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Abstract

Let M be an R-module, where R be a commutative ring with identity. In this
paper, we defined a new kind of submodules, namely ET-coessential and ET-
Coclosed submodules of M. Let T be a submodule of M. Let K < H < M, K is

called ET-Coessential of H in M (KSgt . H), if g <<E(ﬂ) % . A submodule H is
K

called ET- coclosed in M of H has no proper coessential submodule in M, we denote
by (KSgre H) , that is, KSgree H implies that K = H. In our work, we
introduce some properties of ET-coessential and ET-coclosed submodules of M.
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1. Introduction

Let R is a commutative ring with identity and M is an arbitrary R-module. A proper submodule H
of M is called small (H« M), if for all submodule K of M ( K < M) such that H+ K =M implies that
K= M[1]. A submodule H of M is essential (H <.M) if for all B< M such that HNB= 0, then B=0
[2] . A submodule H of M is closed (H <.M) if H has no proper essential extensions inside M . that
is, if H <,K <, M then H=K [3]. A submodule H of M is called an essential- small (H «<.M )
submodule of M, if for all essential submodule B of M such that M = H + B implies that B = M [4].
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Let T < M, a submodule H of M is said to be “T-small submodule of M”, if for all K < M such that €
H+K , then T € K [5]. In a previous work [6], the authors defined ET-small submodule of M. Let T <
M and A submodule H of M is “ET-small submodule of M”, if for all K <, M such that T € H+K,
then T € K, clearly every T-small submodule of M is ET-small submodule of M but the converse is
not true. We give in lemma 1 and lemma 2 some properties of ET-small submodule of M.

Lemmal [6]:

1- Let T, A and B be submodules of M such that T < B and A < B < M and B« M. If A<Lgr M, then
A<grB.

2- Let M be an R-module with submodules A <B <M such that T< B. If A&Kgr B, then  A<Lg M.
3- Let M be an R-module and let T, A and B be submodules of M,then A<gr M and B<gr M if and
only if A+B<Kgr M.

Lemmaz2 [6]:

1- Let M; and M, be any R-modules and f : M; — M, be a homomorphism. If T and H are
submodules of M such that H<gr My ,then f (H)<gr () M, .

2- Let M be an R-module and let T, H and N be submodules of M suchthat H<N<Mand H<T
andH<.M, if %<<E_T% then N<gr M.

H
T-coessential submodule was given the if K,H submodule of M such that K € H, K is T-

coessential of H (K S, H) if % <<M% [7]. In this work, we define the ET-coessential submodule
K

and ET- coclosed submodule of M and we give some properties of this type of submodules. Let T be

a submodule of M. Let K < H < M, K is called ET-coessential in M if % KTk % . Every T-
K

coessential submodule in M is an ET- coessential submodule in M but the converse is not true. We
also give other properties. A submodule H is called ET- coclosed in M if H has no proper submodule
K for which Kc H is a coessential submodule in M, we denote by (KCZgt. H), that is, KSgt e H
implies that K = H. Also we give some properties of ET- coclosed submodule of M.
2. ET-coessential submodules.
Definition2.1: Let T be a submodule ofa module M, let K and H be submodules of M, such that K <
H is called ET-coessential in M if 2 - < £(TH M We denote this by (KSgtce H).

K
Remarks and Examples 2.2: . ~ L
1_)__Consider Zs as a Z-module. Let T={0,3}, K={0} and H={0,2,4}, then KSgrH in Zs ,where
% =1{0,2,4} <prZs= {%6} ; see the cited adopted reference [6].
2) Consider Z as a Z-module. Let T=2Z, K={0}, H= 32 thus K& g1H in Z since
% @ =37 is not E(——— Z+{°}) small submodule of — = Z, since 2Z<3Z+5Z where 5Z <,Z, but
27¢5Z7, therefore K ¢_ET,Ce
3) Let M be an R-module and let T, K and H be submodules of M such that K& H. Every T-
coessential submodule in M is an ET- coessential submodule in M but the converseis not true.In
general, for example, consider Z,as a Z-module. If T={0,2}, K={0} and H={0,2}, then K is not a T-
coessential submodule of H in Z,, where % {0,2} and Z, = ﬁ But {0,2} is not a T-small
submodule of Z, by [5], So K is not a T- coessential submodule of H in Z,. But K is a ET- coessential

submodule of H in Z,, since the {0, Z}and Z are only essential submodules in Z,then T€{0,2}and
TS Z,, 50 {0,2}< gt Zs implies that = << T4k, — . Hence KCetH.

E(—) K
4) Let M be an R - module and let T, K and H be submodules of M such that KS H. If T=0, then K is
T+K H X X T+K 0+K
aET- coessentlal submodule of H in M. Since let — < = v E ,but T =0, SO—— == = =K
T+K
c Ethe - € C X ThusZ <<E(T+K) , hence KCETceH .

