعطيت
الطغمقة عمى ( انهاع ججيجة من الجوال الطفتهحة حققت. اخيرا m–لفضاءقهى و الا ضع الاخرى من الصيغ الا
 قجمت ودرست بعض صفاتها. m–التهالي( في فضاء

1. Introduction  

    The concept of   -space was introduced by Wilansky [1], that is "A topological space (   )  is 

said to be   -space if every compact subset of   is closed". Also, many important properties were 

provided by that study, e.g., “Every   -space is   -space” and “every   -space is   -space”. In     , 

Maki [2] introduced the minimal structure spaces , shortly  -spaces, that is “ A sub collection   of 

 ( ) is called the minimal structure of    if       and     , ( ,  )  is said to be  -structure 

space”. The elements of   are called  -open sets and their complements are  -closed sets, which is a 

generalization of topological spaces. Popa and Noiri [3] studied the  -spaces and defined the notion 

of continuous functions between them. In     , Ali et al. [4] defined the concept of   -space with 
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respect to the  -space to obtain a new space which they called the  -  -space. A weaker and stronger 

form of open sets plays an important role in topological spaces. In     , Najasted [5] introduced the 

concept of -open sets as a generalization of open sets. That is, let (   ) be a topological space and a 

nonempty subset   of   is said to be -open set, if      (  (    ( ))). In     , Min [6] 

generalized the concept of -open sets to  -spaces. On the other hand, in     , Velicko [7] 

introduced the concept of   -open sets. That is “Let ( ,  ) be a topological space,     , a point 

    is said to be an    -adherent point for a subset   of  , if     ( )    for any open set   of 

  and    . The set of   -adherent point is said to be an   -closure of  which is denoted by 

    ( ). A subset  of    is called  -closed set if every point to   is an  -adherent point.  Also, in 

    , Makki [8] defined   -open sets in  -space. The aim of the present paper is to introduce and 

study new type of  -  -spaces,  namely,  - ( )- (resp.  - ( )- ,  - ( )- and  -  ( )-) 

spaces by using the concept of -open, respectively  -open sets, with respect to the  -space. We 

study the basic properties of each space and give the relationships between them. Also, we introduce 

new kinds of continuous, open (respectively closed) functions on  -spaces and investigate their 

properties.                                

2.Preliminaries  

Let us recall the following definitions, properties and theorems which we need in this work 

Definition 2.1 [3] Let   be a non-empty set and  ( ) be the power set of  . A sub collection   of 

 ( ) is called the minimal structure of    if       and     , ( ,  )  is said to be  -structure space 

(shortly,  -spaces). The elements of   are called  -open sets and their complements are  -closed sets. 

For a subset   in an  -space on (   ), the interior (respectively, closure) of   denoted by     ( ) 

(respectively,    (  )) is defined as follows: 

     (  )=  *           +  and      ( ) = *             +. 
Remark 2.2 Note that according to a previous study [9],      ( ) (respectively,    ( )) is not 

necessarily  -open (respectively,   -closed), but if   is  -open then   =      ( ), respectively, and if  

  is  -closed, then 

   =   ( ). 

Definition 2.3 [10] an  -space ( ,  ) has a property   (respectively  ) if the union (respectively 

intersection) of any family (respectively finite subsets) of    also belongs to  .                                                                  

Definition 2.4 [6] A subset   of an  -space ( ,  ) is said to be an   -open, if 

      (   (    ( ))).The complement of   -open set is called   -closed set or, equivalently, 

   (    (   ( )))    . 

Definition 2.5 [6] An  -space ( ,  ) has a property  , if the intersection of finite   -open sets is an 

  -open set in  .               

Remark 2.6 [6] From Definition 2.4, it is clear that every  -open (respectively  -closed) set is an   -

open (respectively   -closed) set. 

Definition 2.7 [10] Let ( ,  ) be an  -space. A point     is called an   -adherent point of a set 

     if and only if       for all     such that     .The set of all   -adherent points of a 

set   is denoted by      ( ), where     ( )   *              -closed set}. 

Proposition 2.8 [6] A subset   of  -space   is   -closed set in   iff        ( ). 

