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Abstract

The current work aims to study the effect of an inclined magnetohydro dynamics
peristaltic transport of a non-Newtonian hyperbolic tangent fluid in a non-uniform
channel via porous medium. The nonlinear governing equations regarding hyperbolic
tangent fluid have been studied and solved analytically with the use of a regular
perturbation approach under considerations of a long wavelength as well as low
Reynolds number. All computational results are also discussed graphically using the
MATHEMATICA program. The mathematical expressions for axial velocity and
stream functions have been derived analytically. Different physical parameters have
been shown graphically and discussed it's effect. It is established that increasing the
Hartmann number and the parameter of porosity will increase the velocity and the
quantity of boluses. While the size of boluses decreases by increasing the magnetic
field inclination angle. Moreover, Some mathematical and engineering aspects of
non-Newtonian fluids are investigated in the current analysis.

Keywords: Inclined MHD Peristaltic Motion; Hyperbolic Tangent Fluid (HTF);
Non-Uniform channel; Porous Medium. Perturbation Method.
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Nomenclature
(x,y) : The cartesian coordinates in a wave frame.
(X, Y): The cartesian coordinates in a fixed frame.
(U, V) :The velocity components of the fixed frame.
(u, v) :The velocity components of the wave frame.
p . The pressure in the wave of reference.
P :The pressure in the fixed frame of reference.
a,, a,: The amplitudes of the waves at the lower and upper wall of channel, respectively.
d,, d, : The widths of the channel.
: The wavelength.
: The phase difference.
The wave speed.
Time.
: The extra stress tensor.
The time dependent constant.
: The 0-shear rate viscosity.
:The infinite shear rate viscosity.
: The power — law index.
. The shear rate.
: The density fluid.
: The dynamic viscosity.
: The constant magnetic field.
: The magnetic field inclination angle.
o : The electrical conductivity.
K : The porosity of porous media.
Sz Sev, Sy - The extra stress tensor components, respectively.
[T :The second invariant strain tensor.
6 : The wave number.
Re :The Reynolds number.
M : The Hartmann number.
We : The Weissenberg number.
F : The dimensionless time average flow rate in a wave frame.
Q :The time average flux in a fixed frame.
Q : The time average flow rate.
Y : The stream function.
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1. Introduction

Peristalsis is the scientific term for the movement of fluid along of a channel's axis as a
result of the relaxation and contraction of its walls. Due to its intriguing possibilities, peristaltic
flow has attracted attention of numerous engineers and scientists. Non-Newtonian and
Newtonian flows are discussed. Nowadays, scientific and technological research are being
done on the peristaltic phenomenon. The word peristalsis is originated from Greek word
peristaltkos which means the compressing and clasping. The non-Newtonian fluid peristaltic
flow could be defined as a new field that is presently being studied. The bio-medical and
engineering fields have several applications for such phenomena that are quite significant. This
is due to the fact that it has numerous practical uses, including those in biomedical engineering,
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geophysics, cancer treatment, and blood pumping devices. The first study was conducted in
1964 by Latham [1], who worked on a peristaltic pump and showed how peristaltic flow works
in a channel. The peristalsis phenomena were next explored by Shapiro et al. [2] in a channel
which is geometrically 2D. Although, they used the low lubrication theory assumptions that
obscure numerous inertial effects which must be discussed. In addition, they provided
theoretical findings for the two planes. With regard to an infinite channel, peristalsis was
studied by Yih and Fung [3]. Theoretical research on peristaltic motion in non-Newtonian and
Newtonian fluids is considerable. The non-Newtonian qualities can be found in physiological
liquids like blood and food bolus fluid, geological suspensions like sedimentary liquids and
drilling muds, as well as industrial liquids like oil and grease and biotechnological liquids like
polymers, gels, and food products.

One of the most significant liquid models in a non-Newtonian liquid category, which is vital
in peristaltic system, is the model of hyperbolic tangent fluid flow due to its applications in
filtration,  aquifer  transport  advancements,  chemical  industry  separation
processes, groundwater pollution, and transpiration cooling. The non-Newtonian fluid flow
study through porous media has attracted a great deal of attention. In this work, the hyperbolic
tangent fluid model is used to examine the non-Newtonian fluids' flow characteristics.

