Fandi and Yaseen

Iraqi Journal of Science, 2019, Vol. 60, No.12, pp: 2706-2710 DOI: 10.24996/ijs.2019.60.12.20

ISSN: 0067-2904

ET-Coessential and ET-Coclosed submodules

Firas sh. Fandi¹, Sahira M. Yaseen²

¹Mathematics Department, College of Education for Pure Sciences, University Of Anbar, Ramadi, Iraq ²Mathematics Department, College of Science University of Baghdad, Baghdad, Iraq

Received: 4/5/ 2019

Accepted: 17/7/2019

Abstract

Let M be an R-module, where R be a commutative ring with identity. In this paper, we defined a new kind of submodules, namely ET-coessential and ET-Coclosed submodules of M. Let T be a submodule of M. Let $K \le H \le M$, K is called ET-Coessential of H in M ($K\subseteq_{ET.ee}$ H), if $\frac{H}{K} \ll_{E(\frac{T+K}{K})} \frac{M}{K}$. A submodule H is called ET- coclosed in M of H has no proper coessential submodule in M, we denote by ($K\subseteq_{ET.ee}$ H), that is, $K\subseteq_{ET.ee}$ H implies that K = H. In our work, we introduce some properties of ET-coessential and ET-coclosed submodules of M.

Keywords: ET-small submodule, ET-coessential submodule, ET- coclosed submodule,

حول المقاسات الجزئية الجوهرية الرديف من ET والمقاسات الجزئية المغلقة الرديف من النمط ET

فراس شاكر فندى *، ساهرة محمود ياسين

¹قسم الرياضيات، كلية التربية للعلوم الصرفة، جامعة الانبار ، الانبار ، العراق ²قسم الرياضيات،كلية العلوم ، جامعة بغداد، بغداد، العراق

الخلاصة

ليكن M مقاس احادي محايد وليكن Rحلقة إبداليه ذات عنصر محايد . في هذه الورقة نستعرض نوعين من المقاسات الجزئية تدعى الاولى المقاسات الجزئية الجوهرية الرديفة من النمط -ET والثانية المقاسات الجزئية المغلقة الرديفة من النمط-ET ليكن T مقاس جزئي من المقاس M و M \geq H \geq N , المقاس الجزئي H يدعى مقاس جوهري رديف من النمط-ET ل في M وبرمز له K $\subseteq_{\text{ET.ce}}$ k اذا كان $\frac{M}{K} \frac{(X+T)}{(X-T)} \gg \frac{H}{K}$ يدعى مقاس جزئي مغلق رديف H والمقاس الجزئي ل الفي M. اذا لم يكن له مقاس جزئي جوهري رديف في M ويرمز له K $\subseteq_{\text{ET.cc}}$ b في aذا البحث سوف نقوم بدراسة وتطوير خواص هذه المقاسات الجزئية

1. Introduction

Let R is a commutative ring with identity and M is an arbitrary R-module. A proper submodule H of M is called small (H \ll M), if for all submodule K of M (K \leq M) such that H+ K = M implies that K= M[1]. A submodule H of M is essential (H \leq_e M) if for all B \leq M such that H \cap B= 0, then B= 0 [2]. A submodule H of M is closed (H \leq_c M) if H has no proper essential extensions inside M. that is, if H \leq_e K \leq_e M then H=K [3]. A submodule H of M is called an essential- small (H \ll_e M) submodule of M, if for all essential submodule B of M such that M = H + B implies that B = M [4].

Let $T \le M$, a submodule H of M is said to be "T-small submodule of M", if for all $K \le M$ such that \subseteq H+K, then T \subseteq K [5]. In a previous work [6], the authors defined ET-small submodule of M. Let T \leq M and A submodule H of M is "ET-small submodule of M", if for all $K \leq_e M$ such that $T \subseteq H+K$, then $T \subseteq K$, clearly every T-small submodule of M is ET-small submodule of M but the converse is not true. We give in lemma 1 and lemma 2 some properties of ET-small submodule of M.

Lemma1 [6]:

1- Let T, A and B be submodules of M such that $T \le B$ and $A \le B \le M$ and $B \ll_e M$. If $A \ll_{ET} M$, then $A \ll_{ET} B.$

2- Let M be an R-module with submodules $A \le B \le M$ such that $T \le B$. If $A \ll_{ET} B$, then $A \ll_{ET} M.$

3- Let M be an R-module and let T, A and B be submodules of M, then $A \ll_{ET} M$ and $B \ll_{ET} M$ if and only if $A+B\ll_{ET} M$.

