Al-Neima andMohammed

Iraqi Journal of Science, 2020, Vol. 61, No. 1, pp: 127-131 DOI: 10.24996/ijs.2020.61.1.13

ISSN: 0067-2904

Proving the Equality of the Spaces $Q_b^r(A)$, $Q_b^l(A)$ and BL(X) where X is a Complex Banach Space

Mohammed Th. Al-Neima^{1*}, Amir A. Mohammed²

¹Department of Civil Engineering, College of Engineering, University of Mosul, Iraq ²Department of Mathematics, College of Education for Pure Sciences, University of Mosul, Iraq

Received: 29/4/ 2019

Accepted: 3/8/2019

Abstract

Cabrera and Mohammed proved that the right and left bounded algebras of quotients $Q_b^r(A)$ and $Q_b^l(A)$ of norm ideal A on a Hilbert space H are equal to BL(H) Banach algebra of all bounded linear operators on H. In this paper, we prove that $(Q_b^r(A), \|\cdot\|_r) = (Q_b^l(A), \|\cdot\|_l) = (BL(X), \|\cdot\|_\infty)$ where A is a norm ideal on a complex Banach space X.

Keywords: bounded algebra of quotient, ultraprime algebra, norm ideal.

برهان المساواة للفضاءات $Q^r_b(A)$ و $Q^l_b(A)$ وBL(X) حيث X فضاء باناخ المعقد

محد ذنون النعيمي^{1*} ، عامر عبد الأله محد² ¹قسم الهندسة المدنية ، كلية الهندسة ، جامعة الموصل ، العراق ²قسم الرياضيات ، كلية التربية للعلوم الصرفة ، جامعة الموصل ، العراق

الخلاصة

كابريرا ومحجد برهنا بأن جبر القسومات اليمني واليساري المقيدة $(A) \ Q_b^l(A) \ e(A) \ Q_b^l(A) \ e(A) \ e$

1. Introduction

The evolution of the ring theory of quotients of a prime ring was presented in 1969 by Martindale [1]. In 1986, Mathieu used ultraprime algebra to give an analytic form of algebras of quotients of ultraprime algebra [2]. Later in 2003, Cabrera and Mohammed provided a similar analytic form of totally prime algebra. One interesting result is that the left and right bounded algebras of quotients of norm ideal on a Hilbert space H are equal to complex Banach algebra of all bounded linear operators on H see [3].

In this paper, we improve this result using Banach spaces instead of Hilbert spaces. Throughout this paper all algebras are associative.

Recall in [2] a normed algebra $(A, \|\cdot\|)$ is ultraprime if there exists c > 0 such that $c\|x\|\|y\| \le \|M_{x,y}\|$ for all $x, y \in A$. Where $M_{x,y}$ is a linear operator from A into A defined by $M_{x,y}(z) = xzy$ for all $z \in A$. $Q^r(A)$ is denoted to be the right Martindale algebras of quotients [1], L_q^I is a linear operator from I into A, defined by $L_q^I(x) = qx$, for all $x \in I$.

For a prime normed algebra A, the right bounded algebra of quotient of A is given by

^{*}Email: mohammedmth@gmail.com

 $Q_b^r(A) = \{q \in Q^r(A) / I \text{ is ideal of } A, qI \subseteq A, L_q^I \text{ bounded}\}, \text{ with algebra semi norm defined by } \|q\|_r = \inf \{\|L_q^I\|, I \text{ is ideal of } A, qI \subseteq A, L_q^I \text{ is bounded}\}.$

When A is ultraprime algebra, then $Q_b^r(A)$ is an ultraprime algebra, and the inclusion of A into $Q_b^r(A)$ is topological [2, Theorem 4.1]. Similarly, left bounded algebra of quotient are defined and denoted by $Q_b^l(A)$.

Mohammed and Cabrera [3, Theorem 2] proved for a norm ideal $(A, \|\cdot\|)$ in BL(H) the bounded linear operators in H, then $(Q_b^r(A), \|\cdot\|_r) = (Q_b^l(A), \|\cdot\|_l) = (BL(H), \|\cdot\|_\infty)$.

Our aim in this paper is to improve the above result (see Theorem 2.2 and 2.5).

2. Bounded algebras of quotients of norm ideal.

Recall in [4] that, the norm ideal is an ideal A of BL(X) where X is a Banach space, with norm $\|\cdot\|$ satisfying the following properties:

i. $||x \otimes f|| = ||x|| ||f||$, for all $x \in X$ and $f \in X'$.

ii. $||FTG|| \le ||F||_{\infty} ||T|| ||G||_{\infty}$ for all $T \in A$ and $F, G \in BL(X)$.

