Jasim and Khalid

Iraqi Journal of Science, 2025, Vol. 66, No.2, pp: 652-658 DOI: 10.24996/ijs.2025.66.2.9

ISSN: 0067-2904

*R****-Small Submodules and ***R****-Hollow Modules**

Mustafa Mohammed Jasim^{*}, Wasan Khalid

Mathematics Department, College of Science, University of Baghdad, Iraq		
Received: 31/10/2023	Accepted: 29/1/2024	Published: 28/2/2025

Abstract

The purpose of this study is to present a new concepts on a module M over a ring, these concepts is called R^* -small sub module, R^* -hollow module which present generalizations of the small submodule and hollow module, respectively. Key characteristics of these concepts such as the image and direct sum of R^* -small submodule, R^* -hollow module are R^* -small submodule, R^* -hollow submodule, respectively.

Keywords: e*-essential submodule, R*-small submodule, R*-hollow module

المقاسات الجزئية الصغيرة من النمط-*R و المقاسات المجوفة من نمط R*-

مصطفى محمد جاسم*, وسن خالد

قسم الرياضيات, كلية العلوم, جامعة بغداد, بغداد, العراق

الخلاصة

الهدف من هذا البحث هو اعطاء مفاهيم جديدة للمقاس M على الحلقة , المقاسات الجزئيه من هذه المفاهيم هي المقاس الجزئي الصغير من النمط – *R وكذلك المقاس المجوف من النمط – *R والتي تعتبر تعميمات لمفاهيم سابقه هي المقاس الجزئي الصغير والمقاس المجوف على التوالي. برهنا خواص اساسيه لهذه المفاهيم منها : صوره المقاس الجزئي الصغير من النمط – *R تكون مقاس جزئي من النمط – *R

1. Introduction

Let *M* be a unitary left *R*-module, and let *R* be any ring with one. A submodule A of *M* is referred to as small in M (indicated by $A \ll M$) if whenever A + B = M for some $B \subseteq M$ implies that B = M [1-4]. An *R*-module with a value greater than zero *M* is said to be hollow if each suitable submodule of M is small in *M* [5-9]. For every *R*-endomorphism *f* of *M* a submodule A of *M* if $f(A)\subseteq A$, then *f* is called fully invariant [10]. The cosingular submodule of *M* was released by Oscan in [11] in the following manner: $Z^*(M) = \{m \in M; Rm \le E(M)\}$, where E(M) is an injective hull of *M* see [12] and [13], where $Z^*(M)$ was called the cosingular submodule. Now, if $Z^*(M) = M$, then *M* is called cosingular. Many authors present generalizations of small submodule see [14-16]. Baanon and Khalid in [17] was introduced the e^* -essential submodule by using the concept of cosingular submodule. If $A \cap B \neq 0$, for each non-zero cosingular submodule *B* of *M* subsequently a submodule A is deemed to be e^* -essential. Also, in [17] it was introduced $Rad_e * (M)$ as being the point where each maximal e^* -essential submodule

^{*} Email: <u>mustafa.md27182@gmail.com</u>

intersects. If *M* does not include an e^* -essential maximal submodule, then $Rad_{e^*}(M) = M$. In fact it was proved that $Rad_{e^*}(M)$ is the sum of all e^* -small submodule of *M*, as well as $Rad_{e^*}(M)$ is a fully invariant submodule [17]. We use these concepts to introduce R^* -small submodule and investigate some properties. We also introduce and discuss the R^* -hollow module which is a generalization of the hollow module. We prove main properties of these concepts.

2. R^* -small submodule

In this section R^* -small submodule was presented with some properties.

Definition 2.1:

A submodule A of *M* is called $Rad_R *$ -small in *M* for short R^* -small submodule if whenever M = A + B, and $Rad_R * \left(\frac{M}{B}\right) = \frac{M}{B}$ (briefly $R * \left(\frac{M}{B}\right) = \frac{M}{B}$) implies that B = M. It will be denoted by $A \ll_R * M$.