Lemma2 [6]:

1- Let M_1 and M_2 be any R-modules and $f: M_1 \rightarrow M_2$ be a homomorphism. If T and H are submodules of M such that $H \ll_{ET} M_1$, then $f(H) \ll_{Ef(T)} M_2$.

2- Let M be an R-module and let T, H and N be submodules of M such that $H \le N \le M$ and $H \le T$ and $H \leq_c M$, if $\frac{N}{H} \ll_E \frac{T}{T} \frac{M}{H}$ then $N \ll_{ET} M$.

T-coessential submodule was given the if K, H submodule of M such that $K \subseteq H, K$ is Tcoessential of H ($K \subseteq_{T.ce} H$) if $\frac{H}{K} \ll_{T+K} \frac{M}{K}$ [7]. In this work, we define the ET-coessential submodule and ET- coclosed submodule of M and we give some properties of this type of submodules. Let T be a submodule of M. Let $K \le H \le M$, K is called ET-coessential in M if $\frac{H}{K} \ll_{E(\frac{T+K}{\nu})} \frac{M}{K}$. Every Tcoessential submodule in M is an ET- coessential submodule in M but the converse is not true. We

also give other properties. A submodule H is called ET- coclosed in M if H has no proper submodule K for which $K \subseteq H$ is a coessential submodule in M, we denote by $(K \subseteq_{ET,ce} H)$, that is, $K \subseteq_{ET,ce} H$ implies that K = H. Also we give some properties of ET- coclosed submodule of M.

2. ET-coessential submodules.

Definition2.1: Let T be a submodule of a module M, let K and H be submodules of M, such that $K \subseteq$ H is called ET-coessential in M if $\frac{H}{K} \ll_{E(\frac{T+K}{K})} \frac{M}{K}$. We denote this by $(K \subseteq_{ET.ce} H)$.

Remarks and Examples 2.2:

1) Consider Z_6 as a Z-module. Let $T = \{\overline{0}, \overline{3}\}$, $K = \{\overline{0}\}$ and $H = \{\overline{0}, \overline{2}, \overline{4}\}$, then $K \subseteq_{ET.ce} H$ in Z_6 , where $\frac{\overline{(0,\overline{2},\overline{4})}}{\overline{(0)}} = \{\overline{0},\overline{2},\overline{4}\} \ll_{\text{ET}} \mathbb{Z}_6 \cong \frac{\mathbb{Z}_6}{\overline{(0)}}; \text{ see the cited adopted reference [6].}$

2) Consider Z as a Z-module. Let T=2Z, K={0}, H=3Z, thus K $\not\subseteq_{ET.ce}$ H in Z since $\frac{H}{K} = \frac{3Z}{\{0\}} = 3Z$ is not $E(\frac{2Z+\{0\}}{\{0\}})$ -small submodule of $\frac{Z}{\{0\}} = Z$, since $2Z \subseteq 3Z+5Z$ where $5Z \leq_e Z$, but 2Z⊈5Z, therefore K $⊈_{ET.ce}$ H.

3) Let M be an R-module and let T, K and H be submodules of M such that $K \subseteq H$. Every Tcoessential submodule in M is an ET- coessential submodule in M but the converseis not true.In general, for example, consider Z_4 as a Z-module. If $T = \{\overline{0}, \overline{2}\}$, $K = \{\overline{0}\}$ and $H = \{\overline{0}, \overline{2}\}$, then K is not a Tcoessential submodule of H in Z₄, where $\frac{\{\overline{0},\overline{2}\}}{\{\overline{0}\}} \cong \{\overline{0},\overline{2}\}$ and $Z_4 \cong \frac{Z_4}{\{\overline{0}\}}$. But $\{\overline{0},\overline{2}\}$ is not a T-small submodule of Z4, by [5], So K is not a T- coessential submodule of H in Z4. But K is a ET- coessential submodule of H in Z₄, since the $\{\overline{0},\overline{2}\}$ and Z₄ are only essential submodules in Z₄ then $T \subseteq \{\overline{0},\overline{2}\}$ and $T \subseteq Z_4$, so $\{\overline{0},\overline{2}\} \ll_{\text{ET}} Z_4$ implies that $\frac{H}{K} \ll_{\text{E}(\frac{T+K}{K})} \frac{Z_4}{K}$. Hence $K \subseteq_{\text{ET.ce}} H$.

