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Abstract  

     The definition of invo-clean rings is generalized to two involution clean rings. In 

this paper, we aimed to identify the structure with determined the basic properties of 

these rings. A ring is a two-involution clean if all elements are the sum of two 

involutions and idempotent elements. Additionally, the graph of two involution 

clean rings has been defined, and some properties of the new graph, such as: 

connected, the diameter, girth and others, have been proven. 

  

Keywords: Strongly nil-clean, Invo-clean, Invo-t-clean, Hosoya polynomial, 

Wiener index.  

 

2-الحلقات النقية الملتفة من النمط  
 

 2، محمد ذنون النعمة  1، رائدة داود 1*علي محمد حسن

 1قسم الرياضيات, كلية علوم الحاسوب والرياضيات, جامعة الموصل, محافظة نينوى ,  العراق 
 2قسم الهندسة المدنية, كلية الهندسة, جامعة الموصل, محافظة نينوى , العراق 

  الخلاصة 
النمط      ملتفة من  نقية  الى حلقات  الملتفة  النقية  الحلقات  تعميم  البنية مع تحديد  وحاولنا  .  2-تم  ان نجد 

له الاساسية  الخواض  الحلقبعض  البحث   ات ذه  النمطفي هذا  من  ملتفة  نقية  الحلقة  تكون  استطعنا    2-.  اذا 
تم تعريف  وكذلك  .  متحايدال عنصرمضافاً اليه الكتابة كل عنصر في الحلقة كحاصل جمع عنصرين ملتفين  

 . ر وغيرها ات وبُرهِنَ بعض الخصائص للبيان الجديد كالاتصال والقطر والخصلهذه الحلق البيان 
 

1. Introduction 

     In this paper, 𝑅 is an associated ring with an identity element, 1, which differs from the 

zero element. As usual, 𝑖𝑛𝑣𝑜(𝑅) is a set of all involution elements of the ring 𝑅, and for any  

𝑤 ∈ 𝑖𝑛𝑣𝑜(𝑅) we have 𝑤2 = 1.  We denote 𝐼𝑑𝑚𝑝(𝑅) for the set for all idempotent in the ring 

R, while 𝑇𝑟𝑖𝑝(𝑅) denoted to the set containing of all tripotent  elements such that for any  𝑢 ∈
𝑇𝑟𝑖𝑝(𝑅), we have 𝑢3 = 𝑢 of R. As well as  𝑁𝑖𝑙(𝑅) is the set of all nilpotent elements of 𝑅. A 

ring R is an involution clean if, for all 𝑥 ∈ 𝑅 can be expressed as 𝑥 = 𝑢 + 𝑒, 𝑢 ∈ 𝑖𝑛𝑣𝑜(𝑅) 
with 𝑒 ∈ 𝐼𝑑𝑚𝑝(𝑅). This definition dates back to 2017, when it was introduced by Danchev 

[1].  A new generalized to invo-clean ring is the invo-t-clean ring which is studied in [2]. A 
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ring 𝑅 is called invo-t-clean if, for any 𝑎 ∈ 𝑅, it can be expressed as 𝑎 = 𝑢 + 𝑡, 𝑢 ∈ 𝑖𝑛𝑣𝑜(𝑅) 
and 𝑡 ∈ 𝑇𝑟𝑖𝑝(𝑅). An invo-t-clean is strongly invo-t-clean if 𝑢𝑡 = 𝑡𝑢. 

Every tripotent element is also an invo-clean element, since  𝑡 = 𝑡 + 𝑡2 − 1 + 1 − 𝑡2, where 

(𝑡 + 𝑡2 − 1)2 = 1 and (1 − 𝑡2)2 = 1 − 𝑡2, with 𝑡 = 𝑡3. All idempotent elements are invo-

clean, see [1]. Moreover, 𝑍2, 𝑍3, 𝑍4 and 𝑍6 are invo-clean and invo-t-clean; although the 

opposite is not true, is still any invo-clean ring is invo-t-clean; the example, 𝑍5. As usual, 

𝑀2(𝑅) represents the matrix ring of 2 × 2. 𝑇2(𝑅) is an upper triangular matrix ring of 2 × 2, 
and 𝑍𝑛 is the ring of integer modulo n. 

The zero divisor graph is one of the famous concepts connecting the commutative rings with 

graph theory; this concept started with Beck [3]. Many others, like Habibi, Çelıkel, and 

Abdıoğlu [4], study the clean graph defined in different types of clean rings. In this paper, we 

describe a graph that is defined depending on two involution-clean rings. 

 A graph is an ordered pair of non-empty set of vertices 𝒱, and set of edges 𝐸, 𝔊 = (𝒱, 𝐸)  
where 𝐸 ⊆ 𝒱 × 𝒱. The symbol |𝔊| denotes total vertices and ‖𝔊‖ indicates the total of 

edges. The girth is represented as 𝑔(𝔊) which is the shortest of cycle length in 𝔊. The graph 

we get from the 2-invo clean ring will be simple  graph (without loops and multi-edges). The 

degree of a vertex v is defined as the number of edges incident to it, that is indicated by 

𝑑𝑒𝑔𝔊(𝓋) or, deg⁡(𝓋). The symbols 𝛿(𝔊) and ∆(𝔊) are represent the minimum and 

maximum degrees of a graph 𝔊, respectively [5]. The average degree denoted by⁡𝑎𝑑(𝔊)⁡is 

defined as : 

𝑎𝑑(𝔊) =
1

|𝔊|
∑ deg(𝓋)∀𝓋∈𝒱 =

2‖𝔊‖

|𝔊|
, and it may be noted that , 𝛿(𝔊) ≤ ⁡𝑎𝑑(𝔊) ≤ ∆(𝔊).  

The symbol of distance 𝑑(𝓋, 𝓊) is defined in the connected graph is defined as a positive 

number of the length of the shortest (𝓋 − 𝓊)-path in  graph 𝔊. The Wiener index [6] it will 

be sum of the lengths of the shortest (𝓋 − 𝓊)-path in the graph 𝔊, i.e.,  

𝒲(𝔊) =
1

2
∑ d(𝓋,𝓊) .∀𝓋,𝓊∈𝒱    

 The average distance is calculated as:  

𝒟(𝔊) =
2𝒲(𝔊)

(|𝔊|−1)|𝔊|
.  

