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Abstract

The definition of invo-clean rings is generalized to two involution clean rings. In
this paper, we aimed to identify the structure with determined the basic properties of
these rings. A ring is a two-involution clean if all elements are the sum of two
involutions and idempotent elements. Additionally, the graph of two involution
clean rings has been defined, and some properties of the new graph, such as:
connected, the diameter, girth and others, have been proven.

Keywords: Strongly nil-clean, Invo-clean, Invo-t-clean, Hosoya polynomial,
Wiener index.

2-laall) (he ddilal) 42830 culdlal)

28t 093 dana ¢ Laght B4l ¢ 1* Cpus daaa Ao
Gl gpisi Adlan , Jeapall deals , laialiplly Cgealad] aple DS, oLl aucd
Glall , spii Absilana , Jeagall deals , detigh 408, duirall deotigh puid

dLadal)

a3 e Al and o Ulglag . 2-daail) (e ditke Ak lila 1) Aild) Zal) Clilal) asent
Ladsicd 13 2-daail) (pe dile 4ais alall sS5 . Cund) 138 3 clilad) sdgl Aualedl) (bl ians
Gl o5 IS L ylaial peatal) 4l lilias ke (yeaic pan dealaS dalall & jaie (S &S
ey yeadlly Sl JLaIS anall Glall (ailadll Gmes Gajs Slalall sdgl L)

1. Introduction

In this paper, R is an associated ring with an identity element, 1, which differs from the
zero element. As usual, invo(R) is a set of all involution elements of the ring R, and for any
w € invo(R) we have w? = 1. We denote Idmp(R) for the set for all idempotent in the ring
R, while Trip(R) denoted to the set containing of all tripotent elements such that for any u €
Trip(R), we have u3 = u of R. As well as Nil(R) is the set of all nilpotent elements of R. A
ring R is an involution clean if, for all x € R can be expressed as x = u + e, u € invo(R)
with e € Idmp(R). This definition dates back to 2017, when it was introduced by Danchev
[1]. A new generalized to invo-clean ring is the invo-t-clean ring which is studied in [2]. A
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ring R is called invo-t-clean if, for any a € R, it can be expressed as a = u + t, u € invo(R)
and t € Trip(R). An invo-t-clean is strongly invo-t-clean if ut = tu.
Every tripotent element is also an invo-clean element, since t =t +t? — 1+ 1 — t%, where
(t+t>—1)2=1and (1—t?)?2=1-—t?, with t = t3. All idempotent elements are invo-
clean, see [1]. Moreover, Z,,Z5,Z, and Zg are invo-clean and invo-t-clean; although the
opposite is not true, is still any invo-clean ring is invo-t-clean; the example, Z5. As usual,
M, (R) represents the matrix ring of 2 X 2. T,(R) is an upper triangular matrix ring of 2 X 2,
and Z,, is the ring of integer modulo n.
The zero divisor graph is one of the famous concepts connecting the commutative rings with
graph theory; this concept started with Beck [3]. Many others, like Habibi, Celikel, and
Abdioglu [4], study the clean graph defined in different types of clean rings. In this paper, we
describe a graph that is defined depending on two involution-clean rings.
A graph is an ordered pair of non-empty set of vertices V, and set of edges E, ® = (V, E)
where E €V X V. The symbol |®| denotes total vertices and ||®|| indicates the total of
edges. The girth is represented as g(®) which is the shortest of cycle length in ®. The graph
we get from the 2-invo clean ring will be simple graph (without loops and multi-edges). The
degree of a vertex v is defined as the number of edges incident to it, that is indicated by
degg(v) or, deg (v). The symbols §(®) and A(®) are represent the minimum and
maximum degrees of a graph ®, respectively [5]. The average degree denoted by ad(®) is
defined as :

2||6|

ad(®) = ﬁZwev deg(v) = ol and it may be noted that, §(®) < ad(®) < A(®).