In the majority of experiments, Ingham and Pop's [4] and Akram and Nadeem's [5] studied
the peristaltic transport which is related to the Hyperbolic Tangent fluids within asymmetric
channel that is originally utilized this model. With the aid of the Homotopic perturbation
approach, Maraj and Nadeem [6] investigated mathematically the peristaltic motion regarding
to the hyperbolic tangent fluid in curved channel. Nadvinamani et al. [7] discussed the
dynamics of a hyperbolic tangent fluid passing through tapered asymmetrical porous channel.
A different study is found that the MHD effect on peristaltic transport is significant in a broad
range of the fields, which includes technology (MHD pump) and biology (blood flow).
Through the use of a porous medium, Hayat et al. [8] studied the effect of the Dufour and
Soret on MHD peristaltic mechanism of the Jeffery fluid. Nadem and Akram [9] studied and
investigated the peristaltic flow of the MHD hyperbolic tangent fluid in the vertical
asymmetrical channel with heat transfer. Through considering mass and heat transfer, Saravana
etal. [10] have theoretically studied the MHD peristaltic flow of the hyperbolic tangent fluid in
the non-uniform channels. Other studies on magnetohydrodynamic peristaltic flows can be
found in [11], [12], [13], [14], [15], [16],[17],[18] and [19] as well as the references therein.
Researches consulted on the peristaltic flow under magnetic field impacts in various
circumstances. Akbar et al. [20] discussed the effects of the magnetic field on peristaltic
transportation which is related to the Casson. Rashid et al. [21] have investigated impacts of
the induced magnetic field on Williamson fluid's peristaltic flow along curved channel. The
magnetic fluid was shown by Sucharitha et al. [22] inside inclined, non-uniform, porous
channel that has flexible walls. With regard to a tapered asymmetric channel, Prakash and
Kothadapani [23] investigated the peristaltic flow of Carreau nano-fluid under impact of
magnetic fields. Regarding to the peristaltic pumping of the hyperbolic tangent nano-fluid in
non-uniform channel and induced magnetic field, Akram et al. [24] studied thermal and
concentration convection. Yellamma et al. [25] studied the triple diffusive Marangoni
convection Marangoni-convection (TDMC) problem when a steady heat source is present in
both layers and a vertical uniform magnetic field. In addition, . Balaji et al. [26] conducted an
analytical work to study the effect of the thermal gradient and heat sources on the onset of
convection using the Darcy model . They are also taken into account the study of the effects
of local thermal non equilibrium(LTEN). Manjunatha and Sumithra [27] studied the problem
of a non- Darcy double diffusive magneto Marangoni convection in a horizontally infinite two
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layer. In another work, Sumithra and Manjunatha [28] investigated the problem of Bénard-
Magneto-Marangoni convection in a composite layer in the presence of heat source in both
layers.

Numerous peristaltic investigations have been done to look into the impact of magnetic
fields for different fluid model configurations [29-32]. Recently, Ridha [33] presented a review
study on the concepts, perspectives, and mathematical models of a non-Newtonian fluids
including Hyperbolic tangent fluid. This study is concentrated on the peristaltic flow of non-
Newtonian fluids. Discussion of the impact of inclined MHD peristaltic transport
regarding hyperbolic tangent fluid in a non-uniform porous channel is the main goal of this
work. The long wavelength and low Reynolds number assumptions are utilized in order to
simplify the nonlinear partial differential equations related to a hyperbolic tangent fluid, and
the resulting equations are numerically and analytically solved. The velocity and stream are
analyzed and explained with the use of the Mathematica software. Finally, utilizing graphs of
streamlines and the phenomena of trapping are also explored along with the behavior of other
related physical parameters.