The symbol  𝑑(𝔊,𝒦) represents the number of pairs (𝑣, 𝑢)⁡at distances 𝒦 in a graph 𝔊, 

where 𝒦 = 0,1,… , 𝑑𝑖𝑎𝑚(𝔊). We denoted to the diameter of the graph 𝔊 by 𝑑𝑖𝑎𝑚(𝔊). 
Notice that,  𝑑(𝔊, 0) = |𝔊|, and  𝑑(𝔊, 1) = ‖𝔊‖. Hosoya polynomial of a connected graph 

𝔊, [7] is defined as follows: 

ℋ(𝔊, 𝑥) =∑ 𝑑(𝔊,𝒦)
𝑑𝑖𝑎𝑚(𝔊)

𝒦=0
𝑥𝒦 . 

Further, 𝑀𝑣𝑢-polynomial of 𝔊  in [8] and  defined by: 

𝑀𝑣𝑢⁡(𝔊; 𝑥, 𝑦) = ∑ 𝑚deg(𝑢),deg(𝑣)(𝔊)⁡𝑥
deg(𝑢)𝑦deg(𝑣)𝑢𝑣∈𝐸(𝔊) ⁡ , 

where 𝑚deg(𝑢),deg(𝑣)(𝔊) is the number of edges 𝑢𝑣 of 𝔊 such that {deg(𝑢) , deg(𝑣)} = {i, j}. 

There are many topological indices that depend on 𝑀𝑣𝑢-polynomial in their calculation, and 

these indices: 

• Product connectivity index of 𝔊  

𝑃(𝔊) = ∑
1

√𝑑𝑒𝑔(𝑢)𝑑𝑒𝑔(𝑣)𝑢𝑣∈𝐸(𝔊) . 

• Sum connectivity index of  𝔊 

𝑆(𝔊) = ∑
1

√𝑑𝑒𝑔(𝑢)+deg⁡(𝑣)𝑢𝑣∈𝐸(𝔊) .  

• Arithmetic-geometric index of 𝔊   

𝐴𝐺(𝔊) = ∑
𝑑𝑒𝑔(𝑢)+𝑑𝑒𝑔(𝑣)

2√𝑑𝑒𝑔(𝑢)𝑑𝑒𝑔(𝑣)𝑢𝑣∈𝐸(𝔊) .  

• Atom bond connectivity index of  𝔊  
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𝐴𝐵𝐶(𝔊) = ∑ √
𝑑𝑒𝑔(𝑢)+𝑑𝑒𝑔(𝑣)−2

𝑑𝑒𝑔(𝑢)𝑑𝑒𝑔(𝑣)𝑢𝑣∈𝐸(𝔊)  . 

You can  see more topological indices in [9]. 

 

 

2. Two involution clean rings. 

This section is devoted to the study of the algebraic properties of rings of a 2-invo-clean ring. 

 

Definition 2.1: An element 𝑎 ∈ 𝑅 called  a two-involution clean element if  𝑎 = 𝑢1 + 𝑢2 + 𝑒, 

where 𝑢1, 𝑢2 ∈ 𝑖𝑛𝑣𝑜(𝑅), 𝑒 ∈ 𝐼𝑑𝑚𝑝(𝑅). We denote the set of 2-invo-clean elements in⁡𝑅 by 

2 − 𝑖𝑛𝑣𝑜𝑐(𝑅). A ring is called two-involution clean ( in short, 2-invo-clean) if every element 

in 𝑅 is two-involution clean element. A  ring 𝑅  is strongly 2-invo-clean ring if 𝑅 is 2-invo-

clean ring and 𝑢1, 𝑢2, 𝑒 are commutative. 

Interestingly, any 1 + 𝑒 ∈ 2 − 𝑖𝑛𝑣𝑜𝑐(𝑅)⁡for any ring 𝑅, because  1 + 𝑒 = (2 ∙ 𝑒 − 1) + 1 +
(1 − 𝑒) where (1 − 𝑒)2 = 1 − 𝑒 and (2𝑒 − 1)2 = 1. 

 

Examples 2.2:  

1- The ring of integer modulo 14, 𝑍14 is not 2-invo-clean ring, but it has the elements 2 −
𝑖𝑛𝑣𝑜𝑐(𝑍14) = {0,1,2,3,5,6,7,8,9,10,12,13},  
2- The ring 𝑍𝑛 is a 2-invo-clean ring whenever   𝑛 ∈ {2,3,4,5,6,8,10,12,15,20,24,30,40, 
60,120}. 
3-  The upper triangular matrices 𝑇2(𝑍2), 𝑇2(𝑍3) are 2-invo-clean rings. 

 

Theorem 2.3: Let 𝑇 be homomorphic from a ring R onto ring S, and 𝑅 is a 2-invo-clean ring 

𝑅 onto 𝑆. Then 𝑆 is a 2-invo-clean ring. 

Proof:  Let 𝑦 ∈ 𝑆, then there is 𝑥 ∈ 𝑅 such that  𝑇(𝑥) = 𝑦. Since 𝑥 is a 2-invo-clean element, 

we can write 𝑥 as 𝑥 = 𝑢1 + 𝑢2 + 𝑒 where 𝑢1, 𝑢2 ∈ 𝑖𝑛𝑣𝑜(𝑅), and 𝑒 ∈ 𝐼𝑑𝑚𝑝(𝑅).   
Since 𝑇 is homomorphic, then, 𝑦 = 𝑇(𝑥) = 𝑇(𝑢1 + 𝑢2 + 𝑒) = 𝑇(𝑢1) + 𝑇(𝑢2) + 𝑇(𝑒) and 

(𝑇(𝑢1))
2 = 𝑇(𝑢1

2) = 𝑇(1𝑅) ⁡= 1𝑆, where 1𝑅 is the identity element in R and 1𝑆 is the 

identity element in S. Similarly, we get (𝑇(𝑢2))
2
= 1𝑆. Hence 𝑇(𝑢1), 𝑇(𝑢2) ∈ 𝑖𝑛𝑣𝑜(𝑆) and 

(𝑇(𝑒))
2
= 𝑇(𝑒2) = 𝑇(𝑒) ∈ 𝐼𝑑𝑚𝑝(𝑅). Then, 𝑦 is a 2-invo-clean element in 𝑆.◼ 

Corollary 2.4: Assume  𝑅 is a 2-involution clean ring, and the ideal 𝐼 in 𝑅. Then ⁡𝑅 𝐼⁄  is 2-

invo-clean ring if  𝑇 is homomorphic from 𝑅 to 𝑅 𝐼⁄ . 