5) Let M be an unlform R-module then every ET-coessential submodule of M is a T-coessential
submodule of M.
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Proposition 2.3: Let M be an R-module and let T, K and H be submodules of M such that K€ H, then

Proof: Let K<gr M. Then % KT+o % . Thus 0 is a T- coessential submodule of H in M.

0
Conversely, let 0 Segree Kin M. To show that K KerM. Let X ge M such that T € K + X, then ﬂ c

KOLX 50+ X Since 0 Ceree K, then = 5 <<E(ﬂ) r M and hence = T cX 5 Therefore TEX . Thus K<<ET M.
0

The following proposition gives a characteristic of an ET- coessential submodule of M.

Proposition 2.4: Let T be a submodule of a module M and let K and H be submodules of M such that
K< H. Then K SgrH if and only if TEH+X implies that TEK+X, for every essential submodule X
of M.

Proof: Let K SereH . V X<, M such that TS H+X, then % c %:% + X;K Since K CSgree H,
then ﬂ ﬂ and hence TET+KEX+K.

The converse, to show that K Sgr..H . Let M c Z +=,V = % , then% g% + % = % then
TST+K<SH+X. By our assumption, then TCX+K Hence ﬂ C% :g AndK Sgrce H.

Proposition 2.5: Let T be a submodule of a module M and let K, H and L be submodules of M such

that KEHSLCEM. Then H Sgr L in M if and only |f (ﬂ) 5 in %

Proof: Let H Sgr L in M, then < (T+H) E Slnce— = IL{/TI;

% = (T;I/il)</1< d % = ZT/I; by the third isomorphism theorem. Then IL{L/I; « E((T;—II/-II)</K) 111%1: .
Thus (T+K) ef{ in %

Conversely, suppose that E(T;K).Ce% in— then 225 - /K K« E(a;z/ql){/x) /K Slnce— = :IL/II(( % =
(T;I;I){/K n %5 1:—71: , by the third isomorphism theorem . Then E <<E(¥) o

Thus H Sgr L in M.
Proposition 2.6: Let T be a submodule of a module M, let K, H and L be submodules of M such that
KcSHCSLEM and H <M. Then KCETceL in M ifandonly if K<gr,HinMandH Sgr.LIinM.

. H L M H M
Proof: Let KSg L in M, then &, (T;K) ; . Since < SxS% then P <<E(¥) ~ [6], hence K

Cgr.ceH In M. Now we define f: ; - by f (m+K) = m+H, vmeM . Since Vm+He %
, 3 m+KE%, suth that f (m+K) = m+H hence f is an epimorphism. Since %«E(%) % in M, hence f
( z ) = <<E(M) % [6]. Hence HSer el in M.
Conversely, suppose that K Sgr..HinMand H S L in M, then %«E(%) % and % <<E(¥)
E . Toprove K Sgr oL in M

Let %C %+% , v E <.— and KeX, then M c ﬂand hence TET+KcL+X Therefore
iy —+ﬂ . Since X €X+H CM and X<, M then X+H <.M and since H <M then % <e— [2]

H
T+H X+H H X
since H _ETCEL in M, then - S and hence TET+HSX+H .Therefore TC =te since

T+K X
KSgr.ceH in M, then TCE

Thus K S L in M.
Proposition 2.7: Let T be a submodule of a module M. If K Cgr .. HINM, K<Mand N gL in
M, then K+N Sgr .H+L in M.

. . H M L M
Proof: Let K SgreHinMand N S .L in M, then P <<E(T;K) ~ and 7 < ECH To show that
T+K+N

T+K+N H+L X
c , for every — o e and K+NcX then ——— N S

K+N CgrH+L in M, let ~ Sxin T xn
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H+I+X oand hence TST+K+NCH+L+X. Therefore % c 4 LXK , since X CL+X+K CM and X<,
M then L+X+K <M and since K <M then LX< [2] and KCSereeHINM then =X LH;K :

so TET+KcL+X+K. Therefore % c %+ X+K+N

<M and N <M then Ml < X [2] since N Cgreel in M, then T—C " ———and hence

TCT+NCSX+K+N=X. Therefore ”‘*N . Thus K+X € g1 HHL iN M.
K+N

Corollary 2.8: Let T be a submodule of a module M. If K Sgr..H inMand N € M ,then K+N
Crr.ceHTN in M. The converse is true if N «<grM and K+N < M

Proof: Suppose that K Sz ..Hin Mand N € M, then Ky THKy 2 Y. Since N CrreeNand K Sgr oH

E(5) K
in M, then K+N Sgr ..H+N in M, by Proposition (2.7).

Proposition 2.9: Let T, K and N be submodules of a module M, if K+N Sgr . .H+N and N «gr
M and K+N <. M then K Sgr.H.