Definition 2.9 [7] Let ( ,  ) be an  -space,     . Then     is said to be   -interior point to   

iff        , for some   -open set    and     . The    -interior point of  a set   is all   -

interior point to    and denoted by      ( ), where      ( )=⋃*              -open set}. 

 Proposition 2.10 [6] any subset of  -space   is   -open set iff every point in it is    -interior point.  

Remark 2.11 [6] If ( ,  ) is an  -space, then: 

1. The union of any family of   -open sets is   -open set. 

2. The intersection of any two   -open sets may be not   -open set. 

Definition 2.12 [12] An  -space, ( ,  ) is called  -compact if any  -open cover of   has a finite 

subcover. A subset   of an  -space is said to be  -compact in  , if for any cover by  -open of    
there is a finite subcover of  .  

Proposition 2.13 [11] Every  -closed set in  -compact space is an  -compact set.  
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Definition 2.14 [6] An   -space ( ,  ) is said to be   -compact space if any   -open cover of   has 

a finite subcover. A subset   of  -space   is called   -compact, if any   -open set of   which 

covers   has a finite subcover of  .  

Remark 2.15 Any   -compact is  -compact set. However the converse is not necessarily true  as 

shown by the following example. 

Example 2.16 Let   be the set of real numbers and   be a non-empty set such that   =* +  
*     +, where    . Also  ={ ,  , { }}, then  ={{ ,  }:   } is an   -open cover to  . 

Since{ ,  }      (   (    (*   +)))   , so { ,  } is an   -open set. Now,   is an   -open 

cover to  , but it has no finite subcover to    since, if we remove {x, 50} then the reminder is not 

cover   (cover all   except   ), and it is infinite cover. Hence,   is not   -compact space and it is 

clear that   is  -compact space, since the only  -open cover of   is   itself, which is one set, that is, 

a finite open cover to  . 

Definition 2.17 [10] An   -space is called an  -  -space, if for any two points  ,   in  ,     there 

is two  -open sets     such that      but     and     but    .  

Proposition 2.18 [4] An  -space is  -   -space if and only if every singleton set is  -closed set, 

whenever   has    property.  

Definition 2.19 [10] An   -space is said to be   -  -space, if for every two t points      in    there 

are two   -open sets     with      but      and     but     . 

Remark 2.20 [10] Every  -  -space is   -  -space. 

Definition 2.21 [10] An  -space ( ,  ) is called   -  -space (respectively   -  -space), if  for any 

two distinct points     in  , there are two  -open (respectively   -open)      such that       
   and      . 

Definition 2.22 [4] An  -space ( ,  ) is said to be  -  -space if any  -compact subset of   is  -

closed set. 

Example 2.23 Let   be the real numbers, (  ,   ) is the usual  -space which is  -  -space.  

Proposition 2.24 [12] Every  -compact set in  -  -space, that has the property   and    is  -closed 

set. 

Remark 2.25 [4] 

1. Every  -   space is  -  -space. 

2. Every  -  -space with the property   and   is  -  -space. 

Definition 2.26 Let   (   )   (    ) be a function. Then   is called: 

1.  -continuous [15] iff for any   -open   in  , the inverse image    ( ) is an  -open set in  . 

2.   -continuous [6] iff for any   -open set   in  , the inverse image    ( ) is an   -open set 

in  .  

Proposition 2.27 [14] The  -continuous image of  -compact is   -compact.  

Definition 2.28 [4] A function   (   )   (    ) is said to be  -homeomorphism, if    is injective, 

surjective, continuous and     continuous. If there exists an  -homeomorphism between  ( ,  ) 

and  (    ) then we say that ( ,  )  -homeomorphic to (    ). 

Definition 2.29 [13] Let ( ,  ) be  -space,   be a subset of   and    . A point   is called an   -

interior point of   if there is       such that      and       ( )      And    -interior set 

which is denoted by      ( ) is the set of all   -interior points. A subset   of   is called an    -

open set if every point of   is an     - interior point. 

