

Centralizers With Nilpotent Values

Abdul- Rahman H. Majeed, Faten Adel Shalal*

Department of Mathematics, College of Science, Baghdad University, Baghdad, Iraq

ABSTRACT:

In this paper, it is shown that if R is a semiprime ring and T a centralizer of Rsuch that $T(x)^n = 0$ for all $x \in R$, where $n \ge 1$ is a fixed integer then T = 0.

Keywords: semiprime ring, prime ring, derivation, left (right) centralizer, centralizer, Jordan centralizer.

المتمركزات مع قيم عديمة القوى

عبد الرحمن حميد مجيد ، فاتن عادل شلال*

قسم الرياضيات، كلية العلوم، جامعة بغداد، بغداد، العراق

الخلاصة:

سنبين في هذا البحث انه لحلق ة شبه اولية R ومتمركز T من R بحيث ان $T(x)^n=0$ لكل . T=0 فو عدد ثابت صحیح فأن $(x \in R)$ الكلمات المفتاحية : حلقة شبه اولية ، حلقة اولية ، مشتقة ، متمركز يسار (يمين) ، متمركز ، متمركز جوردن .

Introduction:

Throughout this research R will represent an associative ring. Recall that R is a prime ring if aRb=0 implies that a=0 or b=0 (where $a,b\in R$), and R is semiprime ring if aRa=0 implies that a=0 (where $a \in R$). A ring R is 2-torsion free if 2x=0 implies that x=0 (where $x \in R$). An additive mapping $d: R \to R$ is called a derivation if d(xy) = xd(y) + d(x)y holds for all $x, y \in R$. An additive mapping $T: R \to R$ is called left (right) centralizer if T(xy) = T(x)y (T(xy) = x T(y)) holds for all $x, y \in R$. T is called centralizer if it is both left and right centralizer. An additive mapping $T: R \to R$ is called left (right) Jordan centralizer in case $T(x^2) = T(x)x$ ($T(x^2) = xT(x)$) holds for all $x \in R$. Following ideas from [1], Zalar has proved in [2] that any left (right) Jordan centralizer on a 2-torsion free semiprime ring is a left (right) centralizer. J. Vukman [3] shows that for a semiprime ring R with extended centroid C if 3T(xyx) = T(x)yx + xT(y)x + xyT(x) holds for all $x, y \in R$ then there exists $\alpha \in C$ such that $T(x) = \alpha x$, for all $x \in R$. Other results concerning centralizer in prime and semiprime ring can be found in [4-7]. In [8] it was shown that if R is

^{*}Email: ftoonmath@ymial.com

a prime ring and d a derivation of R such that $d(x)^n = 0$ for all $x \in R$, then d = 0, and then extend it to the semiprime ring. Here we ask the possibility if the same result can be satisfied on R with replacing the derivation d with centralizer T. First we will prove some simple remarks which we will need them to prove our main result, for a prime ring R:

REMARK 1: If $T \neq 0$ is a centralizer of R and aT(x) = 0, (or, T(x)a = 0) for all $x \in R$ then a = 0.

PROOF: Since aT(x) = 0 for all $x \in R$, then for $r \in R$ we have

0 = aT(rx) = arT(x) for all $r \in R$

Hence aRT(x) = 0 for all $x \in R$, by the primeness of R and using that $T \neq 0$ we get a = 0.

REMARK 2: If $T \neq 0$ is a centralizer of R, T does not vanish on a nonzero one sided ideal of R.

PROOF: Let I be a nonzero one sided ideal of R and suppose T(I) = 0.

Let $a \in I$ and $r \in R$, then

0 = T(ar) = aT(r) for all $r \in R$, by Remark 1 we get a = 0, then I = 0, a contradiction, hence $T(I) \neq 0$.

REMARK 3: If $L \neq 0$ is a left ideal of R and $W = \{x \in R : Lx = 0\}$, then L/W is a prime ring. **PROOF:** First one can easily show that W is a right ideal of R.

Now we will show that L/W is a prime ring. Let (x+W)(L/W) (y+W)=W, where $x,y\in R$, then (x+W)(l+W)(y+W)=W, where $l\in L$, this leads to $xly\in W$, hence L(xly)=0 for all $l\in L$.