Remarks and examples 2.2:

- 1. It is evident that each small submodule is R^* -small the reverse, however is untrue. For example Z_6 as Z-module, since $Z_6 = <\overline{2} > \oplus <\overline{3} >$, and $R^*\left(\frac{Z_6}{\langle \overline{3} \rangle}\right) \cong R^*(\langle \overline{2} \rangle) = 0$ i.e., $R^*\left(\frac{Z_6}{\langle \overline{3} \rangle}\right) = <\overline{3} > \neq <\overline{2} \geq \cong \frac{Z_6}{\langle \overline{3} \rangle}$, but $<\overline{2} > \neq <\overline{3} >$, hence $<\overline{2} >$ and $<\overline{3} >$ are R^* -small submodules, but not small submodules.
- 2. As the Z-module Z_4 . In Z_4 , 0 and $\{0,2\}$ are R^* -small submodules according to (1).
- 3. Consider $M = \mathbb{Z} \oplus \mathbb{Z}_{p\infty}$ as Z-module. Since $\frac{M}{Z} \cong \mathbb{Z}_{p\infty}$, therefore, $R^*(\frac{M}{Z}) = R^*(\mathbb{Z}_{p\infty}) = \mathbb{Z}_{p\infty}$ i.e., $R^*(\frac{M}{Z}) = \frac{M}{Z}$, but $M \neq Z$ which means that $\mathbb{Z}_{p\infty}$ is not R^* -small submodule in M.
- 4. Let $M = 2Z \oplus Z_2$ as Z-module. $R^*\left(\frac{M}{2Z}\right) = R^*(Z_2) = 0$, i.e., $R^*\left(\frac{M}{2Z}\right) = 2Z \neq Z_2 \cong \frac{M}{2Z}$. Thus Z_2 is R^* -small submodule in M.
- 5. Consider Z as Z-module. Z = 2Z + 3Z as Z-module. Since $\frac{Z}{2Z} \cong Z_2$, hence $R^*\left(\frac{Z}{2Z}\right) = R^*(Z_2) = 0$ i.e., $R^*\left(\frac{M}{2Z}\right) = 2Z \neq Z_2 \cong \frac{M}{2Z}$. Thus 3Z is R^* -small submodule in Z.

We need to prove the following:

Proposition 2.3:

Assume that *M* has two submodules of *M* if $R^*\left(\frac{M}{A}\right) = \frac{M}{A}$ and $A \subseteq B \subseteq M$, then $R^*\left(\frac{M}{B}\right) = \frac{M}{B}$. **Proof.**

Define a function $f: \frac{M}{A} \to \frac{M}{B}$ as follow $f(m + A) = m + B \forall m \in M$, it is clear that f is an epimorphism (proposition 6in [3]) $f\left(R^*\left(\frac{M}{A}\right)\right)$ contained in $R^*\left(\frac{M}{B}\right)$. Hence $f\left(\frac{M}{A}\right) = \frac{M}{B} \subseteq R^*\left(\frac{M}{B}\right)$. Therefore, $R^*\left(\frac{M}{B}\right) = \frac{M}{B}$. Corollary 2.4:

Consider A and B to be two submodules of M and let M be any R-module. If $R^*\left(\frac{M}{A}\right) = \frac{M}{A}$, then $R^*\left(\frac{M}{A+B}\right) = \frac{M}{A+B}$.

Proposition 2.5:

Suppose *M* be an *R*-module If $R^*(M) = M$ and $A \subseteq M$. Then $A \ll_R M$ iff $A \ll M$.

Proof.

⇒) Suppose $A + B = M, B \subseteq M$. To prove B = M we claim that $R^*\left(\frac{M}{B}\right) = \frac{M}{B}$, let $f: M \to \frac{M}{B}$ be the natural epimorphism (Proposition 6 [17]) $f\left(R^*(M)\right)$ contained in $R^*\left(\frac{M}{B}\right)$ and $R^*(M) = M$, then $f(M) \subseteq R^*\left(\frac{M}{B}\right)$, therefore $\frac{M}{B} \subseteq R^*\left(\frac{M}{B}\right)$ and $R^*\left(\frac{M}{B}\right) = \frac{M}{B}$, since $A \ll_R * M$, then B = M, hence $A \ll M$.

 \Leftarrow) Clearly by Remarks and examples 2.2.

These are some characteristics of R^* -small submodules.

Proposition 2.6:

1. If $A \le B \le M$, then $B \ll_R M$ if and only if $A \ll_R M$ and $\frac{B}{A} \ll_R \frac{M}{A}$.

2. If A and B are M submodules, then $A + B \ll_R M$ if and only if both $A \ll_R M$ and $B \ll_R M$.

3. Let $A \le B \le M$, if $A \le_R * B$, then $A \le_R * M$.

4. Let $f: M \to M$ be *R*-homomorphism such that $A \ll_R M$, then $f(A) \ll_R M$.

5. Let $M = M_1 \oplus M_2$, $A_1 \le M_1$, and $A_2 \le M_2$, then $A_1 \oplus A_2 \ll_R * M_1 \oplus M_2$ if and only if $A_1 \ll_R * M_1$ and $A_2 \ll_R * M_2$.