 

Corollary 2.5:  

1- Any invo-clean element is an invo-t-clean.   

2- Any invo-t-clean element is 2-invo-clean. 

3- Any invo-clean element is 2-invo-clean. 

Proof: 

1-  In [2], explain that.   

2- Let 𝑥 ∈ 𝑅, 𝑥 = 𝑢1 + 𝑡 = 𝑢1 + (𝑡2 + 𝑡 − 1) + (1 − 𝑡2), because (𝑡2 + 𝑡 − 1)2 = 1 and 

(1 − 𝑡2)2 = (1 − 𝑡2). Hence, 𝑥 ∈ 2 − 𝑖𝑛𝑣𝑜𝑐(𝑅). 
3- It is clear that 1 and 2 implies 3.   

The below example shows that the opposite of Corollary 2.5 is not true       

 

Examples 2.6: 

1- Let 𝑍17 be a ring of integer modulo 17; the idempotent elements of 𝑍17 are {0,1} and the 

tripotent elements of 𝑍17 are {0, 1, 16} and the involution elements of 𝑍17 are {1,16}. The 2-

invo-clean elements are {0, 1, 2, 3, 15, 16}, the invo-clean elements are {0,1,2,16}, and the 
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invo-t-clean elements are {0, 1, 2, 15, 16}. Note that element 3 is 2-invo-clean but not invo-

clean and it is invo-t-clean. The element 15, it is invo-t-clean, but it is not invo-clean. 

 

2- The ring 𝑇2(𝑍4) is 2-invo-clean, which  is not invo-clean nor invo-t-clean ring. 

𝐼𝑑𝑚𝑝(𝑇2(𝑍4)) = {[
0 0
0 0

] , [
0 0
0 1

] , [
0 1
0 1

] , [
0 2
0 1

] , [
0 3
0 1

] , [
1 0
0 0

] , [
1 0
0 1

] , [
1 1
0 0

], 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡[
1 2
0 0

] , [
1 3
0 0

]}. 

𝑇𝑟𝑖𝑝(𝑇2(𝑍4)) = {[
0 0
0 0

] , [
0 0
0 1

] , [
0 0
0 3

] , [
0 1
0 1

] , [
0 1
0 3

] , [
0 2
0 1

] , [
0 2
0 3

] , [
0 0
0 0

], 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡[
0 3
0 1

] , [
0 3
0 3

] , [
1 0
0 0

] , [
1 0
0 1

] , [
1 0
0 3

] , [
1 1
0 0

] , [
1 1
0 3

] , [
1 2
0 0

], 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡[
1 2
0 1

] , [
1 2
0 3

] , [
1 3
0 0

] , [
1 3
0 3

] [
3 0
0 0

] , [
3 0
0 1

] , [
3 0
0 3

] , [
3 1
0 0

], 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡[
3 1
0 1

] , [
3 2
0 0

] , [
3 0
0 0

] , [
3 2
0 1

] , [
3 2
0 3

] , [
3 3
0 0

],[
3 3
0 1

]}. 

𝑖𝑛𝑣𝑜(𝑇2(𝑍4)) = {[
1 0
0 1

] , [
1 0
0 3

] , [
1 1
0 3

] , [
1 2
0 1

] , [
1 2
0 3

] , [
1 3
0 3

] , [
3 0
0 1

] , [
3 0
0 3

], 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡[
3 1
0 1

] , [
3 2
0 1

] , [
3 2
0 3

] , [
3 3
0 1

]}. 

There is 56 elements are invo-clean in 𝑇2(𝑍4),  and the elements which are 2-invo-clean but 

not invo-clean are {[
2 3
0 2

] , [
3 1
0 3

] , [
2 1
0 2

] , [
0 1
0 0

] , [
3 3
0 3

] , [
1 3
0 1

] , [
0 3
0 0

] , [
1 1
0 1

]}.  

But, there is 60 elements are invo-t-clean in 𝑇2(𝑍4), and the elements which are 2-invo-clean 

but not invo-t-clean are  

⁡⁡⁡⁡{[
3 1
0 3

] , [
3 3
0 3

] , [
1 3
0 1

] , [
1 1
0 1

]}.  

 

We will now present some properties related to the 2-invo-cleane elements. 

Proposition 2.7: An element  𝑥 in a ring 𝑅 is a 2-invo-clean element if and only if 1 − 𝑥 is a 

2-invo-clean element. 

Proof: Assume that 𝑥 is a 2-invo-clean element, then 𝑥 = 𝑢1 + 𝑢2 + 𝑒 where 𝑢1, 𝑢2 ∈
𝑖𝑛𝑣𝑜(𝑅), and  𝑒 ∈ 𝐼𝑑𝑚𝑝(𝑅), then 1 − 𝑥 = 1 − (𝑢1 + 𝑢2 + 𝑒) = 1 − 𝑢1 − 𝑢2 − 𝑒, where 

−𝑢2, 1 − 𝑢1 ∈ 𝑖𝑛𝑣𝑜(𝑅) and 1 − 𝑒 ∈ 𝐼𝑑𝑚𝑝(𝑅). Hence, 1 − 𝑥 is a 2-invo-clean element. 

Conversely, let 1 − 𝑥 be 2-invo-clean element, then 1 − 𝑥 = 𝑢1 + 𝑢2 + 𝑒 ⇒ ⁡𝑥 = 1 − 𝑢1 −
𝑢2 − 𝑒 = −𝑢1 − 𝑢2 + (1 − 𝑒), where −𝑢2, −𝑢1 ∈ 𝑖𝑛𝑣𝑜(𝑅) and 1 − 𝑒 ∈ 𝐼𝑑𝑚𝑝(𝑅). Hence, 𝑥  

is a 2-invo-clean element. ◼ 

 

Corollary 2.8: If element 𝑥 is an invo-clean in the ring 𝑅, the following hold. 

1- 1 + 𝑥 is a 2-invo-clean. 

2- 1 − 𝑥 is a 2-invo-clean. 