4) Let M be an R - module and let T, K and H be submodules of M such that $K \subseteq H$. If T = 0, then K is a ET- coessential submodule of H in M. Since let $\frac{T+K}{K} \subseteq \frac{H}{K} + \frac{X}{K}$, $\forall \frac{X}{K} \leq_e \frac{M}{K}$, but T = 0, so $\frac{T+K}{K} = \frac{0+K}{K} = K$ $\subseteq \frac{X}{K}$ then $\frac{T+K}{K} \subseteq \frac{X}{K}$. Thus $\frac{H}{K} \ll_{E(\frac{T+K}{V})} \frac{M}{K}$, hence $K \subseteq_{ET,ce} H$.

5) Let M be an uniform R-module then every ET-coessential submodule of M is a T-coessential submodule of M.

Proposition 2.3: Let M be an R-module and let T, K and H be submodules of M such that $K \subseteq H$, then $K \ll_{ET} M$ if $0 \subseteq_{ET.ce} K$.

Proof: Let $K \ll_{ET} M$. Then $\frac{K}{0} \ll \frac{T+0}{0} \frac{M}{0}$. Thus 0 is a T- coessential submodule of H in M.

Conversely, let $0 \subseteq_{ET,ce} K$ in M. To show that $K \ll_{ET} M$. Let $X \leq_e M$ such that $T \subseteq K + X$, then $\frac{T+0}{0} \subseteq K$ $\frac{K+X}{0} = \frac{K}{0} + \frac{X}{0}$. Since $0 \subseteq_{\text{ET.ce}} K$, then $\frac{K}{0} \ll_{E(\frac{T+0}{0})} \frac{M}{0}$ and hence $\frac{T+0}{0} \subseteq \frac{X}{0}$. Therefore $T \subseteq X$. Thus $K \ll_{ET} M$. The following proposition gives a characteristic of an ET- coessential submodule of M.

Proposition 2.4: Let T be a submodule of a module M and let K and H be submodules of M such that $K \subseteq H$. Then $K \subseteq_{ET,ce} H$ if and only if $T \subseteq H+X$ implies that $T \subseteq K+X$, for every essential submodule X of M.

Proof: Let $K \subseteq_{ET.ce} H$. $\forall X \leq_e M$ such that $T \subseteq H+X$, then $\frac{T+K}{K} \subseteq \frac{H+X}{K} = \frac{H}{K} + \frac{X+K}{K}$. Since $K \subseteq_{ET.ce} H$, then $\frac{T+K}{K} \subseteq \frac{X+K}{K}$ and hence $T \subseteq T+K \subseteq X+K$.

The converse, to show that $K \subseteq_{ET.ce} H$. Let $\frac{T+K}{K} \subseteq \frac{H}{K} + \frac{X}{K}$, $\forall \frac{X}{K} \leq_e \frac{M}{K}$, then $\frac{T+K}{K} \subseteq \frac{H}{K} + \frac{X}{K} = \frac{H+X}{K}$, then $T \subseteq T+K \subseteq H+X$. By our assumption, then $T \subseteq X+K$. Hence $\frac{T+K}{K} \subseteq \frac{X+K}{K} = \frac{X}{K}$. And $K \subseteq_{ET.ce} H$.

Proposition 2.5: Let T be a submodule of a module M and let K, H and L be submodules of M such that K⊆H⊆L⊆M. Then H ⊆_{ET.ce}L in M if and only if $\frac{H}{K} \subseteq_{E(\frac{T+K}{K}).ce} \frac{L}{K}$ in $\frac{M}{K}$.

Proof: Let $H \subseteq_{ET.ce} L$ in M, then $\frac{L}{H} \ll_{E(\frac{T+H}{T})} \frac{M}{H}$. Since $\frac{L}{H} \cong \frac{L/4}{H/4}$

 $\frac{T+H}{H} \cong \frac{(T+H)/K}{H/K} \quad \text{and } \frac{M}{H} \cong \frac{M/K}{H/K}, \text{ by the third isomorphism theorem. Then } \frac{L/K}{H/K} \ll_{E(\frac{(T+H)/K}{H/K})} \frac{M/K}{H/K}.$ Thus $\frac{H}{K} \subseteq_{E(\frac{T+K}{K})} ce^{\frac{L}{K}}$ in $\frac{M}{K}$