Definition 2.30 [13] Let ( ,  ) be  -space,     , a point     is said to be an    -adherent point 

for a subset   of  , if      ( )    for any  –open set   of   and    . The set of    -adherent 

point is said to be an    -closure of    which is denoted by      ( ). A subset   of    is called   -

closed set if every point to   is an   -adherent point.  

Example 2.31 Any subset of a discrete  -space ( ,   ) on a real number   is   -closed set and   -

open set. 

Definition 2.32 [8] An  -space ( ,  ) is said to have the property     (respectively   ) if the 

intersection (respectively union) of any finite number (respectively family) of   -open sets is an   -

open set.   

Remark 2.33 [8] If an  -space (   ) has     property, then every   -closed is an  -closed. 
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Definition 2.34 [8] Let (   ) be  -space,   is said to be   -compact if any   -open cover of   has 

a finite subcover. A subset   of an  -space (   ) is said to be   -compact if for any   -open cover  

*      + of   and cover   then there is a finite subset *  ,          } such that    ⋃    

 
    .          

Example 2.35 Let (       ) be an  -space where      be indiscrete   -space on a real number  , so 

is   -compact. 

Remark 2.36 [8] Every  -compact with the property    is   -compact.  

Definition 2.37 [8] An  -space ( ,  ) is called   -   -space, if for every two points     that belong 

to  ,      there is   -open sets   and    containing   an  b, respectively, such that       . 

Definition 2.38 [8] Let ( ,  ) and (    ) be two  -spaces and   (   )  (    ) be a function. 

Then   is called: 

1.   -continuous function iff for any   -closed (  -open) subset  of    the inverse image    ( ) is 

  -closed (  -open) set in  . 

2.    -continuous function iff for every    -closed (   -open)   subset of     the inverse image 

   ( ) is  -closed ( -open) set in  . 

3.     -continuous function iff for any     -closed (   -open)   subset of  ,  the inverse image  

   ( ) is   -closed (  -open) set in  . 

4.   -closed function if  ( ) is    -closed set in   for each  -closed subset   of  . 

5.     -closed function if  ( ) is   -closed set in   for each   -closed subset   of  . 

Proposition 2.39 [8] The     -continuous image of   -compact is    -compact. 

 Proposition 2.40[8] If   (   )  (    ) is an   -homeomorphism and   is an    -compact  set in 

  then    ( ) is an   -compact set in  , with   has the property   .  

3. Strong and weak forms of   -  -spaces 

In this section, we provide some weak forms of  -  -space, namely  - (  )-space,   -  ( )-space 

and  -  (  )-space. In addition, we introduce  -  ( )-space as a strong form of  -  -space. 

Definition 3.1 An  -space ( ,  ) is said to be  - (  )-space if every  -compact set in   is an   -

closed set. 

Now, we give some examples to explain the concept of  - (  )-space. 

Example 3.2 The discrete  -space ( ,    ) is  - (  )-space. 

Example 3.3 Let   *     + and let   *    * ++. Then (   ) is not  - (  )-space, since there 

exists an  -compact set *   + in   but it is not   -closed.  

To show that Definition 3.1 is well defined, we give the following example to illustrate that there is no 

relation between the concepts of  -compact set and   -closed set.  

Example 3.4 

1. In the discrete  -space (    ) where   is a real number,   is the rational numbers subset of    
  is   -closed but not   -compact set. 

2. In the indiscrete  -space ( ,     ),   is  -compact but not   -closed set.    

Remark 3.5 

1. Every  -   space is  - (  )-space. 

2. In discrete  -space, the two definitions     -  -space and  - (  )-paces are satisfied. 

     The following example indicates that the converse of Remark 3.5 part (1) is not necessarily hold. 

Example 3.6 Let ( ,  ) be an  -space,   *     + ,   *    * ++, so * + is  -compact since * + 

is finite set. Also it is   -closed set since    (    (   * +))      * +  so   is  - (  )-space, but 

not  -  -space since * + is not  -closed set. 

Proposition 3.7 An   -compact subset of   -  -space is   -closed, whenever   has     property. 