Proof:  

1- Let ⁡𝑥 = 𝑢1 + 𝑒 , where 𝑢1 ∈ 𝑖𝑛𝑣𝑜(𝑅) ,⁡𝑒 ∈ 𝐼𝑑𝑚𝑝(𝑅).⁡1 + 𝑥 = 1 + 𝑢1 + 𝑒 . Hence, ⁡1 +
𝑥 is a 2-invo-clean element. 

2- From Corollary 2.5 (3) and Proposition 2.7,  1 − 𝑥 is a 2-invo-clean element. ◼ 

 

Examples 2.9: 

The converse of (1) and (2) in Corollary 2.8 is not valid. For example,  

1- In the ring 𝑍9, the elements 3 and 7 are 2-invo-clean elements, but the elements 3 and 

7⁡are not invo-clean elements. The element 7 is an invo-t-clean element, but the element 7 

not an invo-clean element. The element 1 + 6 = 7 is a 2-invo-clean element, but 6 is not an 

invo-clean element, and the element 1 − 7 = −6 = 3 is a 2-invo-clean element, but 7 is not 

an invo-clean element. 
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2-  For example,  in non-commutative ring, 𝑇2(𝑍3). The elements [
0 1
0 0

] , [
0 2
0 0

] , [
1 1
0 1

] 

and [
1 2
0 1

] are 2-invo-clean elements and invo-t-clean elements, but they are not invo-clean 

elements, as [
1 1
0 1

] + [
0 1
0 0

] = [
1 2
0 1

] is a 2-invo-clean element, but [
0 1
0 0

] is not an invo-

clean element, and  [
1 1
0 1

] − [
0 2
0 0

] = [
1 2
0 1

] is a 2-invo-clean element, but [
0 2
0 0

] is not 

invo-clean element. 

 

Theorem 2.10: Let 𝑅 be a ring, and the sum of two involution elements is involution. Then 𝑅 

is an invo-clean ring if and only if  𝑅  is a 2-invo-clean ring. 

Proof: Let 𝑧 ∈ 𝑅 be a 2-invo-clean element, then 𝑧 = 𝑢1 + 𝑢2 + 𝑒 = 𝑞 + 𝑒, where 𝑞 ∈
𝑖𝑛𝑣𝑜(𝑅), 𝑒 ∈ 𝐼𝑑𝑚𝑝(𝑅). Hence, 𝑅 is an invo-clean ring.  

The converse comes from Corollary 2.5 (3). ◼ 

 

Theorem 2.11: Let 𝑅 be a tripotent ring. Then 𝑅 is a 2-invo-clean ring if and only if 𝑅 is an 

invo-t-clean ring. 

Proof:  Let 𝑧 ∈ 𝑅 be a 2-invo-clean element, then 𝑧 = 𝑢1 + 𝑢2 + 𝑒 = 𝑢1 + 𝑡1, since 𝑅 is 

tripotent ring, 𝑢2 + 𝑒 ∈ 𝑅 so 𝑡1 = 𝑢2 + 𝑒 ∈ 𝑇𝑟𝑖(𝑅). Hence, 𝑅 it well be invo-t-clean ring. 

But the converse comes from Corollary 2.5 (2). ◼ 

 

Proposition 2.12: Let 3 ∈ ⁡2 − 𝑖𝑛𝑣𝑜𝑐(𝑅) in a ring R, with 3 = 𝑢1 + 𝑢2 + 𝑒, 𝑢1, 𝑢2 ∈
𝑖𝑛𝑣𝑜(𝑅), 𝑒 ∈ 𝐼𝑑𝑚𝑝(𝑅). Then, the following holds: 

1- 2𝑢1𝑒 = 2𝑢2𝑒⁡𝑜𝑟⁡2𝑒 = 2𝑢1𝑢2𝑒. 

2- 15𝑒 = 15. 
3- 6𝑢1 = 6𝑢2 

4- 60𝑢1 = 60𝑢2 = 60𝑒 = 60. 

Proof (1): Since 3 = 𝑢1 + 𝑢2 + 𝑒, where  𝑢1, 𝑢2 ∈ 𝑖𝑛𝑣𝑜(𝑅) and 𝑒 ∈ 𝐼𝑑𝑚𝑝(𝑅). Thus  

3𝑒 = 𝑢1𝑒 + 𝑢2𝑒 + 𝑒 so 2𝑒 = 𝑢1𝑒 + 𝑢2𝑒.  

Now,  

24 = 33 − 3 = (𝑢1 + 𝑢2 + 𝑒)3 − (𝑢1 + 𝑢2 + 𝑒) = 8.3 = 8(𝑢1 + 𝑢2 + 𝑒) 
24 = (𝑢1 + 𝑢2 + 𝑒)3 − (𝑢1 + 𝑢2 + 𝑒) 
⁡⁡⁡⁡⁡⁡= (𝑢1 + 𝑢2 + 𝑒)[(𝑢1 + 𝑢2 + 𝑒)2 − 1] 
     = (𝑢1 + 𝑢2 + 𝑒)(1 + 2⁡𝑢1𝑢2 + 5𝑒) 
⁡⁡⁡⁡⁡⁡= 𝑢1 + 2𝑢2 + 5𝑢1𝑒 + 𝑢2 + 2𝑢1 + 5𝑢2𝑒 + 𝑒 + 2𝑢1𝑢2𝑒 + 5𝑒 

⁡⁡⁡⁡⁡⁡= 3𝑢1 + 3𝑢2 + 5𝑢1𝑒 + 5𝑢2𝑒 + 2𝑢1𝑢2𝑒 + 6𝑒. 
Now, 3𝑢1 + 3𝑢2 + 5𝑢1𝑒 + 5𝑢2𝑒 + 2𝑢1𝑢2𝑒 + 6𝑒 = 8(𝑢1 + 𝑢2 + 𝑒). 
This implies that 5𝑢1 + 5𝑢2 − 10𝑒 − 6𝑒 + 8𝑒 − 2𝑢1𝑢2𝑒 = 0. Multiply both sides by 𝑒, 

hence 5𝑢1𝑒 + 5𝑢2𝑒 − 8𝑒 − 2𝑢1𝑢2𝑒 = 0 ⇒ 10𝑒 − 8𝑒 = 2𝑢1𝑢2𝑒 ⇒ 2𝑒 = 2𝑢1𝑢2𝑒⁡or, 2𝑢1𝑒 =
2𝑢2𝑒. 
 