For two vector spaces X, Y and dual specs X', Y', in [5, p. 240] the adjoint of an operator $T: X \to Y$ is an operator $T': Y' \to X'$ defined by $(T'\varphi)(x) = \varphi(T(x))$ for any $\varphi \in Y'$ and $x \in X$.

In the following proposition we used L(X) to denote the algebra of all linear operators form vector space X to X, $End(X_D)$ is denoted to the algebra of all endomorphism on right D -module X. To compute the right bounded algebras of quotients we begin with the following result.

Proposition 2.1

Let *X* be a complex Banach space and *A* is a norm ideal of BL(X). Then $Q^r(A) = L(X)$. **Proof**

Let X' be the dual space of X. Then $\langle X, X' \rangle$ is a pair of dual space. Using [6, Structure Theorem, p. 75] A is a primitive algebra with non-zero socle. Since X is a left A –module, by [7, Theorem 4.3.7 (vii) and (viii), p. 144], $Q^r(A) \cong End(X_D)$, where D is the centralizer of the irreducible left A –module X. So D is a complex normed division algebra, by Maizer Theorem [7, Theorem 2, p. 71], $D \cong 1 \cdot \mathbb{C}$, so $Q^r(A) \cong End(X_D) \cong L(X_{1 \cdot \mathbb{C}}) \cong L(X)$. Therefore $Q^r(A) = L(X)$. \blacksquare The next theorem is the main result in this paper.

Theorem 2.2

Let X be a complex Banach space and A be a norm ideal of BL(X). Then $(Q_b^r(A), \|\cdot\|_r) = (BL(X), \|\cdot\|_{\infty})$

Proof

Since *A* is a norm ideal of BL(X), it follows that *A* contains a non-zero socle FBL(X). By proposition 2.1, $Q^r(A) = L(X)$. Using [8, Lemma 2, 12, p. 26], $(Q_b^r(A), \|\cdot\|_r)$ is right bounded algebra of quotient with semi norm $\|\cdot\|_r$. For proving $BL(X) \subseteq Q_b^r(A)$, let $G \in BL(X)$, so $G(FBL(X)) \subseteq A$. We denoted Id_X the identity operator in BL(X), and let $T \in FBL(X)$. $\|L^{FBL(X)}(T)\| = \|CT\| = \|C$

$$\begin{aligned} \|L_{G} & (T)\| &= \|GT\| = \|GTId_{X}\| \\ &\leq \|G\|_{\infty} \|T\| \|Id_{X}\|_{\infty} = \|G\|_{\infty} \|T\| \\ \text{Therefore } L_{G}^{FBL(X)} \text{ is bounded, so } G \in Q_{b}^{r}(A). \text{ Thus } BL(X) \subseteq Q_{b}^{r}(A). \text{ Now} \\ \|G\|_{r} &= \left\|L_{G}^{FBL(X)}\right\| = \sup_{T \in FBL(X)} \left\{ \left\|L_{G}^{FBL(X)}(T)\right\|, \|T\| = 1 \right\} \\ &\leq \sup_{T \in FBL(X)} \left\{ \|G\|_{\infty} \|T\|, \|T\| = 1 \right\} = \|G\|_{\infty} \end{aligned}$$

Then we get $||G||_r \le ||G||_{\infty}$ -----(1)

Conversely Let $G \in Q_b^r(A)$, for proving $G \in BL(X)$, let $0 \neq x \in X$ and $f \in X'$ with ||f|| = 1, so $G \in L(X)$ by proposition 2.1. $||G(x)|| = ||G(x)||||f|| = ||G(x)\otimes f|| = ||G(x\otimes f)||$ Since $x \otimes f$ is finite rank operator, so $x \otimes f \in FBL(X)$ $= \left\|L_G^{FBL(X)}(x\otimes f)\right\|$ Since $G \in Q_b^r(A)$, so $L_G^{FBL(X)}$ is bounded $\leq \left\|L_G^{FBL(X)}\right\| \|(x\otimes f)\| = \left\|L_G^{FBL(X)}\right\| \|x\|\|f\|$ $= ||G\|_r \|x\|$

Therefore $||G(x)|| \le ||G||_r ||x||$ for all $x \in X$, so $G \in BL(X)$. We get that $BL(X) = Q_b^r(A)$. To prove the converse of (1) consider $||G||_{\infty} = \sup_{x \in Y} \{||G(x)||, ||x|| = 1\}$

$$\leq \sup_{\substack{x \in X \\ x \in X}} \{ \|G\|_r \|x\|, \|x\| = 1 \} = \|G\|_r$$

This implies that

 $||G||_{\infty} \leq ||G||_{r}$ -----(2) From (1) and (2), $||G||_{\infty} = ||G||_{r}$. Also, we have $(Q_{b}^{r}(A), ||\cdot||_{r})$ is a normed algebra and $(Q_{b}^{r}(A), ||\cdot||_{r}) = (BL(X), ||\cdot||_{\infty})$.