The symbol of distance d(wv,«) is defined in the connected graph is defined as a positive
number of the length of the shortest (v — «)-path in graph ®. The Wiener index [6] it will
be sum of the lengths of the shortest (v — «)-path in the graph 6, i.e.,

1
W((ﬁ) = EZVU,MEV d(’U’, ’M') .
The average distance is calculated as:

_ 2W(®)
D(®) = (161-D)I6]

The symbol d(®,X) represents the number of pairs (v, u) at distances K in a graph ®,
where K = 0,1, ...,diam(®). We denoted to the diameter of the graph ®& by diam(®).
Notice that, d(®,0) = |®|, and d(®,1) = ||®||. Hosoya polynomial of a connected graph
®, [7] is defined as follows:

diam(®)
HOD=) — dE,50)x"

=0
Further, M,,,,-polynomial of ® in [8] and defined by:

Mo, (6%, Y) = Tuver(s) Maeg(uw),degv) (B) x 1By des®,
where Myegu), deg(v) (®) is the number of edges uv of ® such that {deg(u), deg(v)} = {i,j}.

There are many topological indices that depend on M, -polynomial in their calculation, and
these indices:
¢ Product connectivity index of ®

1
P(6) = Ywver©®) atmasacry

¢ Sum connectivity index of ®

1
$(®) = Zuwer®) Tomsnnraca oy
e Arithmetic-geometric index of ®

. deg(u)+deg(v)
AG(®) = Yuver) NI OTITION

¢ Atom bond connectivity index of ®
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B deg(w)+deg(v)—2
ABC(@) = ZquE((f)) \/ deg(w)deg(v)

You can see more topological indices in [9].

2. Two involution clean rings.
This section is devoted to the study of the algebraic properties of rings of a 2-invo-clean ring.

Definition 2.1: An element a € R called a two-involution clean element if a = u; +u, + e,
where uq,u, € invo(R),e € Idmp(R). We denote the set of 2-invo-clean elements in R by
2 — invo,.(R). A ring is called two-involution clean ( in short, 2-invo-clean) if every element
in R is two-involution clean element. A ring R is strongly 2-invo-clean ring if R is 2-invo-
clean ring and u4, u,, e are commutative.

Interestingly, any 1+ e € 2 — invo.(R) for any ring R, because 1+e=(2-e—1)+1+
(1—e)where (1—e)2=1—ceand (2e —1)?2 =1.

Examples 2.2:

1- The ring of integer modulo 14, Z;, is not 2-invo-clean ring, but it has the elements 2 —
invo.(Z1,) = {0,1,2,3,5,6,7,8,9,10,12,13},

2- The ring Z,, is a 2-invo-clean ring whenever n € {2,3,4,5,6,8,10,12,15,20,24,30,40,
60,120}.

3- The upper triangular matrices T,(Z,), T,(Z3) are 2-invo-clean rings.

Theorem 2.3: Let T be homomorphic from a ring R onto ring S, and R is a 2-invo-clean ring
R onto S. Then S is a 2-invo-clean ring.

Proof: Lety € S, then there is x € R such that T(x) = y. Since x is a 2-invo-clean element,
we can write x as x = u; + u, + e where uy, u, € invo(R), and e € Idmp(R).

Since T is homomorphic, then, y = T(x) = T(u; + u, + e) = T(uy) + T(u,) + T(e) and
(T(u))? = T(uy?) = T(1g) = 15, where 13 is the identity element in R and 1g is the

identity element in S. Similarly, we get (T(uz))2 = 15. Hence T(u,),T(u,) € invo(S) and

(T(e))2 =T(e?) = T(e) € Idmp(R). Then, y is a 2-invo-clean element in S. M
Corollary 2.4: Assume R is a 2-involution clean ring, and the ideal I in R. Then R/I is 2-
invo-clean ring if T is homomorphic from R to R/I.

Corollary 2.5:

1- Any invo-clean element is an invo-t-clean.

2- Any invo-t-clean element is 2-invo-clean.

3- Any invo-clean element is 2-invo-clean.

Proof:

1- In [2], explain that.

2-Let xER, x=u;+t=u; + (t? +t—1)+ (1 — t?), because (t>+t—1)2=1 and
(1 —1t%)? = (1 —t?).Hence, x € 2 — invo.(R).

3- It is clear that 1 and 2 implies 3.