2. Mathematical Formulation of The Problem

We take into account the MHD peristaltic transport related to the non-Newtonian hyperbolic
tangent fluid inside non-uniform porous channel. It is influenced by an inclination magnetic
field B which acts along y-axis. Induced magnetic field has been disregarded for low magnetic
Reynolds numbers. A sinusoidal wave train propagating through channel's flexible walls
at constant wave speed, ¢, has been thought to have caused the medium. The problem's
geometry model is shown in Figure 1. The following describes how peristaltic waves' flexible
wall surface takes shape:
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Figurel: Geometry Model of The Problem

The peristaltic waves geometry on flexible walls can be defined by the relation as follows:
Y=Hy (X1) = d; + & sin[ 25 (X — cB)] | (1)

Y=H, (X.1) = - d; — @, sin[ 5 (X — cf) + ®]. )

Equations (1) and (2) are the upper wall and lower wall, respectively. X - axis lies in wave
propagation direction and Y - axis is to be perpendicular to the value of X . It has been noted

that ®= 0 is corresponding to a non-uniform channel with the waves out of phase and for ®=
7 waves are in phase. Additionally, a,, a,, d;, d, and ®@ satisfy the following equation:
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a,%+a,%+2a, a, cos(®) < (d; + d,)?. (3)

The Cauchy stress tensor in Tangent Hyperbolic non-Newtonian fluid can be expressed in
the following form:

7=-[Stanh ('Y) "y , (4)

S= fHo + (o + Hoo) (5)

Under consideration of p,, = 0, there is a possibility to discuss the problem for the infinite
shear rate viscosity, thus, by consideration of tangent hyperbolic fluid describing effects that is
I'y «1. Then Eq.(4) T can be expressed as follows:

14

T =-po [(TY)"] 7 =-po [(L + Ty = M)y
=-p[L+n Ty -1y . (")

3. The Governing Equations Formulation
The equations for fluid motion in a lab frame (X, Y) under impacts of an inclined magnetic
field can be provided by:

o0 | oV _
~ ~ a_z+a_?—9. ) ) (8)
o0 =00 | — a0 oP . 8Szx . 0Szy T S ; —
Pzt U+V 2 =—ﬁ+%+wxy—aﬁécos/3wcosﬁ— V cos B) —%U(9)
oV  —dV <V, _ 9P  dSzy . 0Spy e S = . A\ Ho o
P+ U+ Vo) =——+—E+ =L 4 g BFsinf (Ucosf-Vsinf) — 2 V. (10)

Let us define a wave frame (x,y) that moves with velocity ¢ away from fixed frame (X, Y) by
the following expressions
x=X-ct,y=Y,u=U-c,v=Vandp (x,y)=P (X, Y, ©).

Defining the non - dimensional quantities as follows:

_ 90X oY o0 v _h _hpy , _h . _yd _ d* & dSxx
X = /’L’y_ d’u_ c'v_ c'hl_(il’hz_az’h_c_i’y_ c’p_cluo XX cpo
_/15_')?}7 _dS_‘yy _Cf _p&C _(i _ g _FC _ &
Sey=TH, 5, =0 ¢ =51 Re =2, 6 =%, M= |Zd By We=Ts, 0= 7,
_k _ Bo 4,_(T-To)
Da_aziso_ &’H_(Tl—T_o) (11)

Then from Egs. (9) and (10), it takes the form

d d d 2 as : ; o
ReS(a—lt1 +u a_z-l_ va—;) :—a—i+62%+a—;y—MZB%cosB(ucosB— vsinf) + Diau. (12)

Reé? Z—ltl +uZy vy

dp 295xy | o 0Syy 202 cin P : .y, 21
==+ —t) —== -_ —_—
P 3y ) e §—5+ M*Bgsin f(ucos f — vsin ) + 1) Da

Y
(13)
Where
Sex = -2[1+n(We 7 — 1)] 2,
. 0 d
Sy =-[ln(Wey - 1)] (52— 6227,
Syy =28 [1+n(We y — 1)] g—;
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. v\ 2 u v\ 2 av\2]2
v = [252(5) +(5- 0t + 252(&)] -
Assuming that 1 is a stream function, then we have:
V= _66_1# u= i 2
ox '’ dy ’
The non-dimensional variables have been defined in Eqgs.(14) and (15) which give the

following equation

0Sxx asx
Re & [I/Jy prias ll’y %~ Px 6y] hy=— 2+ 62 =2 4 =2 — Ha? Bf cos B(iy cos f —
P, sin ,8) + E Y. (14)
a d a a 0Sy as o .
Re 8% [y 3+ Yy o — Prap| Vo= — 24 6222 4 62204 Ha? B sin f(ipy cos i -
Prsinf) = 6% - . (15)

Under assumptions of the long wave-length and small Reynolds number. approximations,

we obtain the following expressions:

o _Osxy (200214 ;2
ox - ay (McosB K+0). (16)

op _
=0 (17)

Where sy, = (1-n) ZZ +n We (a "’) .