Let $r \in R$, hence L(xrly) = 0 for all $r \in R$, $l \in L$, then (Lx)R(Ly) = 0, by the primeness of R we get either Lx = 0 or Ly = 0. That is, either x + W = W or y + W = W, hence L/W is a prime ring.

REMARK 4: If L is a left ideal of R and $a^m = 0$, for all $a \in L$, where m is a fixed integer, then L = 0.

PROOF: Suppose $L \neq 0$, then there exists $0 \neq a \in L$ such that $a^m = 0$. Let $r \in R$ $0 = (ra)^m = rara \dots ra$, for all $r \in R$, therefore, $(ra)R(ar \dots ra) = 0$, by the primeness of R we get either ra = 0 or $(ar \dots ra) = 0$, if ra = 0 for all $r \in R$, Ra = 0, then a = 0, a contradiction, hence $ar \dots ra = 0$ for all $r \in R$, hence $aR(ar \dots ra) = 0$, again by the primeness of R we get either a = 0 or $(ar \dots ra) = 0$. Continue in this way we end up with a = 0, a contradiction. Hence L = 0.

REMARK 5: If $a, b \in R$ and $(arb)^m = 0$ for all $r \in R$, where m is a fixed integer, then ba = 0.

PROOF: If one of a or b = 0 then the result holds.

Now let $a,b \neq 0$ and $(arb)^m = 0$ for all $r \in R$, then arbarb... arb = 0 for all $r \in R$, thus aR(barb... arb) = 0, since R is a prime ring then we have barb... arb = 0 for all $r \in R$, hence baR(b... arb) = 0, again since R is a prime then either ba = 0 or bar... arb = 0. Continue in this way we end up with ba = 0.

We shall use the following notation throughout:

If S is a subset of R, then $L(S) = \{x \in R : xs = 0, \forall s \in S\}$, and $R(S) = \{x \in R : sx = 0, \forall s \in R\}$, clearly L(S) is a left ideal and R(S) is a right ideal.

In what follows R will be a prime ring and T a centralizer of R such that $T(x)^n = 0$ for all $x \in R$. Our goal will be to show that T = 0. Proceeding by induction trough out we assume the result to be true for any centralizer G of any prime ring B whenever $G(x)^m = 0$ for all $x \in B$, if m < n. We proceed assuming that $T \neq 0$. Our first result is:

LEMMA 1. For $a \in R$, $T(L(a)) \subset L(a)$ and $T(R(a)) \subset R(a)$.

PROOF: Let $x \in L(a)$ then xa = 0,

0 = T(xa) = T(x)a for all $x \in L(a)$, therefore, $T(x) \in L(a)$ for all $x \in L(a)$. Hence $T(L(a)) \subset L(a)$.

Similarly one can show that $T(R(a)) \subset R(a)$.

LEMMA 2. If $a \in R$, then either T(aR)a = 0 or L(a)T(L(a)) = 0. Similarly, either aT(aR) = 0 or T(R(a))R(a) = 0.

PROOF: Let $x, y \in L(a)$. Using Lemma 1 we have that T(y)ax = 0. Then,

$$0 = T(T(y)ax) = T(y)T(ax) \text{ for all } y \in L(a)$$
 (1)

Since $ax \in L(a)$, then we can replace y by ax in (1), hence, $T(ax)^2 = 0$. Now

$$0 = T(ax + y)^n = (T(ax) + T(y))^n = T(ax)T(y)^{n-1} \text{ for all } x \in L(a)$$
 (2)

Let $r \in R$, then by using (2) we get that, $T(arax)T(y)^{n-1} = 0$, that is, $T(ar)axT(y)^{n-1} = 0$, for all $x \in L(a)$, hence $T(ar)aL(a)T(y)^{n-1} = 0$.

If $L(a) T(y)^{n-1} \neq 0$, since $L(a) T(y)^{n-1}$ is a left ideal of a prime ring R, then

 $T(ar)a \in ann_l \ (L(a)T(y)^{n-1}=0$, therefore, T(ar)a=0, for all $r \in R$, hence T(aR)a=0. On the other hand if $L(a)T(y)^{n-1}=0$ for all $y \in L(a)$. Let $W=\{x \in L(a): L(a)x=0\}$ since $T(W) \subset W$ and $T(L(a)) \subset L(a)$, T induces a centralizer on B=L(a)/W. By Remark 3 B is a prime ring. The fact that $L(a)T(y)^{n-1}=0$ for all $y \in L(a)$ gives us that $T(y)^{n-1} \in W$ for all $y \in L(a)$, this gives us that $T(b)^{n-1}=0$ for all $x \in L(a)$, then by our induction we get that $x \in L(a)$ for all $x \in L(a)$, this leads us to $x \in L(a)$, and hence $x \in L(a)$ for all $x \in L(a)$.