The below example shows that the opposite of Corollary 2.5 is not true

Examples 2.6:

1- Let Z;, be a ring of integer modulo 17; the idempotent elements of Z;, are {0,1} and the
tripotent elements of Z;, are {0, 1, 16} and the involution elements of Z;, are {1,16}. The 2-
invo-clean elements are {0, 1,2, 3,15, 16}, the invo-clean elements are {0,1,2,16}, and the
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invo-t-clean elements are {0, 1,2, 15, 16}. Note that element 3 is 2-invo-clean but not invo-
clean and it is invo-t-clean. The element 15, it is invo-t-clean, but it is not invo-clean.

2- The ring T, (Z,) is 2-invo-clean, which is not invo-clean nor invo-t-clean ring.

ot = (3 10 L0 L AL GG LG L 3
) }-
Tri (T Z )[_0 [(()) ([)(]) [8] 0] [0 0] [0 1] [0 1] [0 2] [0 2] [0 0]
T gl e e e B p ey
b g gl gl dllo o ol sl o
3 [(1) 13]'[(2) 33]'[8 03]'[8 33”02 0]3'[03 13]'[% 3]'0 0]'
[0 1]’[0 O]’[O O]'[O 1]'[0 3]'[0 0]’[0 1]}
. 1 011 Oy11 1301 2111 2171 313 013 O
‘"UO(TZ(Z“)):{[% 11][03 32][03 32][% 13]’[0 3]'[0 3]'[0 1]'[0 30
o 1l'lo 115 316 ib
There is 56 element(; ar%a in\(/)o—c}ean ?n ’Ii(Zf), ;nd the elements which are 2-invo-clean but
. 2 313 112 110 1113 3111 310 311 1
notmvo—cleanare{[o 2],[0 3],[0 2,[0 O'[O 3,[0 1],[0 0],[0 1]}

But, there is 60 elements are invo-t-clean in T,(Z,), and the elements which are 2-invo-clean
but not invo-t-clean are

{5 sk 3o il 2

We will now present some properties related to the 2-invo-cleane elements.

Proposition 2.7: An element x in a ring R is a 2-invo-clean element if and only if 1 — x is a
2-invo-clean element.

Proof: Assume that x is a 2-invo-clean element, then x = u; + u, + e where uy,u, €
invo(R), and e € Idmp(R), then 1—x=1—(u; +u, +e) =1—u; —u, —e, where
—Uy, 1 —uy € invo(R) and 1 — e € Idmp(R). Hence, 1 — x is a 2-invo-clean element.
Conversely, let 1 — x be 2-invo-clean element, then 1 —x =u; +u, +e= x=1—-u; —
U, —e =—u; —u, + (1 —-e), where —u,, —u, € invo(R) and 1 — e € Idmp(R). Hence, x
is a 2-invo-clean element. W

Corollary 2.8: If element x is an invo-clean in the ring R, the following hold.

I- 1 + x is a 2-invo-clean.

2- 1 — x is a 2-invo-clean.

Proof:

I- Let x =uy + e, where u; € invo(R) ,e € Idmp(R).1+x=1+4+u; +e . Hence, 1+
x is a 2-invo-clean element.

2- From Corollary 2.5 (3) and Proposition 2.7, 1 — x is a 2-invo-clean element. B

Examples 2.9:

The converse of (1) and (2) in Corollary 2.8 is not valid. For example,

1- In the ring Zg, the elements 3 and 7 are 2-invo-clean elements, but the elements 3 and
7 are not invo-clean elements. The element 7 is an invo-t-clean element, but the element 7
not an invo-clean element. The element 1 + 6 = 7 is a 2-invo-clean element, but 6 is not an
invo-clean element, and the element 1 — 7 = —6 = 3 is a 2-invo-clean element, but 7 is not
an invo-clean element.
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. . . 0 1110 2111 1

2- For example, in non-commutative ring, T,(Z3). The elements [0 ol lo 0],[0 1

and [(1) ﬂ are 2-invo-clean elements and invo-t-clean elements, but they are not invo-clean
1 1 0 17_11 27. . 0 17. .

elements, as [O 1] +1[0 1 0] —0 [02 1 1s1 a 22-1nvo-clean element, but [ 0 O] is (1)10‘[ 2an invo-

clean element, and [O 1] ~lo 0] = [0 1 i1s a 2-invo-clean element, but [0 0] is not

invo-clean element.