The relevant boundary conditions in the terms of stream function can be represented in the
following forms

F a
p=1, a—"y’ =-1 aty=hy(x) (18)
=- 5 ‘;—‘5 =-laty = hy(x) (19)
The flux at any of the axial stations in fixed frame can be expressed as follows:
Q= (u+1)dy = h1- h2 +F . (20 a)

It is associated with dimensionless time average flow rate Q in lab frame based on:

Q=2 ) Qdt == [ (h1— h2 +F)dt =F+1+d . (20 b)
whereF= [, 2 dy=y (hy (%)) - $(ha () (21)
h1(x) and hz(x) are dimensionless forms that can be represented by:

hi(xX) = 1+mx +a sin (2m (x-t)), (22)

ha(x) = -1-mx -b sin (21 (x-t) +®),

where a,b, @ & d satisfy the equation
a? + b% + 2ab cos(®) < (1 +d)?. (23)

Eq. (17) indicates that p # p(y), by the elimination of p from Eq. (16) and Eq. (17), the result

will become as follows:

o2 [0y  n 92¢\2]  (MZcos2p—+0?) g2y

oy a2 Yo Ve (ﬁ) ]_ a-n) ay?

(24)
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4. Perturbation Solution

We can see that a closed form solution for all arbitrary parameters involved in eq.(16) is
not achievable due to the complexity and high degree of nonlinearity of the equation. In order
to determine the solution, perturbation approach is used. For perturbation solution, we can
expand:
U=y, + We Y + O(We?).
F=F, + We F; + O(We?).
p=p, + Wep,+O(We?), (25)
and substitute EQ.(25) into Egs. (16)-(24) with boundary conditions Eqgs.(18) and (19), by
equating powers coefficients like of We, the result is given as follows :
4.1. Zero-order system:

P%o _ 2 8%0_
oy T g 0. (26)
Where
2 (Mzcoslz_Bn—Ki+az) . 27)
From Eq.(14),we get
9po_ Yo _ _2(9%o
% oy T (ay +1). (28)
And from Eq.(15), we get
dp _
5 =0 (29)
Po= ll’oyyz- (30)
Fy @ Fy @
Yo =220 = —laty=h, Yo = -2, F0 = —1aty=he. (31)
4.2 First-order system
64 62 62 62 2
(1-nZh- 2 Zhe ng[(%> ] (32)
_F s - _ _ R =
l,lJl—Z,ay—laty hl,lpl— z,ay— 1aty (h2)
33
(1) D [ (Z)] - 22 (34)
0x ay3 oy2 |\ ay2 ay '

4.3 Solution to the Zeroth-order system
Eq. (26) is flowed and simplified, the results under conditions which are presented in
Eq.(31) are obtained as follow:

Yo = e%y(ezrycl +c2)+c3y+c4 . (35)

4.4 Solution to the First-order system
We have the following equations after the resultant equation system is solved with relevant
boundary conditions and substituting 0'"-order solution into the 1%*-order system:

eV (h1-h2)2(-1+1)2r%n

—e—2TY
Pi=e € 3m

e2(h1+h2)r(h1_h2)2(141)274n

312
+3e3"YxR1+3e"Y*R2)

3r2

+R3+y=*R4 . (36)
Where
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e"?" (=2 +h1(-1+r®)r—-h2(-1+r3r) + ?
=\ eM"(2+h1(-1+4+7r®r—-h2(-1+7r?r)
(=1+n)

The expression for stream function can be provided as follows:

Y =19+ Wey, . (37)
Where {R1,R2,R3,R4, cl1,c2,c3,c4,} are large quantities. It is mentioned in the appendix
section.
The formula for the velocity is given as follows:

u =g, + Wepy,, . (38)

5. RESULTS AND DISCUSSION

There are two subsections within this section. In the first one, the flow properties are covered
while in the other subsection, the trapping phenomena is demonstrated with the use of the
MATHEMATICA software.