Conversely, suppose that $\frac{H}{K} \subseteq_{E(\frac{T+K}{K}).ce} \frac{L}{K} \text{ in } \frac{M}{K}$, then $\frac{L/K}{H/K} \ll_{E(\frac{(T+H)/K}{H/K})} \frac{M/K}{H/K}$. Since $\frac{L}{H} \cong \frac{L/K}{H/K}$, $\frac{T+H}{H} \cong$ $\frac{(T+H)/K}{H/K}$ and $\frac{M}{H} \cong \frac{M/K}{H/K}$, by the third isomorphism theorem. Then $\frac{L}{H} \ll_{E(\frac{T+H}{T})} \frac{M}{H}$. Thus $H \subseteq_{ET.ce} L$ in M.

Proposition 2.6: Let T be a submodule of a module M, let K, H and L be submodules of M such that

K⊆H⊆L⊆M and H ≤_cM. Then K⊆_{*ET.ce*}L in M if and only if K ⊆_{*ET.ce*}H in M and H ⊆_{*ET.ce*}L in M. **Proof:** Let K⊆_{*ET.ce*}L in M, then $\frac{L}{K} \ll_{E(\frac{T+K}{K})} \frac{M}{K}$. Since $\frac{H}{K} \subseteq \frac{L}{K} \subseteq \frac{M}{K}$, then $\frac{H}{K} \ll_{E(\frac{T+K}{K})} \frac{M}{K}$ [6], hence K $\subseteq_{ET.ce}$ H in M. Now we define $f: \frac{M}{K} \to \frac{M}{H}$ by f(m+K) = m+H, $\forall m \in M$. Since $\forall m+H \in \frac{M}{H}$, $\exists m + K \in \frac{M}{K}$, such that f(m+K) = m+H hence f is an epimorphism. Since $\frac{L}{K} \ll_{E(\frac{T+K}{\nu})} \frac{M}{K}^{H}$ in M, hence f

$$\left(\frac{L}{K}\right) = \frac{L}{H} \ll_{E\left(\frac{T+H}{H}\right)} \frac{M}{H}$$
 [6]. Hence $H \subseteq_{ET.ce} L$ in M.
Conversely suppose that $K \subseteq_{ETT}$. H in M and $H \subseteq_{ETT}$. L in M then $\frac{H}{K} \ll \frac{M}{T+K} = M$ and $\frac{L}{K} \ll \frac{T+H}{T+K}$

Conversely, suppose that $K \subseteq_{ET.ce} H$ in M and $H \subseteq_{ET.ce} L$ in M, then $\frac{H}{K} \ll_{E(\frac{T+K}{K})} \frac{1}{K}$ and $\frac{H}{H} \ll_{E(\frac{T+H}{H})}$ $\frac{M}{H}$. To prove $K \subseteq_{ET.ce} L$ in M.

 $\begin{array}{c} H & T \\ Let & \frac{T+K}{K} \subseteq \frac{L}{K} + \frac{X}{K} \\ H & = \frac{L}{K} + \frac{X}{K} \end{array}, \quad \forall \quad \frac{X}{K} \leq_{e} \frac{M}{K} \text{ and } K \subseteq X, \text{ then } \frac{T+K}{K} \subseteq \frac{L+X}{K} \text{ and hence } T \subseteq T+K \subseteq L+X \text{ .Therefore} \\ \frac{T+H}{H} \subseteq \frac{L}{H} + \frac{X+H}{H} \text{ . Since } X \subseteq X+H \subseteq M \text{ and } X \leq_{e} M \text{ then } X+H \leq_{e} M \text{ and since } H \leq_{c} M \text{ then } \frac{X+H}{H} \leq_{e} \frac{M}{H} [2], \end{array}$ since $H \subseteq_{ET.ce} L$ in M, then $\frac{T+H}{H} \subseteq \frac{X+H}{H}$ and hence $T \subseteq T+H \subseteq X+H$. Therefore $\frac{T+K}{K} \subseteq \frac{H}{K} + \frac{X}{K}$. since $K \subseteq_{ET.ce} H$ in M, then $\frac{T+K}{K} \subseteq \frac{X}{K}$.

Thus $K \subseteq_{ET.ce} L$ in M.

Proposition 2.7: Let T be a submodule of a module M. If $K \subseteq_{ET.ce} H$ in M, $K \leq_c M$ and $N \subseteq_{ET.ce} L$ in M, then K+N $\subseteq_{ET.ce}$ H+L in M.