Theorem 2.10: Let R be a ring, and the sum of two involution elements is involution. Then R
is an invo-clean ring if and only if R is a 2-invo-clean ring.

Proof: Let z € R be a 2-invo-clean element, then z =u; +u, + e = q + e, where q €
invo(R), e € Idmp(R). Hence, R is an invo-clean ring.

The converse comes from Corollary 2.5 (3). ®

Theorem 2.11: Let R be a tripotent ring. Then R is a 2-invo-clean ring if and only if R is an
invo-t-clean ring.

Proof: Let z € R be a 2-invo-clean element, then z = u; +u, + e = u; + t;, since R is
tripotent ring, u, + e € R so t; = u, + e € Tri(R). Hence, R it well be invo-t-clean ring.
But the converse comes from Corollary 2.5 (2). &

Proposition 2.12: Let 3 € 2 —invo.(R) in a ring R, with 3 =u; +u, +e, u;,u, €
invo(R), e € Idmp(R). Then, the following holds:
1- 2uye = 2uye or 2e = 2uqu,e.
2- 15e = 15.
3- 6u, = 6u,
4- 60u; = 60u, = 60e = 60.
Proof (1): Since 3 = u; + u, + e, where uq,u, € invo(R) and e € Idmp(R). Thus
3e = ue +uze +eso e =ue+uye.
Now,
24=33-3=(u +u,+e)®—(u; +u,+e) =83=8(u; +u, +e)
24 =(u; +tu, +e)®—(u; +u, +e)
= (u;+u, +e)[(uy +u, +e)?—1]
=(u; +u, +e)(1+2uu, + 5e)
= uy + 2uy + Suq e + uy + 2uy + Suye + e + 2u uye + Se
= 3uy + 3u, + 5use + Suye + 2uquye + be.
Now, 3u; + 3u, + 5u e + 5uye + 2u uye + 6e = 8(uy + u, + e).
This implies that 5u; + 5u, — 10e — 6e + 8e — 2u ue = 0. Multiply both sides by e,
hence 5u e + 5u,e — 8e — 2u u,e = 0 = 10e — 8e = 2u u,e = 2e = 2u U, e or, 2u e =
2u,e.

Proof (2): Since 24 =33—-3=(u; +u, +e)®>— (u +u, +e), from (1) 24 = 3u, +
3u, + 5u e + Suye + 2u uye + 6e = 3(uy + u,) + 16e + 2e =3(3 —e) + 18e = 24 —
9 = 15e = 15 = 15e.

Proof (3): Since 3 =u; +u, +e, 3—e =u, +u, by squaring two both side we get
B-e)l=w+u)?>*=>9—-6e+e=u’>+2uuy, +u,2 >9—-5 =2+ 2uu, >7—
5e = 2u,u, multiply both side by 3 we get 21 — 15e = 6u,u, from (2) we get 21 — 15 =
6u,u, = 6 = 6u,u, multiply both side by u; we get 6u; = 6u,.

Proof (4): Since9—3=32-3=(u; +u, +e)?> — (u; +u, +e)
26=wW’?+2uy(u, +e)+ Wy +e)?)—u —u, —e
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=1+ 2uqu, + 2uye + 2uye +e—u; —u, —e
=2+ 2uu, +4e —u; —u,
= 4 = 2u u, + 4e — u; — u, multiply both sides by 6
= 24 = 12uqu, + 24e — 6u, — 6u, from (3) we get, 6uu, = 6
= 24 =12 + 24e — 12uy = 12u; = 15e¢ + 9e — 12
= 12u; = 3 + 9e multiply both sides by 5 where 15e¢ = 15
= 60u; = 15 + 45e, 60u; = 60u, = 60e = 60. B