5.1 Flow characteristics

Based on Eq. (38). This section illustrates the impacts of different physical parameters on
axial velocity profile including Weissenberg number We and Hartmann Number M, the
porosity of porous media K, the inclination magnetic field angle 3, the hyperbolic tangent fluid
power law index n, and impacts at each of o, Q, ®. Figures (2-9) show the velocity
distributions graphically. Figure 2 shows how the Weissenberg number (We) effects axial
velocity. It can be seen the velocity reduces when dimensionless parameter (We) is increased.
Figure 3 shows how the Hartmann number (M) affects the axial velocity. It has been seen from
this figure that the velocity increases in the channel centre, however, it drops at the walls as the
dimensionless parameter (M) is increased. Figure 4 shows that if the velocity drops in the
centre, it increases near walls with an increased value of 8 . Figure 5 illustrates how the velocity
increases as (Q) increases. The impact of the parameter 6 on the velocity is presented in Figure
6. The velocity at walls has been shown to decrease as parameter o is increased in Figure 6,
and it has been noted that the velocity behaves in the opposite way near centre. It can be seen
in Figure 7 that the velocity drops as the hyperbolic tangent fluid power law index n increases.
Figure 8 demonstrates that as the porosity parameter K is increased, the velocity at the channel's
centre increases. The impact of (®) on the axial velocity is finally depicted in Figure 9, where
it can be initially noticed that the velocity falls but then it gradually increases as it approaches
the channel's upper part. From these figures of velocity and from this work we can see that the
magnetic field and the porosity are the most effective variables for regulating velocity and
boluses in the peristaltic flow. We note that from the axial velocity graph, as the porosity
parameter increased, the velocity of the fluid at the center of the channel increases, and if the
increase of inclination magnetic field angle, then the walls of the channel draw the fluid in
the wider section of channel so that the axial velocity is in the form of parabolic.

5.2 Trapping Phenomenon

The streamlines graph is plotted in this subsection to explain the trapping phenomenon. The
trapping phenomenon represents the primary characteristic of peristaltic flow. Smooth
streamlines are associated with the smooth flow. We can see that if waves are produced on the
wavy walls, these streamlines become more curved which leads to the confinement of a bolus
that moves with the flow. There are instances where the flow streamlines, divides, and produces
boluses, closed-circulated trajectories that are carried by the peristaltic wave. The stream lines
are presented in the non-uniform (lower panel ® = m /3) channels for various n, We, K, M, 8
, 6, and Q values. The stream lines are displayed in Figures (10-16) for various parameter
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values. Figures 10 and 15 show how We, n affect the stream lines. It has been observed that if
any drop in We and n values, it results in the reduction in trapping bolus size, particularly
towards the walls. It is clear from all figures that the stream lines closes to the channel almost
exactly follow wall waves, primarily caused by the relative movement of walls. Figures 11 and
14 show that as the parameters M and o are increased, the size of tapping bolus grows at non-
uniform channel wall. Figures 12 and 13 show that new circulations (Bolus) are produced at
left and right sides of channel, and that their size and quantity steadily rise with an increase in
K but size of it's decreases with increase 5. In Figure 16, trapping bolus size is unchanged
despite the increase of the value of Q, which results in a greater resistance and a slower of the
fluid motion. Finally, We observe that by studying the effect of physical parameters on the
streamlines, when the porosity increases, the size of the boluses increases but with increase of
inclination magnetic field angle, the streamlines at the walls of the channel increased while
the size of the boluses decreases, and this makes the movement of the fluid more streamlined
within the channel.

|
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Figure 10: Stream-line for various We values: (a) We=0.30,(b) We =0.50, & (c) We = 0.70,
and O= g,Q:1.5o, d=1, a=0.50, b=0.50, ¢=5, n=1, le,/?zg and k=1.

Figurell: Stream-line for various M values: (a) M=0.80,(b) M=0.90 and (c) M =1, and
cp—;’;, Q=1.50, d=1, a=0.50, b=0.50, 6=5, n=1, We=1.5, = g and k=1.

