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Abstract 

     In this paper we introduce the notions of t-stable extending and strongly t-stable 

extending modules. We investigate properties and characterizations of each of these 

concepts. It is shown that a direct sum of t-stable extending modules is t-stable 

extending while with certain conditions a direct sum of strongly t-stable extending is 

strongly t-stable extending. Also, it is proved that under certain condition, a stable 

submodule of t-stable extending (strongly t-stable extending) inherits the property. 
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والمقاسات الموسعة المستقرة بقوة من  Tالموسعة المستقرة من النمط المقاسات

 Tالتمط 

 
 2شياع دخيل ،فرحان*1هادي محمدعلي انعام

 قسم الخياضيات ، كلية التخبيو للعلهم الصخفو ) ابن الييثم(، جامعة بغجاد، بغجاد، العخاق1
 كلية التخبيو، جامعة القادسيو، العخاققسم الخياضيات، 2

 

 الخلاصه
. نحن Tمن النمط  والمستقخة بقهة  Tمن النمط  التمجيج المستقخة  مقاسات، نقجم مفاهيم  ا البحثفي ىح     

للمقاسات المهسعة المستقخة المباشخ  جمعكل من ىحه المفاهيم. من الهاضح أن ال مميداتنتحخى خصائص و 
مباشخ ال جمع، يكهن ال تحت شخوط معينوبينما - Tمقاسات موسعة من النمط  ىه  - T  من النمط 

كذلك  Tمقاسات موسعة مستقرة قوية من النمط   Tللمقاسات الموسعة  المستقرةالقوية  من النمط 

)مقاس موسع  مستقر Tيكون المقاس الجزئي  الموسع المستقر من مقاس موسع مستقر من النمط 

 ( بتوارث الخاصية.Tقوي من النمط 
 

Introduction  

   Let   be a ring with unity and   be a right  -module. A submodule   of   is called essential in   

(        if        ,     implies             A submodule   of   is called closed in   

if it has no proper essential extension in  , that means  if         , where    , then     [1], 

[2]  .  It is known that for any submodule    of  , there exists a submodule   of  , such that   

     , hence    is a closed submodule of  ,    is called a closure of   [3]. 
 
 Asgari [4] introduced 

the notion of t-essential submodule, where a submodule   of   is called t-essential (denoted by 

        if whenever    ,           implies        , where       is the second 
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singular submodule defined by  (
 

    
)  

     

    
    [1], where                  for some 

essential ideal of  }. Equivalently,                      } and                  
 }.   is called singular (nonsingular) if               . Note that                   

for some t-essential ideal   of  }.   is called   -torsion if        . Asgari    introduced the 

concept of t-closed submodule where a submodule   is called t-closed (       if   has no proper t-

essential extension in    [4]. It is clear that every t-closed submodule is closed, but the converse is not 

true. However, under the class of nonsingular, the two concepts are equivalent. Asgari [5] stated that 

for any submodule    of  , there exists a t-closed submodule    of   such that       .   is called 

a t-closure of   . A module   is called extending if for every submodule   of   there exists a direct 

summand        ) such that         [6]. Equivalently,   is an extending module if every 

closed submodule is a direct summand. As a generalization of extending modules, Asgari [4] 

introduced the concept of t-extending module, where a module   is t-extending if every t-closed 

submodule is a direct summand. Equivalently,   is t-extending if every submodule of   is t-essential 

in a direct summand. The notion of a strongly extending module is introduced in another study [7], 

which is a subclass of the class of extending module, where an  -module   is called strongly 

extending if each submodule of   is essential in a fully invariant direct summand of  ,   and  a 

submodule   of M is called fully invariant if for each         ,         [8]. A submodule    

of an  -module   is called stable if for each  -homomorphism             [9]. It is clear that 

every stable submodule is fully invariant but not conversely. An  -module    is fully stable if every 

submodule of    is stable [9]. An  -module    is called strongly t-extending if every submodule is t-

essential in a stable direct summand. Equivalently,    is strongly t-extending if every t-closed 

submodule is a fully invariant direct summand  [10]. Saad [7] introduced the stable extending ( S-

extending) modules as a generalization of FI-extending modules. An R-module   is called stable 

extending (S-extending) if every stable submodule of   is essential in a direct summand of  . A ring 

R is left (right) S-extending if R is S-extending left (right) R-module and   is called FI-extending if 

every fully invariant submodule of   is essential in a direct summand of  [11] 

      In this paper, we introduce the concepts of t-stable extending and strongly t-stable extending 

modules. The class of t-stable extending modules contains the class of stable extending, and the class 

of strongly t-stable contains the class of t-stable extending and it is contained in the class of strongly t-

extending. 