The following result is used to compute the left algebras of quotients.

Proposition 2.3

Let X be a complex Banach space and A is a norm ideal of BL(X) containing a non-zero socle. Then $Q^{l}(A) = L(X)$.

Proof

From the proof of proposition 1.1, *A* is right primitive algebra with non-zero socle. By using [9, Theorem 11.11, p. 174] $Q^{l}(A) = L(X)$.

Corollary 2.4

Let X be a complex Banach space and A is a norm ideal of BL(X) containing a non-zero socle. Then $Q^{r}(A) = Q^{l}(A) = L(X)$.

Our second main result in the following Theorem.

Theorem 2.5

Let X be a complex Banach space and A be a norm ideal of BL(X). Then $(Q_b^l(A), \|\cdot\|_l) = (BL(X), \|\cdot\|_{\infty})$

Proof

Since A is a norm ideal of BL(X), it follows that contains a non-zero socle FBL(X). By proposition 2.3, $Q^{l}(A) = L(X)$. Using [8, Lemma 2.12, p. 26], $(Q_{b}^{l}(A), \|\cdot\|_{l})$ is left bounded algebra of quotient with semi norm $\|\cdot\|_{l}$. For proving that $BL(X) \subseteq Q_{b}^{l}(A)$, let $G \in BL(X)$, so $(FBL(X))G \subseteq A$.

We denoted Id_X the identity operator in BL(X), and let $T \in FBL(X)$. $\left\| R_G^{FBL(X)}(T) \right\| = \|TG\| = \|Id_XTG\|$ $\leq \|Id_X\|_{\infty} \|T\| \|G\|_{\infty} = \|T\| \|G\|_{\infty}$ Therefore $R_G^{FBL(X)}$ is bounded, so $G \in Q_b^1(A)$. Thus $BL(X) \subseteq Q_b^1(A)$. Now $\|G\|_l = \left\| R_G^{FBL(X)} \right\|$ $= \sup_{T \in FBL(X)} \left\{ \left\| R_G^{FBL(X)}(T) \right\|, \|T\| = 1 \right\}$ $\leq \sup_{T \in FBL(X)} \left\{ \|T\| \|G\|_{\infty}, \|T\| = 1 \right\} = \|G\|_{\infty}$ Then us out $\|C\| \leq \|C\|$

Then we get $||G||_l \le ||G||_{\infty}$ -----(1) Conversely

Let $G \in Q_b^l(A)$, for proving $G \in BL(X)$, let $0 \neq x \in X$ and $f \in X'$ with ||f|| = 1, so $G \in L(X)$ by proposition 2.1.

$$|f(G(x))| = |(G'f)(x)| = ||x|| \frac{|(G'f)(x)|}{||x||}$$

$$\leq ||x|| \sup_{x \in X} \left\{ \frac{|(G'f)(x)|}{||x||}, ||x|| \neq 0 \right\} = ||x|| ||G'f||$$

For an arbitrary element $u \in X$ with ||u|| = 1 $|f(G(x))| \le ||x|| ||G'f|| ||u|| = ||x|| ||u \otimes G'f||_{\infty}$ From the properties of operator finite rank by [10, proposition 6.1.5, p. 90]. For $z \in X$, we have $(u \otimes G'f)(z) = (G'f)(z)u$ definition of finite rank operator = f(G(z))u adjoint operator