Proof.

(1) \Rightarrow) Assume that *L* contained in *M*, in such a way that L + A = M and $R^*\left(\frac{M}{L}\right) = \frac{M}{L}$, then L + B = M. Since $B \ll_R * M$, then L = M. Now, let $\frac{K}{A}$ be any sub module of $\frac{M}{A}$ such that $\frac{K}{A} + \frac{B}{A} = \frac{M}{A}$ and $R^*\left(\frac{M}{K}\right) = \frac{M}{K}$, then B + K = M since $B \ll_R * M$, so K = M. Thus $\frac{K}{A} = \frac{M}{A}$. \Leftrightarrow)B + K = M, *K* contained in *M*, such that $R^*\left(\frac{M}{K}\right) = \frac{M}{K}$. Since $\frac{B+K}{A} = \frac{M}{A}$, so $\frac{B}{A} + \frac{A+K}{A} = \frac{M}{A}$ and $R^*\left(\frac{\frac{M}{A}}{\frac{K+A}{A}}\right) = R^*\left(\frac{M}{K+A}\right) = \frac{M}{K+A}$ by using Corollary 2.4, but $\frac{B}{A} \ll_R * \frac{M}{A}$ which implies that $\frac{M}{A} = \frac{K+A}{A}$, hence M = A + K as $A \ll_R * M$, therefore, K = M. 2) Let *C* be a module under *M* such that A + C = M and $R^*\left(\frac{M}{C}\right) = \frac{M}{C}$, then A + B + C = Mbut $R^*\left(\frac{M}{C}\right) = \frac{M}{C}$ and since $A + B \ll_R * M$ which implies that C = M, hence $A \ll_R * M$. Also, $B \ll_R * M$ by the same argument.

Conversely, let A + B + C = M and $R^*\left(\frac{M}{c}\right) = \frac{M}{c}$. So, A + (B + C) = M and $R^*\left(\frac{M}{B+C}\right) = \frac{M}{B+C}$ by using Corollary 2.4 and since $A \ll_R * M$, therefore, M = B + C, as $B \ll_R * M$ and $R^*\left(\frac{M}{c}\right) = \frac{M}{c}$, then M = C.

(3) Suppose that A + K = M and $R^*\left(\frac{M}{K}\right) = \frac{M}{K}$, $B = M \cap B = (A + K) \cap B = (K \cap B) + A = B$ (by Modular Low), to show $R^*\left(\frac{B}{K \cap B}\right) = \frac{B}{K \cap B}$ (by Second Isomorphic Theorem) $\frac{B}{K \cap B} \cong \frac{K+B}{K} \cong \frac{M}{K}$, but $R^*\left(\frac{M}{K}\right) = \frac{M}{K}$, hence $R^*\left(\frac{B}{K \cap B}\right) = \frac{B}{K \cap B}$ and since $A \ll_R * B$, then $K \cap B = B$, so $B \subseteq K$, implies that $A \subseteq K$, then K = M.

(4) Suppose that f(A) + B = f(M), for $B \subseteq f(M)$ and $R^*\left(\frac{f(M)}{B}\right) = \frac{f(M)}{B}$. Then $A + f^{-1}(B) = M$, to show $R^*\left(\frac{M}{f^{-1}(B)}\right) = \frac{M}{f^{-1}(B)}$. Define the map $g: \frac{M}{f^{-1}(B)} \to \frac{f(M)}{B}$ by $g(x + f^{-1}(B)) = f(x) + B$, $\forall x \in M$ g is well defined, let $x_1 + f^{-1}(x_1) = x_2 + f^{-1}(x_2)$ iff $x_1 - x_2 \in f^{-1}(B)$ if and only if $f(x_1) - f(x_2) \in B$ if and only if $f(x_1) + B = f(x_2) + B$, g is