Proposition 2.13: Let 4 be a 2-invo-clean element in a ring R. Then 240 = 0 and the
elements {30, 60,90,120, 150,190, 210} are nilpotent.
Proof: Let4 = uy +u, +e...(1),
thene = 4 —u; — u,.
Sincee?=e> 4 —u; —u)2 =4—u; —u,
=16 —8u; — 8u, + U2 +2uguy U2 =4 —uy —uy
= 14 + 2uqu, = 7uq + 7uy, ... (2)
by adding 7e to both side we get
14+ 2ugu, +7e =7u . + 7uy, + 7e = 7(uy + uy, +e) = 7(4)
= 2ugu, +7e =28 -14 =14 ... (3),
multiply both sides by e we get
2uquye = 7e ... (4),
by squaring two both sides, we get
4e = 49e¢ = 45e =0 ... (5).
Now,
60=4%—4=(u +u,+e)®—(uy +u, +e)
=[(uy; +u, + e)?](uy +u, + €)? — (ug; +u, +e)
= [ug? + 2uguy + 2uje + up® + 2uze +e?J(uy +u, +e) —uy —u, —e
= 2uq + 2u, + 2e + 2uquye + uje + 2u, + 2uq + 2uquye + 2e + uze + 2e + 2uquye
+ 2ue+2uy,e+e—u;—u, —e
= 3uq + 3u, + 6e + 6u uye + 3uqe + 3uye
= 3(uy + uy) + 6e + 6u ue + 3(uy + uy)e
=3(4—e) + 6e + 6u u,e +3(4 —e)e
=12 — 3e + 6e + 6u uye + 12e — 3e
= 48 = 6u uye + 12e = 3(2uq uye) + 12e, from Equation (4) we get 48 = 3(7e) + 12e =
33e multiply both side by e we get
48e = 33e = 15e = 0...(6).
Now, 33e = 48 by adding 12e to both sides we get 48 + 12¢ = 33e + 12e = 45e from (5)
48 = —12e by adding —3e to both sides we get 48 — 3e = —12e — 3e = —15e = 0 from
(6) 48 = 3e multiply both sides by 5 we get 240 = 15e = 0. Hence, 240 = 0.
Now, (30)* = (2.3.5)* = 2*.3%. 5% = 16.3.5.3353 = 240.3353 = 0,
(60)%? = (4.3.5)% = 16.3.5.3.5 = 240.3.5 = 0,
(90)* = (2.3.3.5)* = 16.3.5.37.5%3 = 240.37.53 = 0,
(120)? = (4.3.5.2)% = 16.3.5.22.3.5 = 240.2%2.3.5 = 0,
(150)* = (2.3.5.5)* = 16.3.5.33.57 = 240.33.57 = 0,
(180)% = (4.3.5.3)2 = 16.3.5.33.5 = 240.33.5 = 0,
(210)* = (2.3.5.7)* = 16.3.5.33.53.7* = 240.33.53.74 = 0. m

Proposition 2.14: If R;,and R, are 2-invo-clean rings. Then R; X R, is a 2-invo-clean ring.

Proof: Let z € R; X R,, then there exists p € R;,q € R, such that z = (p,q) since
R;,and R, are 2-invo-clean rings then there exists U, U, € invo(Ry), U, Uy €
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invo(R,),e; € Idmp(R,),and e, € Idmp(R,) such that p =u; +u, +e;,q = us + u, +

€y.
SO, zZ = (p, q) = (u1 + U, + e, Us + Uy + 6’2) = (ul,ug) + (uz, U4) + (61, 62) where
(ull U3)2 = (ul, U3).(ul, u3) ES (ulz, U32) ES (1,1), (u‘ll u3) € lTlUO(Rl X Rz). Slmllaﬂy,

(uy,uy) € invo(Ry X R,), (e1,e,) € Idmp(R; X R,). So, z is a 2-invo-clean element, and z
is an arbitrary element. Hence, R; X R, is a 2-invo-clean ring.®

In particular, [10] introduced the following concept: The ring R be strongly nil-clean when
r € Riswrittenasr = e +n, e € Idmp(R) and n € Nil(R), en = ne.

Theorem 2.15: Let R be a strongly 2-invo-clean ring, 2 € Nil(R). Then

1) R is a strongly nil-clean ring.

2) Foranya € R,a(a—1) € Nil(R).

Proof: (1) Since R is a strongly 2-invo-clean, then foralla E R, a =u; +u, +e, us,u, €
invo(R), e € Idmp(R). Now, (u; + u,)? = uy? + 2uqu, + uy? = 2(1 + u uy), since 2 €
Nil(R), there is n € Z* such that 2" = 0, (u; + u,)?* =0, u; +u, € Nil(R),soa=e +
(u; + uy) = e+ w,w € Nil(R). Therefore, R is a strongly nil-clean ring.