Similarly one can show that either $T(R(a)) \subset R(a)$ or aT(aR) = 0.

Lemma 2 has singled out for us two classes of elements which have rather particular properties, and which prompt the following definition:

DEFINITION: $A = \{a \in R : aT(Ra) = 0\}$, and $B = \{a \in R : T(aR)a = 0\}$.

These two subsets A and B play a key rule in what is follows. Their basic algebraic behavior is expressed in the following Lemma:

LEMMA 3: A is a nonzero left ideal of R, B is a nonzero right ideal of R and AB = 0. Furthermore $T(A) \subset A$, $T(B) \subset B$ and AT(A) = BT(B) = 0.

PROOF: Since the proof for the stated properties of A and B are the same, we merely prove that $B \neq 0$ is a right ideal of R, $T(B) \subset B$ and T(B)B = 0.

Our first assertion is that if $a, b \in R$ are such that L(a)T(L(a)) = 0 and L(b)T(L(b)) = 0 then L(b)T(L(a)) = 0.

To see this, let $x \in L(a)$, $z, t \in L(b)$, then,

0=tT(xz)=tT(x)z for all $z\in L(b)$, that is tT(x)L(b)=0, hence by the primeness of R we get that tT(x)=0 for all $t\in L(b)$ and $x\in L(a)$. So

$$L(b)T(L(b)) = 0 (3)$$

Thus our assertion has been verified.

Claim 1: $B \neq 0.0$

Suppose that B=0, then by Lemma 2 we have that L(u)T(L(u))=0 for all $u\in R$, then by (3) we have that

$$L(u)T(L(v)) = 0 \text{ for all } u, v \in R$$
(4)

Pick $v \in R$ such that $L(v) \neq 0$, by Remark 2, $T(L(v)) \neq 0$. Since $T(x)^n = 0$ for all $x \in R$ then $T(x) \in L(T(x)^{n-1})$. Let $u = T(x)^{n-1}$ in (4) then we have that T(x)L(v) = 0, so by Remark 1 T(L(v)) = 0, a contradiction since $T(L(v)) \neq 0$, hence $B \neq 0$.

Claim 2:B is a right ideal of R.

We need to show first for $x \in R$ and $a \in B$ then $ax \in B$.

Since $T(axR)ax \subset T(aR)ax = 0$, therefore T(axR)ax = 0, hence $ax \in B$.

Now we shall show that $a+b\in B$ for $a,b\in B$ and $a,b\neq 0$. Since T(bR)b=0, we have that $T(bRaR)b\subset T(bR)b=0$,

0=T(bRaR)b=T(bR)aRb . Since R is prime and $b\neq 0$, then T(bR)a=0 . Similarly one can show that T(aR)b=0 . Therefore,

T((a+b)R)(a+b) = T(aR+bR)(a+b) = T(aR)a + T(aR)b + T(bR)a + T(bR)b = 0, hence $a+b \in B$. Then B is a right ideal.

Claim $3: T(B) \subset B$.

Let $x \in B$, $r \in R$, then:

 $T(T(x)r)T(x) = T(T(xr))T(x) = T^2(xr)T(x) = T(T^2(xr)x)$ for all $r \in R$. hence since $x \in B$ we have that $T(T(x)R)T(x) = T(T^2(xR)x) \subset T(T(xR)x) = 0$, then T(T(x)R)T(x) = 0, hence $T(x) \in B$ for all $x \in B$, then $T(B) \subset B$.

Claim 4: T(B)B = 0.

If $a, b \in B$ we saw that T(aR)b = 0, hence T(abRb) = 0, that is T(a)bRb = 0, since R is prime then T(a)b = 0 for all $a, b \in B$, hence T(B)B = 0.