Proof: Let   be   -compact  in   -  -space. To show that   is   -closed, let       since   is   -

  -space. So for every          there exist   -open sets     with    ,    , such that 

       . Now the collection *   
         + is   -open cover of  .Since   is    -compact set, 

then there is a finite subcover of  , so    ⋃    

 
   . Let    ⋂    

( )     
   and    ⋃    

 
   , then 

   is an   -open set      (since   has property   ). Claim that        ,  let     , then   
   

, for some     and suppose  that     ,           This is a contradiction, then          , 

so    is   -open set in  , hence   is   -closed set. 

Theorem 3.8 Every   -closed set in   -compact space is   -compact set. 
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Proof: Let ( ,  ) be   -compact ,   is   -closed set in  , and {V} I is an   -open cover of  , that 

is   ⋃        where     is   -open in  .     , since        ⋃             also    is    

-open (since   is   -closed set in  ). So ⋃           is    -open cover for   which is   -compact 

space, then there exists               such that   ⋃     
    

   , so   ⋃     

 
   . 

Then ⋃     

 
                is a finite subcover of  . Therefore ,  is   -compact set. 

Remark 3.9 In the above theorem, if we replace the   -compact by  -compact, the theorem will not 

be true. 

Now, we introduce the weak form of  - (  )-space which was introduced in Definition 3.1. 

Definition 3.10 A space   is said to be  -  (  )-space if any   -compact subset of   is   -closed 

set. 

Example 3.11 Let (    ) be a discrete  -space where    is a real number. Let   is   -compact 

subset of  , then   is  -compact in   from Remark 2.15, and   is  -closed so it is   -closed by 

Remark 2.6. Hence  (    )  is  -  (  )-space.  

Proposition 3.12 Every  -  ( )-space is  -  (  )-space. 

Proof: Let ( ,  ) be  -space and   be   -compact subset of  , which is  -  ( )-space, so   is  -

closed subset of   and, by Remark 2.6,    is    -closed set. Hence   is  -  (  )-space.    

Theorem 3.13 ( ,  )  is   -  -space iff * + is   -closed subset of   for all    . 

Proof: Let * + be   -closed set     , let         with     ,     * + and * + are   -closed sets, 

then * +  is   -open subset of  , with   * +  and    * + . Also * +  is   -open subset of  , 

with    * + and    * + , so   is   -  -space. 

Conversely, we must prove that * + is   -closed subset of  , that is     (* +)  * +  since    * +  
    (* +)  (1). Let       (* +) and    * +  so     , but   is   -   -space, so there exist 

two   -open sets    and    containing   and    respectively,  with       and       . Then    

containing  , so   is not   -adherent point to * +  that is       (* +)  and this is contradiction. 

Therefore,    * + and     (* +)  * + ( )  so by (1) and (2) we get     (* +)  * +, and by 

Proposition 2.8, * + is   -closed subset of  . 

Proposition 3.14 Every  -  (  )-space is   -  -space.   

Proof: Let     and let * + be   -compact set in    since   is  -  (  )-space, hence * +  is   -

closed set, so   is   -  -space by Theorem 2.18. 

     The next example shows that the converse of Proposition 3.14 is not true. 

Example 3.15 Let (      ) be a co-finite  -space on a real number   which is   -  -space, if we 

take      as   -compact (since there exists one   -open cover of   which is  ), but   is not   -

closed in   (since    (    (   ( )))       

Proposition 3.16 Every   -  -space is  -  (  )-space, whenever   has    property. 

Proof: Let ( ,  ) be an  -space and   be an   -compact subset in  . Also   is   -  -space, so   is 

an   -closed set from Proposition 3.7. Therefore,   is  -  (  )-space.    

     The converse of Proposition 3.16 may not be hold. The following example explains that.  
Example 3.17 

Let (      ) be a co-countable  -space on a real number    which is   -  (  )-space,  but not   -

  -space, since the  -compact set in it are just the finite set, if we  -compact set then it is finite, so it 

is countable, then it is  -closed since in      the closed take  sets are     and countable sets. Now 

suppose that it is   -  -space,        ,    , there are   ,    as two   -open sets such that     , 

     and         ,  (      )       ,(  )
  (  )   , but this is a contradiction. Since    

and    are countable, the union also countable, but   is not countable so it is not   -  -space. 