Proof (2): Since a is a strongly 2-invo-clean element, then a = u; +u, + e, ala—1) =
(ug +u, +e)[(uy +uy +e) — 1] = 2(1 + wyuy + uge + uze) — (ug + uy),[—(uy +

u,)]? = 0. Hence, a(a — 1) € Nil(R). &

3. Application in Graph Theory.

Graph theory plays an important role in abstract algebra and in many other branches of
mathematics. It can be viewed as a tool for representing relationships between elements, and
where the elements are represented as vertices and the relationships between them as edges. It
provides a visual framework for studying and understanding the algebraic structure of rings.

Definition 3.1: For a 2-invo-clean ring R, we define a graph denoted by Cl,(R) contains a
vertex set V(Clz (R)) = {(uq,uy, €): uy, u, € invo(R),e € Idmp(R)} and the graph has the
edge set T(ClZ(R)) ={hihy:hy = (Uy, Uy, €1),hy = (Ug, Uy, €3), U FU3 =007 Uy +Uy =
Oor,e;.e; =0,u; € invo(R),e; € Idmp(R),uy +uz + e, uy, +uy + e, € 2 — invo.(R)}.

To clarify the definition, we take the following example:
let V(CZZ(Z3)) ={[1,1,1],[1,2,1],[1,2,0],[1,1,0],[1,2,1]

,[2,2,01,12,1,1],[2,1,0]3.
Then F(Cl,(Z3)) = {[1,1,1][1,2,1],[1,1,1][1,2,0], [1,1,1]

[ :
[1,1,0],[1,1,1][1,2,1],

[1,1,1][2,2,0], [1,1,11[2,1,1], [1,1,1][2,1,0], [1,2,1][1,2,0],
[1,2,1][1,1,0],[1,2,11[1,2,1], [1,2,1][2,2,0], [1,2,1][2,1,1],
[1,1,1][2,1,0],[1,2,0][1,2,0], [1,2,0][1,1,0], [1,2,0][1,2,1],
[1,2,0][2,2,0],[1,2,0][2,1,1], [1,2,0][2,1,0], [1,1,0][1,1,0],
[1,1,0][1,2,1],[1,1,0][2,2,0], [1,1,0][2,1,1], [1,1,0][2,1,0],
[1,2,1][2,2,0], [1,2,11[2,1,1], [1,2,1][2,1,0], [2,2,0][2,2,0],
[2,2,0][2,1,1], [2,2,0][2,1,0], [2,1,1][2,1,0], [2,1,0][2,1,0]}.

The loops at the vertices [1,1,0], [1,2,0] will be neglected, because the graph we will take be

a simple graph. The girth of Cl,(Z3) is three. For similar works and more references, see
[11-13].
We use a program in Python Language to obtain all connected graphs produced from
Definition 3.1. Next, we will study some invariant properties like the Wiener index, average
degree, average distance and some topological indices for resulting graphs in addition to
some polynomials.
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The following shows the graphs corresponding structures: 2-invo-clean rings Z,, n =
2,3,4,5,6,8.

[1,1, 0]

[1,171]

Figure 1: The graph Cl,(Z,)
H(Cl,(Z,);x) =2+«
W(Cl,(Z;)) =1, ad(Cly(Z,)) = 1, D(Cl(Z,)) = 1
My, (Cly(Z,); x,y) = xy
PT(Cl,(Z,)) = 1.0, ST(Cl,(Z,)) = 0.7,
AGT(Cl(Z,)) = 1.0, ABCT(Cl,(Z;)) = 0.0

Figure 2: The graph of Cl,(Z3)

H(Cl,(Z3);x) = 8 + 28x

W(Cly(Z3)) = 28, ad(Cl(Z3)) =7, D(Cl,(Z3)) = 1
M, (Clz (23); X, Y) = 28x7y7

PT(Cl,(Z5)) = 3.99, ST(CL,(Z3)) = 7.48,
AGT(Cl,(Z5)) = 28.0, ABCT(Cl,(Z;)) = 13.85
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Figure 3: The graph Cl,(Z,)
H(Cl,(Z,);x) = 8 + 28x
W(Cly(Z,)) = 28, ad(Cl,(Z4)) = 7, D(Cly(Z4)) = 1
My, (Cly(Zy);x,y) = 28x7y7
PT(Cl,(Z,)) = 3.99, ST(Cl,(Z,)) = 7.48,
AGT(Cl,(Z,)) = 28.0, ABCT(CL,(Z,)) = 13.85