Proof (2): Since 24 = 33 − 3 = (𝑢1 + 𝑢2 + 𝑒)3 − (𝑢1 + 𝑢2 + 𝑒), from (1) 24 = 3𝑢1 +
3𝑢2 + 5𝑢1𝑒 + 5𝑢2𝑒 + 2𝑢1𝑢2𝑒 + 6𝑒 = 3(𝑢1 + 𝑢2) + 16𝑒 + 2𝑒⁡ = 3(3 − 𝑒) + 18𝑒 ⇒ 24 −
9 = 15𝑒 ⇒ 15 = 15𝑒. 

Proof (3): Since 3 = 𝑢1 + 𝑢2 + 𝑒, 3 − 𝑒 = 𝑢1 + 𝑢2 by squaring two both side we get 

(3 − 𝑒)2 = (𝑢1 + 𝑢2)
2 ⇒ 9 − 6𝑒 + 𝑒 = 𝑢1

2 + 2𝑢1𝑢2 + 𝑢2
2 ⇒ 9 − 5𝑒 = 2 + 2𝑢1𝑢2 ⁡⇒ 7 −

5𝑒 = 2𝑢1𝑢2 multiply⁡both⁡side⁡by⁡3 we get 21 − 15𝑒 = 6𝑢1𝑢2 from (2) we get 21 − 15 =
6𝑢1𝑢2 ⇒ 6 = 6𝑢1𝑢2 multiply both side by 𝑢1 we get 6𝑢1 = 6𝑢2. 

Proof (4): Since 9 − 3 = 32 − 3 = (𝑢1 + 𝑢2 + 𝑒)2 − (𝑢1 + 𝑢2 + 𝑒) 
⇒ 6 = (𝑢1

2 + 2𝑢1(𝑢2 + 𝑒) + (𝑢2 + 𝑒)2) − 𝑢1 − 𝑢2 − 𝑒 
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⁡⁡⁡⁡⁡⁡⁡⁡⁡= 1 + 2𝑢1𝑢2 + 2𝑢1𝑒 + 2𝑢2𝑒 + 𝑒 − 𝑢1 − 𝑢2 − 𝑒 

⁡⁡⁡⁡⁡⁡⁡⁡⁡= 2 + 2𝑢1𝑢2 + 4𝑒 − 𝑢1 − 𝑢2 

⇒ 4 = 2𝑢1𝑢2 + 4𝑒 − 𝑢1 − 𝑢2⁡⁡multiply both sides by 6⁡ 
⇒ ⁡24 = 12𝑢1𝑢2 + 24𝑒 − 6𝑢1 − 6𝑢2 from (3) we get, 6𝑢1𝑢2 = 6  

⇒ 24 = 12 + 24𝑒 − 12𝑢1 ⇒ 12𝑢1 = 15𝑒 + 9𝑒 − 12 

⇒ 12𝑢1 = 3 + 9𝑒⁡multiply⁡both⁡sides⁡by⁡5 where 15𝑒 = 15 

⇒ 60𝑢1 = 15 + 45𝑒,  60𝑢1 = 60𝑢2 = 60𝑒 = 60. ◼ 

 

Proposition 2.13: Let 4 be a 2-invo-clean element in a ring R. Then 240 = 0 and the 

elements {30, 60, 90, 120, 150, 190, 210} are nilpotent. 
Proof: Let 4 = 𝑢1 + 𝑢2 + 𝑒…(1),  
then 𝑒 = 4 − 𝑢1 − 𝑢2.  
Since 𝑒2 = 𝑒 ⇒ (4 − 𝑢1 − 𝑢2)

2 = 4 − 𝑢1 − 𝑢2  

 ⇒ 16 − 8𝑢1 − 8𝑢2 + 𝑢1
2 + 2𝑢1𝑢2 + 𝑢2

2 = 4 − 𝑢1 − 𝑢2⁡ 
 ⇒ 14 + 2𝑢1𝑢2 = 7𝑢1 + 7𝑢2, … (2)  
by adding 7𝑒 to both side we get  

14 + 2𝑢1𝑢2 + 7𝑒 = 7𝑢1 + 7𝑢2 + 7𝑒 = 7(𝑢1 + 𝑢2 + 𝑒) = 7(4) 
⇒ 2𝑢1𝑢2 + 7𝑒 = 28 − 14 = 14… (3), 
 multiply both sides by 𝑒 we get  

2𝑢1𝑢2𝑒 = 7𝑒… (4),  
by squaring two both sides, we get  

4𝑒 = 49𝑒 ⇒ 45𝑒 = 0… (5).  
Now,  

60 = 43 − 4 = (𝑢1 + 𝑢2 + 𝑒)3 − (𝑢1 + 𝑢2 + 𝑒) 
⁡⁡⁡⁡⁡⁡= [(𝑢1 + 𝑢2 + 𝑒)2](𝑢1 + 𝑢2 + 𝑒)2 − (𝑢1 + 𝑢2 + 𝑒) 
⁡⁡⁡⁡⁡⁡= [𝑢1

2 + 2𝑢1𝑢2 + 2𝑢1𝑒 + 𝑢2
2 + 2𝑢2𝑒 + 𝑒2](𝑢1 + 𝑢2 + 𝑒) − 𝑢1 − 𝑢2 − 𝑒 

⁡⁡⁡⁡⁡⁡= 2𝑢1 + 2𝑢2 + 2𝑒 + 2𝑢1𝑢2𝑒 + 𝑢1𝑒 + 2𝑢2 + 2𝑢1 + 2𝑢1𝑢2𝑒 + 2𝑒 + 𝑢2𝑒 + 2𝑒 + 2𝑢1𝑢2𝑒
+ 2𝑢1𝑒 + 2𝑢2𝑒 + 𝑒 − 𝑢1 − 𝑢2 − 𝑒 