Claim 5: AB = 0

Let $a \in A$ and $b \in B$,

 $0 = T(ab)^n T(a) = (T(a)b)^n T(a)$, therefore $(T(a)b)^{n+1} = 0$ for all $b \in B$, since T(a)B is a right ideal, then by Remark 3 we get that d(a)B = 0 for all $a \in A$, thus T(A)B = 0, and so since A is a left ideal of R, then

0 = T(RA)B = T(R)AB, and hence by Remark 1 we get that AB = 0.

LEMMA 4: If $t \in R$ and $t^2 = 0$, then $t \in A \cup B$.

If $a \in C$ and $t^2 = 0$ then, if $t \in A$, $ta \in AC \subset AB = 0$. If $a \in B$ we get at = 0. In light of Lemma (4) we then must have that at = 0 or ta = 0. Consequently ata = 0.

We claim asa = 0 for all nilpotent elements s in R. If $s^2 = 0$ we just saw that asa = 0. Proceeding by induction on the index of nilpotence of s we may assume that $as^ia = 0$ for all i > 1.

$$b = (1+s)a(1+s)^{-1} = (1+s)a(1-s+s^2\dots)$$

Satisfies $b^2=0$, so by Lemma 4 we have ab=0 or ba=0, if ab=0 we get that asa=0; on the other hand, if ba=0 we get, using $as^ia=0$ for i>1, that asa=0. Hence asa=0 for all nilpotent elements $s\in R$.

Now since T(x) is nilpotent for every $x \in R$, then aT(x)a = 0. However since $a \in R \subset A$, aT(Ra) = 0, thus, aRT(a) = 0. Because R is prime we have T(a) = 0. Hence:

LEMMA 5: If $a \in C$, then T(a) = 0.

We continue with the argument we were making. Let $a \in C$, since T(x) is nilpotent we have $aT(x)a = 0 = aT(x)^2a$. Because $a^2 \in C^2 \subset AB = 0$, we have that

 $(aT(x) - T(x)a)^2 = aT(x)aT(x) - aT(x)^2a - T(x)a^2T(x) - T(x)aT(x)a = 0.$

But then by Lemma 4, $aT(x) - T(x)a \in A \cup B$ for all $x \in R$. Suppose that $aT(x) - T(x)a \in A$, say; since $a \in C \subset A$, $T(x)a \in A$, hence $aT(x) \in A$. If $aT(x) - T(x)a \in B$, similarly we get $T(x)a \in B$. So, for every $x \in R$ either $aT(x) \in A$ or $T(x)a \in B$. This implies that $aT(R) \subset A$ or $T(R)a \subset B$. If $aT(R) \subset A$, then since $a \in C \subset B$, B is a right ideal; $aT(R) \subset B$, hence $aT(R) \subset C$. Similarly, if $T(R)a \subset B$ we get $T(R)a \subset C$. So, for every $a \in C$, $aT(R) \subset C$ or $T(R)a \subset C$. This implies $CT(R) \subset C$ or $T(R)C \subset C$.

Suppose that $CT(R) \subset C$, hence $CT(R)T(A) \subset CT(A) \subset AT(A) = 0$. Now $BA \subset C$, thus $BAT(R)T(A) \subset CT(R)T(A) = 0$, because R is prime this forces AT(R)T(A) = 0. Consider the left ideal AT(R) of R, let $x = \sum a_i T(r_i)$, $a_i \in A$, $r_i \in R$ be any element in AT(R). Thus if $v = \sum a_i r_i$, then:

 $T(v) = T(\sum a_i r_i) = \sum a_i T(r_i) = x$. Therefore, $0 = T(v)^n = x^n$.

In other words, every element in AT(R) is nilpotent of degree at most n. By Remark 4 AT(R) = 0. Since $A \neq 0$ by Remark 1 we are forced to T(R) = 0, and so T = 0.

Similarly if we had supposed that $T(R)C \subset C$ we would have been led to T(R)B = 0 and so to T = 0. We have therefore proved:

THEOREM 1. If R is a prime ring and T a centralizer of R such that $T(x)^n = 0$ for all $x \in R$, where $n \ge 1$ is a fixed integer, then T = 0.

THEOREM 2. Let R be a prime ring, $I \neq 0$ an ideal of R, and T a centralizer of R such that $T(x)^n = 0$ for all $x \in I$, where $n \geq 1$ is a fixed integer, then T = 0.

PROOF: Let $I \neq 0$ be an ideal of R.