Therefore (      ) are  -  -,   - (  )- and   -  (  )-spaces.        

Proposition 3.18 A subset   of an   -space   is   -closed set in   if and only if there exists an  -

closed set   such that    (    ( ))          

Proof:
 
Suppose that    is   -closed set in  , so    (    (   (  ))      by Definition 2.3, and 

    (   (  ), then    (    (   (  ))         (  ), put    ( )   , so    (    ( ))  

    . 
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Conversely, suppose that    (    ( ))       . To prove that    is   -closed set whenever   is 

 -closed set,    (   (     ( )))      (  )      ( )   , then    (    ( ) )      (  )  

  , and     (   (    ( )) )       (   (  ))       ( ), by hypothesis     (    ( ) )     

  , we get     (    (   (  )))     .Therefore   is   -closed set.                      

Definition 3.19 An  -space   is called  -  ( )-space if any   -compact subset in   is  -closed set.  

Example 3.20 Let (     ) be a discrete  -space on any space  , it is  -  ( )-space.  

Remark 3.21 

1. Every  -  -space is  -  ( )-space. 

2. Every  -  ( )-space is  -  (  )-space. 

3. Every  -  -space is  -  ( )-space. 

4. Every  -  ( )-space is   -  -space. 

Now, we define a strong form of  -  -space which is  -  ( )-space.  

Definition 3.22 An  -space (   )  is called  -  ( )-space, if every   -compact of   is  -closed 

set.  

Example 3.23 Let (      ) be a co-finite  -space on a real line  . Then (      ) is an  -  ( )-

space. 

Proposition 3.24 Every   -compact subset of   -  -space is    -closed, whenever that space has 

     property. 

Proof: Let   be an    -compact set in  . Let     , so for each     then      But   is   -  -

space, so there exist two    -open sets   and   containing   and    respectively, then   ⋃ *   
+   . 

But   is    -compact, so   ⋃ *    

 
    }=   and    ⋂    

 
   ( ) is    -open (since   has     

property). Claim that        , and suppose that        , since     , let      , that is 

   , but this is a contradiction. So         and then there exists   containing   and       , 

that is       (  ), then    is    -open, by Proposition 2.10, so   is    -closed. 

Proposition 3.25 If an  -space has     property, then every    -  -space is  -  ( )-space. 

Proof: Let   be an    -compact subset of  . To prove that   is  -closed set, since   is   -  -space, 

so by proposition 3.24, we get   is    -closed set and by Remark 2.33, we get   is  -closed,  hence   

is  -  ( )-space.  

Proposition 3.26 If an  -space has    property, then every  -  ( )-space is  -  -space. 

Proof: Let (   ) be  -space,   be  -compact  of   by Remark 2.36,   is   -compact and since   is 

 -  ( )-space, so   is  -closed subset of  , hence   is  -  -space. 

Remark 3.27 The following diagram shows the relationships between the stronger and weaker forms 

of  -  -space. 

                                            -  -space 

                                              property 

 

 

   -space                  -  ( )-space 

 

               property               property                        -  -space                                          

                         

                                 -  -space             

 

 

 

              -  ( )-space               

 

                                    - (  )-space                                   -  -space                                               

  -  -space        

 

     -property           

                                           -  (  )-space 
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4-Some types of continuous, open (closed) function on  -spaces. 

Definition 4.1 Let   (   )   (    ) be a function, then    is called: 

1.  -open (respectively  -closed) function [2], if  ( ) is an   -open respectively   -closed set in   

for any  -open (respectively  -closed)   in  . 

2.   -open (respectively   -closed) function [6], if  ( ) is an    -open (respectively    -closed) 

set in   for every  -open (respectively  -closed)   in  . 

3.    -open (respectively    -closed) function, if  ( ) is an   -open (respectively   -closed) set in 

  for any   -open (respectively   -closed) subset   of  . 

4.     -open (respectively    -closed) function, if  ( ) is an    -open (respectively    -closed) 

subset of    for any    -open (respectively   -closed) set  in  .     

5.    -continuous iff for any    -open set   in    the inverse image     ( ) is  -open set in  . 