In section two we study t-stable extending modules and their relationships with other related modules. 

Among other results in this section, we prove that an  -module   is a t-stable-extending  -module if 

and only if for each stable submodule   of  , there is a decomposition         such that 

     and          . An  -module   is t-stable extending if and only if for each stable 

submodule   of  , there exist                such that              and        

where      is the injective hull of  . Let   be a stable injective relative to a stable submodule  . If 

  is t-stable extending, then so is  . 

In section three, we study strongly t-stable extending modules. Many properties are given.  
  
2.

 
T-Stable-extending Modules  

   In this section we introduce the concept of t-stable extending modules which is a generalization of  

 -extending modules. 

 First we give the following definitions. 

Definition 2.1: An  -module   is called t-stable extending if every stable submodule of   is t-

essential in a direct summand. A ring   is called right t-stable extending if   is a right t-stable 

extending  -module. 

      Recall that an  -module is t-uniform if every submodule of    is t-essential in    [12]. As a 

generalization of t-uniform module, we present the following concept. 

Definition 2.2: An  -module is called stable-t- uniform if every stable submodule of   is t-essential 

in  . 

Remarks and Examples 2.3: 

(1) It is clear that every S-extending module (or t-extending module) is t-stable extending, for 

example: 
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(i)For arbitrary  -module  ,            is t-extending [4], so it is  t-stable extending. Also      

as  -module is S-extending, so it is t-stable extending. 

   Recall that an  -module   is called t-continuous if   satisfies the following    is t-extending, and 

every submodule of   which contains       and isomorphic to direct summand of   is itself a direct 

summand [3]. Hence, every t-continuous module is t-stable extending. Hence, we can give  the 

following examples: 

(I)By [6, Example 2.6(2)], Let   be a   -torsion ring (e.g   
 

   
, for a prime number P) and set 

  (
  
  

) .    t-continuous T-module. It follows that     is a t-stable extending module. However, 

   is not stable extending. Hence       not stable extending. 

(II) Let   be a ring and   be an  -module and       . The  -module      
 

 
  is t-continuous [6, 

Example 2.6(1)], so it is t-stable extending. In particular if      as  -module. Then     
 

   
 

       is t-stable  

 

(2) Let   be a nonsingular  -module. Then   is  -extending if and only if   is  -stable extending. 

Proof: since M is non-singular, then the two concepts essential and t-essential coincide [5]. Hence the 

two concepts, S-extending and t-stable extending, are equivalent. 

(3)  If M is a singular module then M is t-stable extending.  

Proof: since M is a singular module then   (M)=M and for every submodule N of M,N+    (M)= 

N+M=M     M, hence N    M by[5,Prop1.1]. But M is a direct summand of M, so every stable 

submodule of M is t-essential in a direct summand. Thus M is t-stable extending 

 

(4) Every FI-t-extending is t-stable-extending where    is FI-t-extending if every fully invariant is t-

essential in a direct summand. 

Proof: Let   be a stable submodule of  . Then    is fully invariant, hence   is t-essential in a direct 

summand. 

(5) The converse of (4) holds if   is FI-quasi-injective, where an  -module   is called FI-quasi-

injective if for each fully invariant submodule N of M, each R-homomorphism f: N M can be 

extended to an R-endomorphism g: M M [7]. 

Proof: Let   be a fully invariant submodule of  . By [7, Proposition 3.1.19]   is stable. Hence by t-

stable extending property of  ,   is t-essential in direct summand. Thus   is a FI-t-extending. 