() (1 (110)
; : Il e 7

-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

Figurel2: Stream-line for various B values: (a) B= % (b) B= % and (c) B= g , and ®= g
Q=1.50, d=1, a=0.50, b =0.50, 0=5, n=1, We=1.5, M=1 and k=1.
(1) () (1)
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Figure 13. Stream-line for various k values: (a) k =0.40, (b) k = 0.50 and (c) k = 0.60, &
o= g Q=1.50, d=1, a=0.50, b=0.50, ¢=5, n=1, M:1.50,B:% and We=1.

(D)

(1)

]

D)

Figure 14: Stream-line for various o values: (a) o =0.20, (b) ¢ =0.30, and (c) ¢ = 0.40,
and ©= g Q=1.50, d=1, a=0.50, b=0.50, M=1, n=0.50, We=1.50, Bzg and k=1.

(1)

(1

3

Figurel5: Stream-line for various n values: (a) n = 0.30, (b) n =0.50, and (c) n =0.70,
and q>=§, Q=1.50, d=1, a=0.50, b=0.50, o=5, ﬁ':g, We=1.50, M = 1 and k=1.

(1)

()
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Figure 16: Stream-line for various Q values: (a) Q =0.50,(b) Q =1, and (c) Q = 1.50, ®

=7, We=1, d=1,
a=0.50, b=0.50, 6=5, n=1,M=1.50, 3:% and k=1.
(1) (1) (1)

6. CONCLUSION

Under the action of the long wave-length approximations and low Reynolds number, the
impact of inclined MHD peristaltic flow regarding non-Newtonian Hyperbolic Tangent fluid
in 2D porous channel was examined in the current study. The axial velocity as well
as streamline parameters of TANH fluid have been obtained using a regular perturbation
approach. Depending on the present peristaltic transport mechanism through porous medium,
the result flow patterns are examined and analyzed thoroughly for a variety of the values of
various physical parameters in the flow region. The next findings are drawn from the current
study:
e An increasing in We, n leads to decrease in the axial velocity, while, it increases with an
increasing in value of Q.
e The velocity profile has been increased at center of channel with the increase in M, o, K
while it reduces at the center with the increase in g .
e An increasing in & results in an increasing in the velocity regarding peristaltic flow at
channel’s upper wall.
e The streamlines illustrate that size of tapping bolus is increased with an increase in We, n,
whereas it reduces with the increase in M, o.
e Itisalso noticed that through the increase in K number , the size of trapping bolus increases,
while with an increase B number but the size of trapping bolus decreases. Finally, with an
increase in Q value, size the bolus has not changed.
e Due to the many uses of the hyperbolic shadow fluid in biology. Blood flow and blood pump
mechanics are examples of MHD peristaltic of a non-Newtonian Hyperbolic tangent fluid.
We draw the conclusion from this work that the magnetic field and porosity are the most
effective variables for regulating velocity and boluses in the peristaltic flow.
Appendix
C
= —(((FO+h1 —h2)r?)/(—2e"" + 2e"" + eMThir 4+ "?Thir — eMrh2r — e"?Th2r))
c2
= (eM7*h2r(FQ + h1 — h2)r?)/(—2eM" + 2eM?" + eMThir + e"?"hir — eM'Th2r — eM?'h2r)
c3
= —(((h1 + h2)(2eM" — 2eh2r 4 MIrEQr + eh2VMEQr)) /(2(—2eMT + 2eM27 4 "V 11 4 eh2h1r — eh1Th2r — eM27h2r)))
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c4
= (2eMr — 2eh2r 4 IrEQr + eh2'FQr) /(—2eM1T + 2eM27 + eP1Thir + eP2Thir — eP1Th2r — eP2Th2r)

R1
= (e
e Mr(—h1 + h2
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(3(eP (=2 + hir — h2r) + e"?*(2 + hir — h2r))?(—1 +n)) +

2
(4T (FO + h1 — h2)2r3/2n)/<3 (ehlr(—z +hir —h2r) + e""(2 + hir — h2r)) (-1+ n)) —

e—hlr e—th

4e2"2T(FO + h1 — h2)2r3/2n) /(3(e"* (=2 + hir — h2r) + eP?7(2 + hir — h2r))2(—1 + n)))
+

e
(

—hir —h2r

e

r r
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