6.     -continuous iff for every    -open set   in    the inverse image    ( ) is   -open set 

in  . 

Example 4.2 Let     *     +       *    * ++ and   (   )   (    ) defined by 

 ( )   ( )    and  ( )   . Then   is  -open,    -open and     -open but it is not    -open 

function (where   -open set in   and    are {    * + *   + *   +}. 
Next, we introduce a proposition about     -closed function. But before that we need to introduce the 

following proposition: 

Proposition 4.3 Let   (   )   (    ) be a function. Then for every subset   of    

1.   is  -homeomorphism iff     ( ( ))   (   ( ))                              

2.   is  -homeomorphism iff     ( ( ))   (    ( ))  
Proof: The proof follows directly from the Definition 2.26 part (1) and Definition 4.1 part (1).  

Theorem 4.4 If   (   )   (    ) is  -homeomorphism, then   is      -closed function. 

Proof: Let   be    -closed subset of  , by Proposition 3.18, there exists  -closed set   such 

that    (    ( ))     . Now, by taking the image, we get  (   (    ( )))   ( )   ( ). 

But    is   -homeomorphism, so 

                            (   ((    ( )))   ( )   ( ) ( ). 

 Also from Proposition 4.3        (    ( ))      ( ( )),                      hence 

                         ( (    ( )))     (    ( ( ))) ( ).  

Now, from ( ) and ( ) we have,     (    ( ( )))   ( )   ( ). Therefore,  ( ) is   -closed 

subset of   . 

Corollary 4.5 If   (   )   (    ) is  -homeomorphism, then   is      -open function. 

Proof: Let   be an   -open set in  . To prove that  ( ) is   -open set in  . Now,    
 is   -closed 

set in    and since   is  -homeomorphism. From Theorem 4.4,  (  ) is   -closed set in  . But   is 

surjective, so  (  ) =( ( )) , which means that  ( ) is   -open set in  . Hence   is      -open 

function.   

Theorem 4.6 Let   (   )   (    )  be      -continuous. Then  ( ) is   -compact in  , 

whenever   is   -compact in  . 

Proof: Let   be an   -compact in  . To prove that  ( ) is   -compact in  , let *      + be a 

family of   -open cover of  ( ). That is ( )  ⋃       , so    (   ) is   -open cover of  ,   . 

Also, since   is    -compact in  , then there exist    ,   ,        such that   ⋃     
   (   

), 

then  ( )    (⋃     
   (   

)) = ⋃    

 
   . Therefore,  ( ) is   -compact in  . 

 Theorem 4.7 Let   (   )   (    ) be     -continuous function. Then  ( ) is  -compact in  , 

whenever   is   -compact in  . 

Proof: Let   be an   -compact in  . To prove that  ( ) is  -compact in  , let *      + be a 

family of  -open cover of  ( ). That is ( )  ⋃       , so    (   ) is an   -open cover of 

 ,   . Also, since   is   -compact in  , then   ⋃     
   (   

). This implies that  ( )  

 (⋃     
   (   

))  = ⋃    

 
   . Therefore,  ( ) is  -compact in  . 

Theorem 4.8 Let   (   )   (    ) be      -continuous function. If a space   is     -compact and 

a space   is   -  , then the function   is     -closed, whenever   has    property. 
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Proof: Let   be an   -closed set in  . Since   is   -compact, then   is   -compact in   by 

Theorem 3.8 and the function   is      -continuous. Then  ( ) is    -compact subset of    from 

Theorem 4.6, and since   is   -  -space, so  ( ) is    -closed set of   by proposition 3.7. 

Therefore    is      -closed function. 

Theorem 4.9 Let   (   )   (    ) be a    -continuous function, from   -compact space   into 

 -  -space  , then   is    -closed function. 

Proof: Let   be   -closed set in   which  is   -compact, so   is   -compact in   from Theorem 

3.8. Also, from the hypotheses,   is    -continuous, then  ( ) is  -compact in   by Theorem 4.7. 

But   is  -  -space, hence  ( ) is   -closed set of  . Therefore,   is     -closed function.  

Proposition 4.10 Let the function    (   )   (    )  be  -continuous. If (   ) is  -compact and 

(    )  is  - (  )-space, then   is   -closed function. 