Figure 4: The graph Cl,(Zs)

H(Cly(Zs); x) = 8 + 28x

W (Cly(Zs)) = 28, ad(Cly(Z5)) = 7, D(CL,(Z5)) = 1
My, (Cly(Zs5);x,y) = 28x7y7

PT(Cl,(Zs)) = 3.99, ST(Cl,(Zs)) = 7.48,
AGT(Cly(Zs)) = 28.0, ABCT(Cl,(Zs)) = 13.85
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Figure 5 : The graph of Cl,(Z,)
H(CL,(Zy);x) = 16 + 112x + 8x?
W (Cly(Zg)) = 128, ad(Cl,(Zs)) = 14, D(Cl,(Zs)) = 1.06
My, (Cl, (ZG); X, }’)
— 6x13y13 + 12x13y14 + 6X13y15 + 12x14y13 + 28x14y14 + 12x14-y15
+ 10x15y13 + 20x15y14- + 6X15y15
PT(Cly(Zg)) = 7.99, ST(Cl,(Ze)) = 21.14,
AGT(Cl,(Z)) = 112.07, ABCT(Cl,(Zs)) = 40.78

Theorem 3.2: For any 2-invo-clean ring, the graph Cl,(R) is a connected, and the diameter
smaller or equal to 2.

Proof: Let the vertex (u,v,0) € V(C lz(R)), then the vertex (u,v,0) is adjacent to every
vertex in Cl,(R)) — {(u,v,0)} because that, Cl,(R) it will be connected graph.

Now, to show that the graph CIl,(R) has a diameter smaller than or equal to 2. Let
(uq,v1,e1), (Uy,v,,e,) € V(C L, (R)), The following instances are what we have:

Case 1: if e =0, then d((w,vye) (Uyvye)) =1 and if e, =0, then
d((up vy, e1), (Uz, Uy, ez)) =1

Case 2: if uy +vy #0, u, + v, # 0 and ey.e, # 0, u;, v; € invo(R), and e; € Idmp(R),
i =1,2then d((ul,vl,el), (uz,vz,ez)) =2. 1

Theorem 3.3: For all |Cl,(R)| = 3, then, the girth g(Clz (R)) of a graph CI,(R) is three .
Proof: Let R be an associative ring with identity; thus, the two vertices (—1,—1,0),(1,1,0) €
V(Clz(R)) such that (1,1,0) and (—1,—1,0) are adjacent. Since |Cl,(R)| = 3 thus there
exists (uq,vq,e) such that (uq,vq,e) # (1,1,0),(—1,—1,0) and (uq,vq,e) is adjacent to
(1,1,0) and (—1,—1,0) by Theorem 3.1, hence g(Cl,(R)) = 3.

Below are several ring diagrams for the values n=
2,3,4,5,6,8,10,12,15, 20, 24, 30, 40, 60, representing the relationship between the order of
rings and the topological index.
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Figure 6: Product connectivity index of Cl,(Z,,).
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Figure 7: Sum connectivity index of Cl,(Z,).
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0 40

Figure 8 : Arithmetic-geometric index of Cl,(Z,,).
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-----

Figure 9: Atom bond connectivity index of Cl,(Z,).

In Figures 14, 15, 16, and 17, we noticed that the order of the rings with the four
topological indexes has the same behavior. Our expectation is that if a new topological index
is added using the same approach as these indexes, it will exhibit the same behavior with 2-
invo-clean rings.

4. Conclusions

The new rings that has been defined is actually an extension of the invo-t-clean and invo-
clean rings. There are many theorems and results that have been followed by the new rings as
an extension of the previous mention rings and there are properties that are not present in the
previous rings. In this paper to observe the behavior of the 2-invo-clean rings with the
topological indexes, which have the same behavior as different topological indexes. We
expect that if we take another topological index that relies on them or the same methodology
for the topological indexes, the result will also have the same behavior.
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