onto, let $w \in \frac{f(M)}{B}$ so w = f(x) + B, $x \in M$, then $g(x + f^{-1}(B)) = f(x) + B$, therefore, g is onto . g is one to one, let $f(x_1) + B = f(x_2) + B$ if and only if $f(x_1) - f(x_2) \in B$ if and only if $f(x_1 - x_2) \in B$ if and only if $x_1 - x_2 \in f^{-1}(B)$ implies that $x_1 + f^{-1}(B) = x_2 + f^{-1}(B)$, hence g is isomorphism. Now, by [17] $g(R^*(\frac{M}{f^{-1}(B)})) = R^*(\frac{f(M)}{B}) = \frac{f(M)}{B}$, therefore, $R^*(\frac{M}{f^{-1}(B)}) = g^{-1}(\frac{f(M)}{B}) = \frac{M}{f^{-1}(B)}$ implies $R^*(\frac{M}{f^{-1}(B)}) = \frac{M}{f^{-1}(B)}$. Since $A \ll_R * M$, therefore, $M = f^{-1}(B)$ implies that f(M) = B.

(5) \Rightarrow) Let $P_1: M_1 \oplus M_2 \to M_1$ be a projection map on M_1 , since $A_1 \oplus A_2 \ll_R * M_1 \oplus M_2$ by (4), $P_1(A_1 \oplus A_2) \ll_R * M_1$, therefore, $A_1 \ll_R * M_1$. Similarly, $A_2 \ll_R * M_2$.

 $(4) \text{ Let } J_1: M_1 \to M_1 \bigoplus M_2 \text{ be the injection map from } M_1 \text{ .Since } A \ll_R * M_1 \text{,therefore by (4)}$ $j(A_1) = A_1 \bigoplus 0 \ll_R * M_1 \bigoplus M_2 \text{ and since } J_2: M_2 \to M_1 \bigoplus M_2 \text{ by (2), then } A_1 \bigoplus 0 + 0 \bigoplus A_2 = A_1 \bigoplus A_2 \ll_R * M_1 \bigoplus M_2.$

Proposition 2.7:

Let *M* be an *R*-module and $A \subseteq B \subseteq M$. If *B* is direct summand in *M* and $A \ll_R * M$, then $A \ll_R * B$.

Proof.

Let A + L = B, and B be a direct summand of M, then $M = B \oplus B_1$ for $B_1 \subseteq M$, so $M = A + L + B_1$, since $\frac{M}{L+B_1} = \frac{B+L+B_1}{L+B_1} \cong \frac{B}{B \cap (L+B_1)} = \frac{B}{L+(B \cap B_1)} = \frac{B}{L}$ (by using Second Isomorphism Theorem and Modular Law). Consequently, $R^* \left(\frac{B}{L}\right) = \frac{B}{L}$, then by Corollary 2.4, $R^* \left(\frac{M}{L+B_1}\right) = \frac{M}{L+B_1}$, but $A \ll_R * M$, then $M = L + B_1$. Now, $B = B \cap M = B \cap (L+B_1) = L + (B \cap B_1) = L$ (by Modular Law). Thus, $A \ll_R * B$.

Proposition 2.8:

Assume that *M* is an *R*-module and *A*, *B*, and *C* are submodules of *M* with $A \subseteq B \subseteq C \subseteq M$, if $B \ll_R * C$, then $A \ll_R * M$.

Proof.

Suppose that A + L = M and $R^* \left(\frac{M}{L}\right) = \frac{M}{L}$, so B + L = M, since $C \subset M$, hence $C = M \cap C = (B + L) \cap C = B + (L \cap C)$ by Modular Low. To demonstrate $R^* \left(\frac{C}{L \cap C}\right) = \frac{C}{L \cap C}$, since $\frac{C}{L \cap C} \cong \frac{L+C}{C} \cong \frac{M}{C}$ by Second Isomorphic Theorem, but $R^* \left(\frac{M}{C}\right) = \frac{M}{C}$, then $R^* \left(\frac{C}{L \cap C}\right) = \frac{C}{L \cap C}$. Since $B \ll_R * C$, then $C = L \cap C$, so $C \subseteq L$, but $A \subseteq C$. Hence, $A \subseteq L$, since A + L = M, then L = M. Therefore, $A \ll_R * M$.

Remark 2.9:

It is uncommon for the converse of Proposition 2.7 to be true. The example that follows demonstrates. Consider $M = Z \oplus Z_{p\infty}$ as Z-module $0 \oplus Z \subseteq 0 \oplus Z_{p\infty} \subseteq Z \oplus Z_{p\infty}$ it is clear that $Z \ll_R * Z \oplus Z_{p\infty}$, but $Z_{p\infty}$ is not R^* -small in $Z \oplus Z_{p\infty}$ (see 2.2 (3)).