Proof: Let $K \subseteq_{ET.ce} H$ in M and $N \subseteq_{ET.ce} L$ in M, then $\frac{H}{K} \ll_{E(\frac{T+K}{K})} \frac{M}{K}$ and $\frac{L}{N} \ll_{E(\frac{T+N}{N})} \frac{M}{N}$. To show that $K+N \subseteq_{ET.ce} H+L \text{ in } M, \text{ let } \frac{T+K+N}{K+N} \subseteq \frac{H+L}{K+N} + \frac{X}{K+N} \text{ , for every } \frac{X}{K+N} \leq_{e} \frac{M}{K+N} \text{ and } K+N \subseteq X \text{ then } \frac{T+K+N}{K+N} \subseteq \frac{M}{K+N} = \frac{M}{K+N} \text{ and } K+N \subseteq X \text{ then } \frac{T+K+N}{K+N} \subseteq \frac{M}{K+N} = \frac{M}{K+N} \text{ and } K+N \subseteq X \text{ then } \frac{T+K+N}{K+N} \subseteq \frac{M}{K+N} = \frac{M}{K+N} \text{ and } K+N \subseteq X \text{ then } \frac{T+K+N}{K+N} \subseteq \frac{M}{K+N} = \frac{M}{K+N} \text{ and } K+N \subseteq X \text{ then } \frac{T+K+N}{K+N} \subseteq \frac{M}{K+N} = \frac{M}{K+N} \text{ and } K+N \subseteq X \text{ then } \frac{T+K+N}{K+N} \subseteq \frac{M}{K+N} = \frac{M}{K+$

 $\frac{H+L+X}{K+N} \text{ and hence } T \subseteq T+K+N \subseteq H+L+X. \text{ Therefore } \frac{T+K}{K} \subseteq \frac{H}{K} + \frac{L+X+K}{K}, \text{ since } X \subseteq L+X+K \subseteq M \text{ and } X \leq_{e} M \text{ then } L+X+K \leq_{e} M \text{ and since } K \leq_{c} M \text{ then } \frac{L+X+K}{K} \leq_{e} \frac{M}{K} [2], \text{ and } K \subseteq_{ET.ce} H \text{ in } M \text{ then } \frac{T+K}{K} \subseteq \frac{L+X+K}{K}, \text{ so } T \subseteq T+K \subseteq L+X+K. \text{ Therefore } \frac{T+N}{N} \subseteq \frac{C}{N} + \frac{X+K+N}{N}. \text{ Since } X \subseteq X+K+N \subseteq M \text{ and } X \leq_{e} M \text{ then } X+K+N$ $\leq_{e} M \text{ and } N \leq_{c} M \text{ then } \frac{X+K+N}{N} \leq_{e} \frac{M}{N} [2], \text{ since } N \subseteq_{ET.ce} L \text{ in } M, \text{ then } \frac{T+N}{N} \subseteq \frac{X+K+N}{N} \text{ and hence}$ $T \subseteq T+N \subseteq X+K+N=X. \text{ Therefore } \frac{T+K+N}{K+N} \subseteq \frac{X}{K+N} \text{ . Thus } K+X \subseteq_{ET.ce} H+L \text{ in } M.$

Corollary 2.8: Let T be a submodule of a module M. If $K \subseteq_{ET.ce} H$ in M and $N \subseteq M$, then K+N $\subseteq_{ET.ce}$ H+N in M. The converse is true if N \ll_{ET} M and K+N \leq_{c} M.

Proof: Suppose that $K \subseteq_{ET.ce} H$ in M and $N \subseteq M$, then $\frac{H}{K} \ll_{E(\frac{T+K}{K})} \frac{M}{K}$. Since $N \subseteq_{ET.ce} N$ and $K \subseteq_{ET.ce} H$ in M, then K+N $\subseteq_{ET.ce}$ H+N in M, by Proposition (2.7).

Proposition 2.9: Let T, K and N be submodules of a module M, if $K+N \subseteq_{ET.ce} H+N$ and $N \ll_{ET}$ M and K+N \leq_{c} M then K $\subseteq_{ET.ce}$ H.