⁡⁡⁡⁡⁡⁡= 3𝑢1 + 3𝑢2 + 6𝑒 + 6𝑢1𝑢2𝑒 + 3𝑢1𝑒 + 3𝑢2𝑒 

⁡⁡⁡⁡⁡⁡= 3(𝑢1 + 𝑢2) + 6𝑒 + 6𝑢1𝑢2𝑒 + 3(𝑢1 + 𝑢2)𝑒 

⁡⁡⁡⁡⁡⁡= 3(4 − 𝑒) + 6𝑒 + 6𝑢1𝑢2𝑒 + 3(4 − 𝑒)𝑒 

⁡⁡⁡⁡⁡⁡= 12 − 3𝑒 + 6𝑒 + 6𝑢1𝑢2𝑒 + 12𝑒 − 3𝑒 

⇒ 48 = 6𝑢1𝑢2𝑒 + 12𝑒 = 3(2𝑢1𝑢2𝑒) + 12𝑒, from Equation (4) we get 48 = 3(7𝑒) + 12𝑒 =
33𝑒 multiply both side by 𝑒 we get  

48𝑒 = 33𝑒 ⇒ 15𝑒 = 0… (6).  
Now, 33𝑒 = 48 by adding 12𝑒 to both sides we get 48 + 12𝑒 = 33𝑒 + 12𝑒 = 45𝑒 from (5) 

48 = −12𝑒 by adding −3𝑒 to both sides we get 48 − 3𝑒 = −12𝑒 − 3𝑒 = −15𝑒 = 0 from 

(6) 48 = 3𝑒 multiply both sides by 5 we get 240 = 15𝑒 = 0. Hence, 240 = 0. 

Now, (30)4 = (2.3.5)4 = 24. 34. 54 = 16.3.5. 3353 = 240. 3353 = 0,  

(60)2 = (4.3.5)2 = 16.3.5.3.5 = 240.3.5 = 0,  

(90)4 = (2.3.3.5)4 = 16.3.5. 37. 53 = 240. 37. 53 = 0, 

 (120)2 = (4.3.5.2)2 = 16.3.5. 22. 3.5 = 240. 22. 3.5 = 0, 

 (150)4 = (2.3.5.5)4 = 16.3.5. 33. 57 = 240. 33. 57 = 0, 

 (180)2 = (4.3.5.3)2 = 16.3.5. 33. 5 = 240. 33. 5 = 0, 

 (210)4 = (2.3.5.7)4 = 16.3.5. 33. 53. 74 = 240. 33. 53. 74 = 0. ◼ 

 

Proposition 2.14: If 𝑅1, and⁡𝑅2 are 2-invo-clean rings. Then 𝑅1 × 𝑅2 is a 2-invo-clean ring. 

Proof: Let 𝑧 ∈ 𝑅1 × 𝑅2, then there exists 𝑝 ∈ 𝑅1, 𝑞 ∈ 𝑅2 such that 𝑧 = (𝑝, 𝑞) since 

𝑅1, and⁡𝑅2 are 2-invo-clean rings then there exists 𝑢1, 𝑢2 ∈ 𝑖𝑛𝑣𝑜(𝑅1), 𝑢3, 𝑢4 ∈
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𝑖𝑛𝑣𝑜(𝑅2), 𝑒1 ∈ 𝐼𝑑𝑚𝑝(𝑅1), and⁡⁡𝑒2 ∈ 𝐼𝑑𝑚𝑝(𝑅2) such that 𝑝 = 𝑢1 + 𝑢2 + 𝑒1, 𝑞 = 𝑢3 + 𝑢4 +
𝑒2. 

So, 𝑧 = (𝑝, 𝑞) = (𝑢1 + 𝑢2 + 𝑒1, 𝑢3 + 𝑢4 + 𝑒2) = (𝑢1, 𝑢3) + (𝑢2, 𝑢4) + (𝑒1, 𝑒2) where 

(𝑢1, 𝑢3)
2 = (𝑢1, 𝑢3). (𝑢1, 𝑢3) = (𝑢1

2, 𝑢3
2) = (1,1), (𝑢1, 𝑢3) ∈ 𝑖𝑛𝑣𝑜(𝑅1 × 𝑅2). Similarly, 

(𝑢2, 𝑢4) ∈ 𝑖𝑛𝑣𝑜(𝑅1 × 𝑅2), (𝑒1, 𝑒2) ∈ 𝐼𝑑𝑚𝑝(𝑅1 × 𝑅2). So, 𝑧 is a 2-invo-clean element, and 𝑧 

is an arbitrary element. Hence, 𝑅1 × 𝑅2 is a 2-invo-clean ring.◼ 

In particular, [10] introduced the following concept: The ring 𝑅 be strongly nil-clean when 

𝑟 ∈ 𝑅 is written as 𝑟 = 𝑒 + 𝑛, 𝑒 ∈ 𝐼𝑑𝑚𝑝(𝑅) and 𝑛 ∈ 𝑁𝑖𝑙(𝑅), 𝑒𝑛 = 𝑛𝑒. 

 

Theorem 2.15: Let R be a strongly 2-invo-clean ring, 2 ∈ 𝑁𝑖𝑙(𝑅). Then 

1) 𝑅 is a strongly nil-clean ring. 

2) For any 𝑎 ∈ 𝑅, 𝑎(𝑎 − 1) ∈ 𝑁𝑖𝑙(𝑅). 
Proof: (1) Since R is a strongly 2-invo-clean, then for all 𝑎 ∈ 𝑅, 𝑎 = 𝑢1 + 𝑢2 + 𝑒 ,  𝑢1, 𝑢2 ∈
𝑖𝑛𝑣𝑜(𝑅), 𝑒 ∈ 𝐼𝑑𝑚𝑝(𝑅). Now, (𝑢1 + 𝑢2)

2 = 𝑢1
2 + 2𝑢1𝑢2 + 𝑢2

2 = 2(1 + 𝑢1𝑢2), since 2 ∈
𝑁𝑖𝑙(𝑅), there is 𝑛 ∈ 𝑍+ such that 2𝑛 = 0, (𝑢1 + 𝑢2)

2𝑛 = 0,   𝑢1 + 𝑢2 ∈ 𝑁𝑖𝑙(𝑅), so 𝑎 = 𝑒 +
(𝑢1 + 𝑢2) = 𝑒 + 𝑤, 𝑤 ∈ 𝑁𝑖𝑙(𝑅). Therefore, 𝑅 is a strongly nil-clean ring. 