Proof: Suppose that K+N ;ETCQH+N in Mand N «gr M . To prove K Sgp..H in M. Let { be an

essential submodule of E such that %C E+E . Then ﬂC Mand hence TCT+KCH+X

T+K+N H+X+N T+K+N H+N X+N
Therefore FaT c . Thus . Since X CX+NEM and X <. M then X+N <,
T+K+N X+N

K+N K+N K+N K+N
[2], and since K+N Sgr . H+N in M, then c and

X+N
M and K+N <M then — <.
K+N T4K K+N K+N

hence TET+K+NCSX+N. Slnce X< M and N <gr M, therefore T € X . So — C =. Thus K SgrceH
in M.

Proposition 2.10: Let T be a submodule of a module M and let N <grM .If K Sgr.Hin M and K
<:M, then K Sz .H+N in M.

Proof: Suppose that N «gr M and K S .H in M, then 2 <<E(T+K ¥ To prove K Sgr.H+N in M,

H+N X

. Slnce X eX+K+N €M and X<, M then X+K+N

+N X+K+N

H+N+X T+K
. Then =X ¢ — and hence — c

_+M Since X SN+X €M and xse M then N+X < M and K SCM then == <, = [2], since K

T+K N+X

CrreeH Iin M, then —— ¢ —— and hence TE€T+KEN+X. But N <zt M and XSe M soTc X.
K

Therefore M C = . Thus K ;ET ceHTN in M.

Proposmon 2.11. Let M and N be R-modules such that T <M and letf: M — N be an epimorphism.
If KSgreeHINMand K <M, then f(K)< Efm,ce f(H) in N.

Proof: Let KSgrH in M, then 2 <<E(T+K) — . To prove f (K) Sgref (H) in N. Let —(K) be an
f(T)+f(K) fH) X F+f(K) — fFUH)+X

ImIf—hh———Th c nd then f(T

essential submodule o Fa )suc that I3 ) en 0 5 and then f(T)

C f(T) + f(K)c f (H)+X .so f~1(f(T)) f ~(f (H))+f L(X), then T +ker(f) € H+ ker(f)+ f *(X)[2]
S0 T € H+ f (X) thus — K e Iz r ;( ) Slnce = then X <. N, therefore f * (X) <. M and

f(K)
since K <. M implies that —— f (X) [2] and since K SereH in M, then X c L ( I and hence

TST+KC f *(X) then f(T) Cf(f (X)) = XnIm(f), since f is an epimorphism then anm(f) X, sof

M X, therefore% o Thus (K) € ereef (H) in N,
3. ET- coclosed submodules
Definition 3.1: Let T be a submodule of a module M. A submodule H is called an ET- coclosed in M
if H has no proper coessential submodule in M.
Remarks and Examples 3.1:

-If T=M and A € B be submodule of M, then A is ET-coessential of B if and only if A is e-
coessential of B. So A is ET-coclosed if and only if A is e-coclosed in M.

2- Consider Zg as Z-modules. Let T = {0,3}, A = {0} and B = {0, 2, 4}.
A Sgree B since %«ET Zg [3] but {0} # {0,2,4}, thus B is not ET- coclosed in Zs, but A is
coclosed in B.

Let = be an essential submodule of — such that =X
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B

=02y if

3- Consider Z, as Z-module. Let T ={0,2}, B ={0,2}. Now, if A = {0}, then
A= {6, E} = % = {0} <<ET Z4_ y therefore B EET.Ce Z4_ .
Proposition 3.2: Let A € B € M and € B, then Ais ET-coclosed in M iff A is ET coclosed in B.

Proof: Suppose that A is ET-coclosed in M and X € A such that % 1G4 T4x, then « TiX, by[6

G~ G~
Proposition 2.4]. Since A is ET-cocIosed inM then A=X.

Conversely, let X < A such that " <<(T+X) " , since A € B, then
X

Proposition 2.3] since A is ET-coclosed in B.

><ID>

% thus 2 <<(T+X , by [6,

Proposition 3.3: Let T be a submodule of a module M and let A € B € M be submodules.
(1) If Bis ET-coclosed in M, then B/A is ET-coclosed in M/A.
(2) If A« Band B/Ais ET-coclosed in M/A, then B is ET-coclosed in M.

Proof:
(1) Suppose that N c B such that N/A < B/A such that N/A is ET- coessential of B/A in M/A.

B/A M/A B M . i . . i
Then == N/ « ((TLIB/A) N/ and so ~ <5 ((T;N)) v then N is ET-coessential of B. But B is ET-coclosed

in M, then N = B. implies that% = % , then % is ET-coclosed in %.
B

(2) Let NcB such that N is ET-coessential of L, then 5 < E((T+N))% , implies that
N

B/A M N _B _ .
/A « ((T;X/A) ~ /A therefore < SET.ce & but —is ET-coclosed in — T , then S5 s N=A, then B is
ET-coclosed of M.
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