Proof: Suppose that K+N $\subseteq_{ET.ce}$ H+N in M and N \ll_{ET} M. To prove K $\subseteq_{ET.ce}$ H in M. Let $\frac{X}{K}$ be an essential submodule of $\frac{M}{K}$ such that $\frac{T+K}{K} \subseteq \frac{H}{K} + \frac{X}{K}$. Then $\frac{T+K}{K} \subseteq \frac{H+X}{K}$ and hence $T \subseteq T+K \subseteq H+X$. Therefore $\frac{T+K+N}{K+N} \subseteq \frac{H+X+N}{K+N}$. Thus $\frac{T+K+N}{K+N} \subseteq \frac{H+N}{K+N} + \frac{X+N}{K+N}$. Since $X \subseteq X+N \subseteq M$ and $X \leq_{e} M$ then $X+N \leq_{e} M$ and $K+N \leq_{e} M$ then $\frac{X+N}{K+N} \leq_{e} \frac{M}{K+N}$ [2], and since $K+N \subseteq_{ET.ce} H+N$ in M, then $\frac{T+K+N}{K+N} \subseteq \frac{X+N}{K+N}$ and hence $T \subseteq T+K+N \subseteq X+N$. Since $X \leq_{e} M$ and $N \ll_{ET} M$, therefore $T \subseteq X$. So $\frac{T+K}{K} \subseteq \frac{X}{K}$. Thus $K \subseteq_{ET.ce} H$ in M.

Proposition 2.10: Let T be a submodule of a module M and let $N \ll_{ET} M$. If $K \subseteq_{ET,ce} H$ in M and K $\leq_{c} M$, then K $\subseteq_{ET,ce} H+N$ in M.

Proof: Suppose that N \ll_{ET} M and K $\subseteq_{ET.ce}$ H in M, then $\frac{H}{K} \ll_{E(\frac{T+K}{K})} \frac{M}{K}$. To prove K $\subseteq_{ET.ce}$ H+N in M. Let $\frac{X}{K}$ be an essential submodule of $\frac{M}{K}$ such that $\frac{T+K}{K} \subseteq \frac{H+N}{K} + \frac{X}{K}$. Then $\frac{T+K}{K} \subseteq \frac{H+N+X}{K}$ and hence $\frac{T+K}{K} \subseteq \frac{H}{K} + \frac{N+X}{K}$. Since X \subseteq N+X \subseteq M and X \leq_{e} M then N+X \leq_{e} M and K \leq_{c} M then $\frac{X+K}{K} \leq_{e} \frac{M}{K}$ [2], since K $\subseteq_{ET.ce}$ H in M, then $\frac{T+K}{K} \subseteq \frac{N+X}{K}$ and hence T \subseteq T+K \subseteq N+X. But N \ll_{ET} M and X \leq_{e} M, so T \subseteq X. Therefore $\frac{T+K}{\kappa} \subseteq \frac{X}{\kappa}$. Thus $K \subseteq_{ET.ce} H+N$ in M.

Proposition 2.11: Let M and N be R-modules such that $T \le M$ and let $f: M \to N$ be an epimorphism.

since $K \leq_c M$ implies that $\frac{f^{-1}(X)}{K} \leq_c \frac{M}{K}$ [2], and since $K \subseteq_{\text{ET.ce}} H$ in M, then $\frac{T+K}{K} \subseteq \frac{f^{-1}(X)}{K}$ and hence $T \subseteq T+K \subseteq f^{-1}(X)$ then $f(T) \subseteq f(f^{-1}(X)) = X \cap \text{Im}(f)$, since f is an epimorphism then $X \cap \text{Im}(f)=X$, so $f(T) \subseteq X$, therefore $\frac{f(T)+f(K)}{f(K)} \subseteq \frac{X}{f(K)}$. Thus $f(K) \subseteq_{\text{ET.ce}} f(H)$ in N.

3. ET- coclosed submodules

Definition 3.1: Let T be a submodule of a module M. A submodule H is called an ET- coclosed in M if H has no proper coessential submodule in M.

Remarks and Examples 3.1:

1- If T = M and $A \subseteq B$ be submodule of M, then A is ET-coessential of B if and only if A is ecoessential of B. So A is ET-coclosed if and only if A is e-coclosed in M.

2- Consider Z_6 as Z-modules. Let $T = \{\overline{0}, \overline{3}\}, A = \{0\}$ and $B = \{\overline{0}, \overline{2}, \overline{4}\}$.