3. R^* -hollow module

Definition 3.1:

A module M a is non-zero if for each proper submodule of M is Rad_R *-small submodule of M, then M referred to an Rad_R *-hollow module (or simply R^* -hollow module).

Remarks and examples 3.2:

- 1. Every simple module is R^* -hollow module. For example, Z_p as Z-module, (where p is a prime number).
- 2. It is obvious that any hollow module is R^* -hollow module. However, the reverse is not true. For example, Z_6 as Z-module.
- 3. Z_4 as Z-module is R^* -hollow module.
- 4. Consider $M = Z \bigoplus Z_{p\infty}$ as Z-module is not R^* -hollow module. Since $Z_{p\infty}$ is proper sub module of M, but $Z_{p\infty}$ is not R^* -small module of M.

The resulting theorem gives an explains of the R^* -hollow module.

Theorem 3.3:

M is *R*^{*}-hollow module if and only if for each proper submodule A of *M* is small in *M* with $R^*\left(\frac{M}{A}\right) = \frac{M}{A}$ where *M* is R-module.

Proof.

⇒) Assuming that *A* is a proper submodule of *M* such that $R^*\left(\frac{M}{A}\right) = \frac{M}{A}$. We have to show that $A \ll M$. Assume that there exists a proper submodule B of *M* such that M = A + B, since *M* is R^* -hollow, then $B \ll_R * M$, but $R^*\left(\frac{M}{A}\right) = \frac{M}{A}$, then M = A which is a contradiction. Thus $A \ll M$.

⇐) To demonstrate that *M* is *R*^{*}-hollow module. Take A is a proper submodule of *M*. Assume that A is not *R*^{*}-small, there exists a proper submodule B of *M* such that $R^*\left(\frac{M}{B}\right) = \frac{M}{B}$ and M = A + B. By our assumption $B \ll M$, then A = M which is a contradiction. Thus, *M* is R^* -hollow.

Proposition 3.4:

A non-zero epimorphic image of R^* -hollow module is R^* -hollow.

Proof.

Given $f: M \to M$ be an epimorphism and M be R^* -hollow module and assume $B \subsetneq M$, therefore $f^{-1}(B) \subsetneq M$. To show that $f^{-1}(B)$ is a proper in M. If $f^{-1}(B) = M$, then B = f(M) = M which implies B = M and that is a contradiction, so $f^{-1}(B)$ is a proper submodule of M. Since M is an R^* -hollow, therefore $f^{-1}(B) \ll_R M$ and, by Proposition 2.6 we have $f(f^{-1}(B)) \ll_R M$, then $B \ll_R M$.

Corollary 3.5:

Suppose *M* is an *R*-module and $A \subseteq M$. if *M* is an *R*^{*}-hollow, then $\frac{M}{A}$ is an *R*^{*}-hollow. **Proof.**

Let $f: M \to \frac{M}{A}$ be a natural epimorphism and M be an R^* -hollow Proposition 3.4, $\frac{M}{A}$ is an R^* -hollow.

Remark 3.6:

It is not required that the direct sum of an R^* -hollow modules be R^* -hollow. For instance $M = Z \bigoplus Z_{p\infty}$ as Z-module as previously demonstrated that every proper submodule of Z is R^* -small so Z as Z-module is R^* -hollow and every proper submodule of $Z_{p\infty}$ is not big, hence is R^* -small so $Z_{p\infty}$ as Z-module is R^* -hollow. However, M is not an R^* -hollow.

The direct sum of R^* -hollow modules is an R^* -hollow under the criteria we will now list. Not that a submodule A of M is called completely invariant for each $f \in End(M)$, $f(A) \subseteq A$. In [11], [18], likewise a module M is said to be a duo module if for each of its submodules is completely invariant.

Proposition 3.7:

Let $M = M_1 \bigoplus M_2$, M be a duo module, then M is an R^* -hollow if and only if M_1 and M_2 are R^* -hollow. Provided that $A \cap M_1 \neq M_i$, for all $i = 1, 2, A \subseteq M$. **Proof.**

 \Rightarrow) Let *M* be an *R*^{*}-hollow module and $A_1 \oplus A_2 \subseteq M_1 \oplus M_2$ with $A_1 \subseteq M_1$ and $A_2 \subseteq M_2$.