Claim 1: If R is a prime ring then I is a prime subring of R.

Since every ideal is subring then I is subring. Now, let $a, b \in I$ and aIb = 0, since I is ideal then $aRIb \subset aIb = 0$, by the primness of R either a = 0 or b = 0, hence I is a prime ring.

Case 1: If $T(I) \subset I$, then T induces a centralizer T of I, and since $T(x)^n = 0$ for all $x \in I$, we get by claim 1 and Theorem 1 that T(I) = 0, and by theorem (If T(I) = 0 for some one sided ideal of R, then T(R) = 0), hence T(R) = 0.

Case 2: If $T(I) \not\subset I$, assume $T \neq 0$ on R.

Claim 2: If $T \neq 0$ a centralizer of R and aT(x) = 0 (or T(x)a = 0) for all $x \in I$, then a = 0. Let $r \in R$, then

0 = a T(rx) = arT(x), for all $r \in R$, so aRT(x) = 0, since R is prime then either a = 0 or T(x) = 0 for all $x \in I$, if T(x) = 0 for all $x \in I$, then T(I) = 0, and so T(R) = 0. a contradiction. Hence a = 0.

Now, since $T(x)^n = 0$ for all $x \in I$, then $T(x)T(x)^{n-1} = 0$ for all $x \in I$, hence by claim 2 $T(x)^{n-1} = 0$. Continue in the same way and by using claim 2 we end up with T(x) = 0 for all $x \in I$, thus T(I) = 0, this leads to T(R) = 0, a contradiction. Hence T = 0.

Now Theorem 1 can be extended to semiprime rings:

THEOREM 3. If R is a semiprime ring and T a centralizer of R such that $T(x)^n = 0$ for all $x \in R$, where $n \ge 1$ is a fixed integer, then T = 0.

PROOF: Since R is semiprime ring, $\cap P = 0$, where P is a prime ideal of R (see [9] page 115). Claim: $T(P) \subset P$ for every prime ideal P.

Let $a \in P$, $x \in R$;

 $0 = T(ax)^n = (T(a)x)^n$ for all $x \in R$. Hence the right ideal T(a)R is nil of bounded index, then R has a nilpotent ideal which it is cannot since R is semiprime, therefore, T(a)R = 0, hence T(a) = 0 for all $a \in P$, then T(P) = 0, so $T(P) \subset P$ for all prime ideals P of R, and so T induces a centralizer \overline{T} on the prime ring $\overline{R} = R/P$, such that $\overline{T}(\overline{x})^n = 0$ for all $\overline{x} \in \overline{R}$, by Theorem 1, $\overline{T} = 0$. Hence $\overline{T}(\overline{R}) = 0$, that is, $T(R) \subset P$ for all prime ideals P of R. Since P = 0, we obtain that P(R) = 0, hence P = 0.

References:

- 1. Bresar M. 1988, Jordan derivations on semiprime rings, *Proc. Amer. Math. Soc.*, 104, pp: 1003-1006
- **2.** B.Zalar **1991**, On centralizer of semiprime rings, *Comment. Math. Univ. Carolinae*, 32, pp. 609-614.
- **3.** J. Vukman, I. Kusi- Ulbl **2003**, An equation related centralizers in semiprime rings, *Univ. of Maribor, Slovenia*, 35 (58), pp. 253-261.
- **4.** J.Vukman **1997**, Centralizers on prime and semiprime rings, *Comment. Math. Univ. Carolinae*, .38, pp: 231- 240.
- **5.** J. Vukman and M. Fosner **2007**, A characterization of two sided centralizers on prime rings, *Taiwanese J. of Math.*, 11 (5), pp: 1431 1441.
- **6.** J. Vukman **2001**, Centralizers of semiprime rings, *Comment. Math. Univ. Carolinae*, 42 (2), pp: 237 245.
- **7.** J. Vukman **1991**, An identity related to centralizers in semiprime rings, *Comment. Math. Univ. Carolinae*, 40 (3), pp. 447 456.
- **8.** A. Giambruno, I.N.Herstein **1981**, Derivations with nilpotent values, *Rendiconti del Circolo Matematico di Palermo*, 2 (3), pp. 199 -206.
- 9. Frank W. Anderson 2002, Lectures on non-commutative ring, University of Oregon.