 $A \subseteq_{ET.ce} B$ since $\frac{B}{A} \ll_{ET} Z_6$ [3] but $\{\overline{0}\} \neq \{\overline{0}, \overline{2}, \overline{4}\}$, thus B is not ET- coclosed in Z_6 , but A is coclosed in B.

3- Consider Z_4 as Z-module. Let $T = \{\overline{0}, \overline{2}\}$, $B = \{\overline{0}, \overline{2}\}$. Now, if $A = \{0\}$, then $\frac{B}{\{0\}} \cong \{\overline{0}, \overline{2}\}$ if $A = \{\overline{0}, \overline{2}\} = \frac{B}{B} = \{0\} \ll_{ET} Z_4$, therefore $B \subseteq_{ET.ce} Z_4$.

Proposition 3.2: Let $A \subseteq B \subseteq M$ and $\subseteq B$, then A is ET-coclosed in M iff A is ET-coclosed in B. **Proof:** Suppose that A is ET-coclosed in M and $X \subseteq A$ such that $\frac{A}{X} \ll_{(\frac{T+X}{Y})} \frac{B}{X}$ then $\frac{A}{X} \ll_{(\frac{T+X}{Y})} \frac{M}{X}$, by[6,

Proposition 2.4]. Since A is ET-coclosed in M then A=X. Conversely, let $X \leq A$ such that $\frac{A}{X} \ll_{(\frac{T+X}{X})} \frac{B}{X}$, since $A \subseteq B$, then $\frac{A}{X} \subseteq \frac{B}{X}$, thus $\frac{A}{X} \ll_{(\frac{T+X}{X})} \frac{B}{X}$, by [6, Proposition 2.3] since A is ET-coclosed in B.

Proposition 3.3: Let T be a submodule of a module M and let $A \subset B \subset M$ be submodules.

(1) If B is ET-coclosed in M, then B/A is ET-coclosed in M/A.

(2) If A \ll B and B/A is ET-coclosed in M/A, then B is ET-coclosed in M.

Proof:

(1) Suppose that $N \subset B$ such that $N/A \subset B/A$ such that N/A is ET-coessential of B/A in M/A. Then $\frac{B/A}{N/A} \ll_{E(\frac{(T+N)/A}{N/A})} \frac{M/A}{N/A}$ and so $\frac{B}{N} \ll_{E(\frac{(T+N)}{N})} \frac{M}{N}$, then N is ET-coessential of B. But B is ET-coclosed in M, then N = B. implies that $\frac{N}{A} = \frac{B}{A}$, then $\frac{B}{A}$ is ET-coclosed in $\frac{M}{A}$. (2) Let $N \subset B$ such that N is ET-coessential of L then $\frac{B}{A} \ll_{E(\frac{T+N}{N})} \frac{M}{N}$ implies that

(2) Let N⊂B such that N is ET-coessential of L, then $\frac{B}{N} \ll_{E(\frac{(T+N)}{N})} \frac{M}{N}$, implies that $\frac{B/A}{N/A} \ll_{E(\frac{(T+N)/A}{N/A})} \frac{M/A}{N/A}$, therefore $\frac{N}{A} \subseteq_{ET.ce} \frac{B}{A}$, but $\frac{B}{N}$ is ET-coclosed in $\frac{M}{N}$, then $\frac{N}{A} = \frac{B}{A}$, so N=A, then B is ET-coclosed of M.

References

- 1. Fleury, p. 1974. "Hollow Module and Local Endomorphism Rings", Pac. J.Math, 53: 379-385.
- 2. Kasch, F. and Modules, F. 1982. Rings, Academic Press, Inc- London.
- 3. Goodearl, K.R. 1976. Ring Theory, Nonsingular Rings and Modules, Marcel Dekkel, 1976.
- 4. Zhou, X. and Zhang, X.R. 2011. Small-Essential Submodules and Morita Duality, *Southeast Asian Bulletin of Mathematics*, 35: 1051-1062.
- **5.** Beyranvand, R. and Moradi, F. **2015.** Small submodules with respect to an arbitrary submodule. *Journal of Algebra* and Related Topics, **3**(2): 43-51.
- 6. Fandi, F.SH. and Yaseen, S.M. 2019. " on essential (T-samll) submodule", Second international conference for applied and pure mathematics, 2019.
- **7.** Al-Redeeni, H.S. and Al-Bahrani, B.H. **2017.** "On (G^{*}-)T- lifting modules and T-H-supplemented modules ",MS. Thesis College of science, University of Baghdad.