$$= (u \otimes f)(G(z))$$

Now $\|u \otimes G'f\|_{\infty} = \sup_{z \in X} \{\|(u \otimes G'f)(z)\|, \|z\| = 1\}$ = $\sup_{z \in X} \{\|(u \otimes f)(G(z))\|, \|z\| = 1\}$ $\leq \sup_{z \in X} \{\|(u \otimes f)\|_{\infty} \|G(z)\|, \|z\| = 1\}$ = $\|(u \otimes f)\|_{\infty} \sup_{z \in X} \{\|G(z)\|, \|z\| = 1\}$ $= \|u\| \|f\| \|G\|_{\infty}$ $= ||f|| ||G||_{\infty}$, then $|f(G(x))| \le ||x|| ||u \otimes G'f||_{\infty} \le ||x|| ||f|| ||G||_{\infty}$ We have $||G(x)|| = \sup_{f \in X'} \{ |f(G(x))|, ||f|| = 1 \}$ by [5, proposition 11.9, p. 235] $\leq \sup_{f \in \mathbf{x}'} \{ \|x\| \|f\| \|G\|_{\infty} , \|f\| = 1 \}$ $= \|x\| \|G\|_{\infty} \sup_{f \in X'} \{\|f\|, \|f\| = 1\} = \|x\| \|G\|_{\infty}$ Therefore $||G(x)|| \le ||G||_r ||x||$ for all $x \in X$, so $G \in BL(X)$, then $Q_h^l(A) \subseteq BL(X)$. From the above, we get that $|f(G(x))| \le ||x|| ||u \otimes G'f||_{\infty} = ||x|| ||(u \otimes f)G||_{\infty}$ since $G \in BL(X)$ we get $u \otimes G' f = (u \otimes f)G$ $\leq \|x\| \| (u \otimes f) G\|$ $= \|x\| \left\| R_{G}^{FBL(X)}(u \otimes f) \right\|$ $\leq \|x\| \left\| R_{G}^{FBL(X)} \right\| \|u \otimes f\|$ $\leq \|x\| \| R_{G}^{FBL(X)} \| \| u\| \|f\| \\ = \|x\| \| R_{G}^{FBL(X)} \| \|f\|$ $|f(G(x))| \le ||x|| ||R_G^{FBL(X)}|| ||f||$ $||G(x)|| = \sup_{f \in X'} \{|f(G(x))|, ||f|| = 1\}$ by [5, proposition 11.9, p. 235] $\leq \sup_{f \in X'} \{ \|x\| \| R_G^{FBL(X)} \| \|f\|, \|f\| = 1 \}$ = $\|x\| \| R_G^{FBL(X)} \| \sup_{f \in X'} \{ \|f\|, \|f\| = 1 \}$ $= ||x|| ||G||_{l}$ $||G||_{\infty} = \sup\{||G(x)||, ||x|| = 1\}$ $x \in X$ $\leq \sup_{u \in V} \{ \|x\| \|G\|_l, \|x\| = 1 \} = \|G\|_l$ $x \in \overline{X}$ This implies that $||G||_{\infty} \le ||G||_{l}$ -----(2) From (1) and (2), $\|G\|_{\infty} = \|G\|_l$. Also, we get that $(Q_b^l(A), \|\cdot\|_l)$ is a normed algebra, also $\left(Q_{h}^{l}(A), \|\cdot\|_{l}\right) = (BL(X), \|\cdot\|_{\infty}).$

Corollary 2.6

For a complex Banach space X and norm ideal A of BL(X). Then $(Q_b^r(A), \|\cdot\|_r) = (Q_b^l(A), \|\cdot\|_l) = (BL(X), \|\cdot\|_{\infty})$

References

- 1. Cabrera, M. and Mohammed, A. 2003. Algebras of quotients with bounded evaluation of a normed semiprime algebra, *Studia Mathematica*, 2(154): 113-135.
- 2. Beidar, K. I., Martindale 3rd, W. S., and Mikhalev, A. V.1995. *Rings with generalized identities*, CRC Press.
- **3.** Mathieu, M. **1989**. Rings of quotients of ultraprime Banach algebras with applications to elementary operators, In: Mini conference on Operators in Analysis. Centre for Mathematics and its Applications, Mathematical Sciences Institute, the Australian National University: 297-317.

- **4.** García, M. C. and Palacios, Á. R. **2018**. *Non-Associative Normed Algebras: Volume 2, Representation Theory and the Zel'manov Approach*, (Vol. 167), Cambridge University Press.
- 5. Muscat, J. 2014. Functional analysis: an introduction to metric spaces, Hilbert spaces, and Banach algebras, Springer.
- 6. Jacobson, N. 1956. Structure of rings, (Vol. 37), American Mathematical Soc.
- 7. Bonsall, F. F. and Duncan, J. 1973. Complete normed algebras, Springer-Verlag, Berlin Heidelberg, New York.
- **8.** Mathieu, M.**1986**. Applications of ultraprime Banach algebras in the theory of elementary operators, Ph.D. Thesis, University of Tübingen, Germany.
- 9. Lam, T. Y. 2001. A first course in non-commutative rings, (Vol. 131), Springer Science & Business Media.
- 10. Pietsch, A. 1980. Operator ideals, North-Holland, Amsterdam.