Proof (2): Since 𝑎 is a strongly 2-invo-clean element, then 𝑎 = 𝑢1 + 𝑢2 + 𝑒, 𝑎(𝑎 − 1) =
(𝑢1 + 𝑢2 + 𝑒)[(𝑢1 + 𝑢2 + 𝑒) − 1] = 2(1 + 𝑢1𝑢2 + 𝑢1𝑒 + 𝑢2𝑒) − (𝑢1 + 𝑢2),[−(𝑢1 +
𝑢2)]

2 = 0. Hence, 𝑎(𝑎 − 1) ∈ 𝑁𝑖𝑙(𝑅). ◼ 

 

3. Application in Graph Theory. 

Graph theory plays an important role in abstract algebra and in many other branches of 

mathematics. It can be viewed as a tool for representing relationships between elements, and 

where the elements are represented as vertices and the relationships between them as edges. It 

provides a visual framework for studying and understanding the algebraic structure of rings. 

 

Definition 3.1: For a 2-invo-clean ring 𝑅, we define a graph denoted by 𝐶𝑙2(𝑅) contains  a 

vertex set 𝒱(𝐶𝑙2(𝑅)) = {(𝑢1, 𝑢2, 𝑒):⁡𝑢1, 𝑢2 ∈ 𝑖𝑛𝑣𝑜(𝑅), 𝑒 ∈ 𝐼𝑑𝑚𝑝(𝑅)} and the graph has the 

edge set ℱ(𝐶𝑙2(𝑅)) = {ℎ1ℎ2: ℎ1 = (𝑢1, 𝑢2, 𝑒1), ℎ2 = (𝑢3, 𝑢4, 𝑒2), 𝑢1 + 𝑢3 = 0⁡𝑜𝑟⁡𝑢2 + 𝑢4 =

0⁡or, 𝑒1. 𝑒2 = 0, 𝑢𝑖 ∈ 𝑖𝑛𝑣𝑜(𝑅), 𝑒𝑖 ∈ 𝐼𝑑𝑚𝑝(𝑅), 𝑢1 + 𝑢3 + 𝑒1, 𝑢2 + 𝑢4 + 𝑒2 ∈ 2 − 𝑖𝑛𝑣𝑜𝑐(𝑅)}. 

 To clarify the definition, we take the following example: 

let 𝒱(𝐶𝑙2(𝑍3)) = {[1,1,1], [1,2,1], [1,2,0], [1,1,0], [1,2,1], [2,2,0], [2,1,1], [2,1,0]}. 

Then ℱ(𝐶𝑙2(𝑍3)) = {[1,1,1][1,2,1], [1,1,1][1,2,0], [1,1,1][1,1,0], [1,1,1][1,2,1], 

                                   [1,1,1][2,2,0], [1,1,1][2,1,1], [1,1,1][2,1,0], [1,2,1][1,2,0], 
                                   [1,2,1][1,1,0], [1,2,1][1,2,1], [1,2,1][2,2,0], [1,2,1][2,1,1], 
                                  ⁡[1,1,1][2,1,0], [1,2,0][1,2,0], [1,2,0][1,1,0], [1,2,0][1,2,1], 
                                  ⁡[1,2,0][2,2,0], [1,2,0][2,1,1], [1,2,0][2,1,0], [1,1,0][1,1,0], 
                                  ⁡[1,1,0][1,2,1], [1,1,0][2,2,0], [1,1,0][2,1,1], [1,1,0][2,1,0], 
                                 ⁡⁡[1,2,1][2,2,0], [1,2,1][2,1,1], [1,2,1][2,1,0], [2,2,0][2,2,0], 
                                 ⁡⁡[2,2,0][2,1,1], [2,2,0][2,1,0], [2,1,1][2,1,0], [2,1,0][2,1,0]}. 
   

  The loops at the vertices [1,1,0], [1,2,0] will be neglected, because the graph we will take be 

a simple graph.  The girth of 𝐶𝑙2(𝑍3) is three.  For similar works and more references, see  

[11-13]. 

We use a program in Python Language to obtain all connected graphs produced from 

Definition 3.1.  Next, we will study some invariant properties like the Wiener index, average 

degree, average distance and some topological indices for resulting graphs in addition to 

some polynomials. 
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The following shows the graphs corresponding structures: 2-invo-clean rings 𝑍𝑛, 𝑛 =
2,3,4,5,6,8. 

 
Figure 1:  The graph 𝐶𝑙2(𝑍2) 

𝐻(Cl2(𝑍2); 𝑥) = 2 + 𝑥 

𝑊(Cl2(𝑍2)) = 1, 𝑎𝑑(Cl2(𝑍2)) = 1, 𝒟(Cl2(𝑍2)) = 1 

𝑀𝑣𝑢⁡(Cl2(𝑍2); 𝑥, 𝑦) = 𝑥𝑦 

𝑃𝑇(Cl2(𝑍2)) = 1.0, 𝑆𝑇(Cl2(𝑍2)) = 0.7,  

𝐴𝐺𝑇(Cl2(𝑍2)) = 1.0,   𝐴𝐵𝐶𝑇(Cl2(𝑍2)) = 0.0 

 
Figure 2:  The graph of 𝐶𝑙2(𝑍3) 

𝐻(𝐶𝑙2(𝑍3); 𝑥) = 8 + 28𝑥 

𝑊(𝐶𝑙2(𝑍3)) = 28, 𝑎𝑑(𝐶𝑙2(𝑍3)) = 7, 𝒟(𝐶𝑙2(𝑍3)) = 1 

𝑀𝑣𝑢⁡(𝐶𝑙2(𝑍3); 𝑥, 𝑦) = 28𝑥7𝑦7 

𝑃𝑇(𝐶𝑙2(𝑍3)) = 3.99, 𝑆𝑇(𝐶𝑙2(𝑍3)) = 7.48, 

 𝐴𝐺𝑇(𝐶𝑙2(𝑍3)) = 28.0,  𝐴𝐵𝐶𝑇(𝐶𝑙2(𝑍2)) = 13.85 
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Figure 3:  The graph 𝐶𝑙2(𝑍4) 

𝐻(𝐶𝑙2(𝑍4); 𝑥) = 8 + 28𝑥 

𝑊(𝐶𝑙2(𝑍4)) = 28, 𝑎𝑑(𝐶𝑙2(𝑍4)) = 7, 𝒟(𝐶𝑙2(𝑍4)) = 1 

𝑀𝑣𝑢⁡(𝐶𝑙2(𝑍4); 𝑥, 𝑦) = 28𝑥7𝑦7 

𝑃𝑇(𝐶𝑙2(𝑍4)) = 3.99, 𝑆𝑇(𝐶𝑙2(𝑍4)) = 7.48,  

𝐴𝐺𝑇(𝐶𝑙2(𝑍4)) = 28.0,  𝐴𝐵𝐶𝑇(𝐶𝑙2(𝑍4)) = 13.85 

 
Figure 4:  The graph 𝐶𝑙2(𝑍5) 