Proof: Let   be an  -closed set in  , also   is  -compact, then   is  -compact subset of   from 

Proposition 2.13, and   is  -continuous function, then  ( ) is  -compact set in   from Proposition 

2.27. Also   is  - (  )-space , so  ( ) is   -closed in  , therefore   is   -closed . 

Proposition 4.11 If the function   (   )   (    ) is     -continuous, (   )  is   -compact and 

(    ) is  -  (  )-space, then    is     -closed function. 

Proof: Let   be an   -closed set of  , since   is   -compact, so by Theorem 3.8,   is   -compact 

in   and   is     -continuous. Then  ( ) is   -compact in  . Also by Theorem 4.6,   is  -

  (  )-space, hence  ( ) is   -closed in  . Therefore,    is      -closed . 

Theorem 4.12 If   (   )  (    ) is  -closed,      -open bijective function and (   )  is  -

  ( )-space, then  (    ) is  -  ( )-space.  

Proof: Let   be   -compact in   and *       + be an   -open cover of    ( ) in  , that is 

   ( )  ⋃       . Since   is bijective, so      (   ( ))    (⋃       )  ⋃  (   )   . 

And   is      -open function, so ⋃  (   )    is    -open in  , for each    . Also,   is    -

compact in  , so   ⋃  (   
) 

   . This implies that  

   ( )      (⋃  (   
) 

   )  ⋃    ( (   
))  ⋃    

 
   

 
   , so    ( ) is   -compact in    

which is  - (  )-space, so    ( ) is  -closed. Also, since   is  -closed function, therefore 

 (   ( ))    is   -closed in  . Hence   is  - (  )-space. 

Theorem 4.13 Let the injective function   (   )   (    ) be  -continuous and      -continuous. 

Then  (   )  is  - (  )-space whenever (    ) is  - (  )-space. 

Proof: Let   be  -compact in  . To prove that   is   -closed, let *      + be an  -open cover to 

 ( ) in  , that is  ( )  ⋃      . But   is  -continuous function, so by Proposition 2.27,  ( ) is  -

compact in  , hence  ( )  ⋃    

 
   . Also   is injective function, so        ( ( )  

    (⋃    
) 

    ⋃    (   
) 

   . Also,   is  -continuous, hence     (   
) is  -open in  ,     

         . This implies that  ( )  ⋃    
  

   , hence  ( ) is  -compact set of    which is  - (  )-

space, that is  ( ) is   -closed subset of  . But   is      -continuous and     ( ( ))   , so   is 

  -closed set in  . Therefore   is  - (  )-space. 

 Theorem 4.14 Let a bijective function   (   )  (    ) be     -continuous. If   is  -  (  )-

space, then   is  -  (  )-space.  

Proof: Let   be   -compact in  , so  ( ) is   -compact in   by Theorem 4.6.  And since   is  -

  (  )-space, so that  ( ) is    -closed set of   and     ( ( ))    (  is injective), so   is   -

closed subset in   since   is      -continuous function. Therefore,   is  -  (  )-space. 

Proposition 4.15 If   (   )   (    ) is  -continuous function,   is  -compact space and   is  -

  ( )-space, then   is    -closed function, whenever   has      property. 

Proof: Let   be    -closed subset of  , so that   is  -closed in   by Remark 2.33. And since   

is  -compact, then   is  -compact by Proposition 2.13. Also   is   -continuous function, so by 

Proposition 2.27,  ( ) is  -compact, hence from Remark 2.36,  ( ) is    -compact in     which is 

 -  ( )-space. Therefore  ( ) is   -closed. That is   is    -closed function.  

Proposition 4.16 Let   (   )   (    ) be  -homeomorphsim function. Then (    ) is  -  ( )-

space, whenever (   ) is  -  ( )-space which has    property. 
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Proof: Let   be an   -compact set in  , by Proposition 2.40,    ( ) is   -compact in   which 

is  -  ( )-space. So    ( ) is  -closed set in   and  (   ( ))    is   -closed set in  . 

Therefore, (    ) is  -  ( )-space. 
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