Consider that $\pi_1: M_1 \oplus M_2 \to M_1$ be a projection map, which defined as follows, $\pi_1(m_1 + m_2) = m_1$, for all $m_1 \in M_1, m_2 \in M_2$, since $A_1 \oplus A_2 \ll_R * M_1 \oplus M_2$. Then by Proposition 2.6, we have $\pi_1(A_1 \oplus A_2) \ll_R * \pi_1(M_1 \oplus M_2)$, so $A \ll_R * M_1$. That means M_1 is an R^* -hollow. By using the same way one can show that M_2 is an R^* -hollow.

⇐) Let M_1 and M_2 be an R^* -hollow, and let $A \subsetneq M$. Since M is a duo module, then $A = A_1 \bigoplus A_2$, where $A_1 = A \cap M_1$ and $A_2 = A \cap M_2$, since $A_1 \ll_R * M_1$ and $A_2 \ll_R * M_2$. Then by Proposition 2.6, $A_1 \bigoplus A_2 \ll_R * M = M_1 \bigoplus M_2$.

A module *M* is said to be distributive if for each of its submodules A, B, and C in *M* such that $(A + B) \cap C = A \cap C + B \cap C$ [19], [20].

Proposition 3.8:

Assuming that $M = M_1 \bigoplus M_2$ be a distributive module, then M is an R^* -hollow if and only if M_1 and M_2 are R^* -hollow are provided that $A \cap M_i \neq M_i$ for all i = 1, 2.

Proof.

By using the same argument in Proposition 3.7.

References

- [1] F.Kash, Module and rings, Londone : Acadimic Oress, 1982.
- [2] S. Mohammed and j.Bruno.Muller, Continous and discret modules, New york:Lens147: Cambridge Press, 1990.
- [3] W. Frank and R.Kent, Rings and categories of module, verlag: springer, 1994.
- [4] Y. Zhou, "Generalizations of perfect, Semiperfect, and semiregular rings," *Algebra Colloquium*, vol. 7, no. 3, pp. 305-318, 2000.
- [5] P.Fleury, "Hollow modules and local endomorphism rings," *Pacific journal of mathmatics*, vol. 2, no. 53, pp. 379-385, 1974.
- [6] I.Mohammed, Module theory, Baghdad: bookstore for printing publishing and translating, 2021.
- [7] j. Clark, C. lomp, N. Vanaja and R. Wisbauer, Lifting Module Supplement and Projectivity in Module Theory, Berlline, 2006.
- [8] A.Azizi, "Hollow module over commutative Ring," *Palestine journal of mathmatica*, vol. 3, no. spec1, pp. 449-456, 2014.
- [9] N. Orhan, T. D. Keskin and R. tribak, "On hollow- lifting module," *Taiwanese journal of mathematics*, vol. 11, no. 2, pp. 545-568, 2007.
- [10] C.Ozcan, "Duo modules," *Glasgow mathmatical journal trust*, vol. 48, pp. 533-545, 2006.
- [11] A.Ozcan, "Modules with small cyclic sub modules in their injective hulls," *Taylor and francis online*, vol. 30, pp. 1575-1589, 2002.
- [12] K.R.Goodearl, Ring theory NonSingular Rings and Modules, Salt Lake, Utah: Marcel Dekker, Inc, 1976.
- [13] K.R.Goodearl and R.B.warfield, An Intoducton to Non commutative Noetherain rings, Cambridge: Cambridge university press, 2004.
- [14] M.Abbas and F. Mohamed, "On e-smallsubmodules," *Ibn-Alhaitham journal for pure and apply.sci*, vol. 28, pp. 214-222, 2015.
- [15] A.Kabban and W.Kalid, "On jacobson-small submodules," Iraqi journal of science, vol. 30, pp.

1584-1591, 2019.

- [16] W.Khalid and M.K.Enaas, "On generalization of smallsubmodules," *sci.int.(lahore)*, vol. 30, pp. 359-366, 2018.
- [17] H.Baanoon and W.Khalid, "e*-essential small submodules and e*-hollow modules," *European journal of apure and applide mathematics*, vol. 15, pp. 478-485, 2022.
- [18] I.Mohammed and N. Rana, "On P-Duo Module," *International Journal of Algebra*, vol. 8, no. 5, pp. 229-238, 2014.
- [19] V.Camillo, "Distributive modules," Journal of algebra, vol. 36, pp. 16-25, 1975.
- [20] V.Erdogdu, "Distributive modules," Canada.Math.Bull, vol. 2, pp. 248-254, 1987.