𝐻(𝐶𝑙2(𝑍5); 𝑥) = 8 + 28𝑥 

𝑊(𝐶𝑙2(𝑍5)) = 28, 𝑎𝑑(𝐶𝑙2(𝑍5)) = 7, 𝒟(𝐶𝑙2(𝑍5)) = 1 

𝑀𝑣𝑢⁡(𝐶𝑙2(𝑍5); 𝑥, 𝑦) = 28𝑥7𝑦7 

𝑃𝑇(𝐶𝑙2(𝑍5)) = 3.99, 𝑆𝑇(𝐶𝑙2(𝑍5)) = 7.48, 

𝐴𝐺𝑇(𝐶𝑙2(𝑍5)) = 28.0,  𝐴𝐵𝐶𝑇(𝐶𝑙2(𝑍5)) = 13.85 
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Figure 5 : The graph of 𝐶𝑙2(𝑍6) 

𝐻(𝐶𝑙2(𝑍6); 𝑥) = 16 + 112𝑥 + 8𝑥2 

𝑊(𝐶𝑙2(𝑍6)) = 128, 𝑎𝑑(𝐶𝑙2(𝑍6)) = 14, 𝒟(𝐶𝑙2(𝑍6)) = 1.06 

𝑀𝑣𝑢⁡(𝐶𝑙2(𝑍6); 𝑥, 𝑦)
= 6𝑥13𝑦13 + 12𝑥13𝑦14 + 6𝑥13𝑦15 + 12𝑥14𝑦13 + 28𝑥14𝑦14 + 12𝑥14𝑦15

+ 10𝑥15𝑦13 + 20𝑥15𝑦14 + 6𝑥15𝑦15 

𝑃𝑇(𝐶𝑙2(𝑍6)) = 7.99, 𝑆𝑇(𝐶𝑙2(𝑍6)) = 21.14, 

 𝐴𝐺𝑇(𝐶𝑙2(𝑍6)) = 112.07, 𝐴𝐵𝐶𝑇(𝐶𝑙2(𝑍6)) = 40.78 

 

Theorem 3.2: For any 2-invo-clean ring, the graph 𝐶𝑙2(𝑅) is a connected, and the diameter 

smaller or equal to 2. 

Proof: Let the vertex  (𝑢, 𝑣, 0) ∈ 𝒱(𝐶𝑙2(𝑅)), then the vertex (𝑢, 𝑣, 0) is adjacent to every 

vertex in  𝐶𝑙2(𝑅)) − {(𝑢, 𝑣, 0)}⁡⁡ because that, 𝐶𝑙2(𝑅) it will be connected graph. 

Now, to show that the graph 𝐶𝑙2(𝑅) has a diameter smaller than or equal to 2. Let 

(𝑢1, 𝑣1, 𝑒1), (𝑢2, 𝑣2, 𝑒2) ∈ 𝒱(𝐶𝑙2(𝑅)), The following instances are what we have: 

Case 1: if 𝑒1 = 0, then 𝑑((𝑢1, 𝑣1, 𝑒1), (𝑢2, 𝑣2, 𝑒2)) = 1, and if  𝑒2 = 0, then 

𝑑((𝑢1, 𝑣1, 𝑒1), (𝑢2, 𝑣2, 𝑒2)) = 1. 

Case 2: if 𝑢1 + 𝑣1 ≠ 0, 𝑢2 + 𝑣2 ≠ 0 and 𝑒1. 𝑒2 ≠ 0, 𝑢𝑖 , 𝑣𝑖 ∈ 𝑖𝑛𝑣𝑜(𝑅), and 𝑒𝑖 ∈ 𝐼𝑑𝑚𝑝(𝑅), 

𝑖 = 1, 2 then 𝑑((𝑢1, 𝑣1, 𝑒1), (𝑢2, 𝑣2, 𝑒2)) = 2. ◼ 

 

Theorem 3.3: For all |𝐶𝑙2(𝑅)| ≥ 3,⁡then, the girth 𝑔(𝐶𝑙2(𝑅)) of a graph 𝐶𝑙2(𝑅) is three⁡. 

Proof: Let R be an associative ring with identity; thus, the two vertices (−1,−1,0), (1,1,0) ∈

𝒱(𝐶𝑙2(𝑅)) such that (1,1,0)⁡and (−1,−1,0) are adjacent. Since |𝐶𝑙2(𝑅)| ≥ 3 thus there 

exists (𝑢1, 𝑣1, 𝑒) such that (𝑢1, 𝑣1, 𝑒) ≠ (1,1,0), (−1,−1,0) and (𝑢1, 𝑣1, 𝑒) is adjacent to 

(1,1,0) and (−1,−1,0) by Theorem 3.1, hence 𝑔(𝐶𝑙2(𝑅)) = 3. ◼ 

 

Below are several ring diagrams  for the values 𝑛 =
2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60, representing the relationship between the order of 

rings and the topological index. 
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Figure 6: Product connectivity index of 𝐶𝑙2(𝑍𝑛). 

 

 
Figure 7: Sum connectivity index of  𝐶𝑙2(𝑍𝑛). 

 
Figure 8 :  Arithmetic-geometric index of 𝐶𝑙2(𝑍𝑛). 
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Figure 9:  Atom bond connectivity index of  𝐶𝑙2(𝑍𝑛). 

 

     In Figures 14, 15, 16, and 17, we noticed that the order of the rings with the four 

topological indexes has the same behavior. Our expectation is that if a new topological index 

is added using the same approach as these indexes, it will exhibit the same behavior with 2-

invo-clean rings. 

 

4. Conclusions 

     The new rings that has been defined is actually an extension of the invo-t-clean and invo-

clean rings. There are many theorems and results that have been followed by the new rings as 

an extension of the previous mention rings and there are properties that are not present in the 

previous rings. In this paper to observe the behavior of the 2-invo-clean rings with the 

topological indexes, which have the same behavior as different topological indexes. We 

expect that if we take another topological index that relies on them or the same methodology 

for the topological indexes, the result will also have the same behavior. 
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