(6)   -stable extending module need not be extending, for example the  -module       is not 

extending but it is S-extending by [7, Remarks and Examples 3.1.3(3)] hence it is t-stable extending.  

(7) Every stable t-uniform (hence every t-uniform) is t-stable extending. 

Proof: Let   be a stable submodule of  . Hence       . But     , so   is t-essential in a 

direct summand. 

   Recall that an  -module   is called an S-indecomposable if (0) ,   are the only stable direct 

summand.   is S-extending and S-indecomposable if   is S-uniform. An  -module   is called 

stable uniform (shortly,  -uniform) if every stable submodule of   is essential in      [7]. However 

we have: 

Proposition 2.4: If   is t- stable extending and indecomposable, then   is stable t- uniform. 

Proof: Let   be a stable submodule in  . Then        for some      . Since   is 

indecomposable,    . Thus        and so   is a t-stable uniform. 

Note that a stable t- uniform module does not imply indecomposable, for example    as  -module is 

stable t- uniform, but    is not indecomposable. Also,    is not S-indecomposable. 

Proposition 2.5: Let   be an  -module. If   is t-stable extending, then every stable t-closed 

submodule is a direct summand and the converse holds if every t-closure of stable submodule is stable. 

Proof: Let   be a stable t-closed submodule. Since   is t-stable extending,        for some 

    . Hence       , since   is a t-closed. Now if   is a stable submodule of  , then 

      , where   is a t-closure of   [5,Lemma 2.3]. By hypothesis,   is stable, and so   is stable 

t-closed, which implies     . Thus    is t-essential in a direct summand and   is t-stable 

extending. 
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Proposition 2.6: Let   be an  -module which satisfies that the t-closure of any submodule is stable. 

Then M is t-stable extending if and only if   t-extending. 

Proof:  Let   be a t-closed of  . Hence   is a t-closure of   and so by hypothesis,   is stable. But 

  is t-stable extending, so there exists      such that       . Thus     because    is t-

closed and so   is t-extending. 

 If   is t-extending, then by Remarks and Examples 2.3(1),   is t-stable extending. 

Corollary 2.7: Let   be a fully stable  -module. Then the following statements are equivalent: 

(1)   is a t-stable extending module; 

(2)   is a t-extending module ; 

(3)    is a strongly t-extending module. 

Proof: Since    is a fully stable  -module,   and the t-closure of any submodule  of M is stable . Then   

(1)  (2) follows by Proposition 2.6. 

(1)(3) Let    . Since   is fully stable, then   is stable. Hence   is t-essential in a direct 

summand  . But   is stable in  . Then   is t-essential in a stable direct summand and so   is 

strongly t-extending. 

(3)(2) obvious. 

Proposition 2.8: Let   be an  -module that satisfies that the t-closure of any submodule is stable. 

Then the following statements are equivalent: 

(1)   is a t-stable extending module; 

(2)  Every stable t-closed  submodule of   is a direct summand; 

(3)  Every stable submodule is t-essential in stable direct summand. 

Proof: (1)(2) Let   be a stable t-closed submodule. Condition (1) implies   is t-essential in a direct 

summand  . Hence        since   is a t-closed. 

(2)(3) Let   be a stable submodule in  . Then   has a t-closure  ; such that        and   is a 

t-closed. But   is stable by hypothesis , so that   is t-closed stable. Then by condition (2)      

and hence   is t-essential in a stable direct summand. 

(3)(1)  clear. 

The following are characterizations of the t-stable extending modules. 

 Theorem 2.9: An  -module   is t-stable-extending if and only if for each stable submodule   of  , 

there is a decomposition         such that      and          . 

Proof:  Suppose   is t-stable-extending. Let   be a stable submodule of  . Then 

          , hence         for some        It follows  that               
 (since         and          [5, Corollary1.3].  

 Let   be a stable submodule of  . By hypothesis, there is a decomposition         with 

     and                . It follows that A       by [5, Corollary 1.3]. Thus 

A         . Therefore   is t-stable-extending. 

The following is another characterization of t-stable extending modules.  

Theorem 2.10: An  -module   is t-stable extending if and only if for each stable submodule   of  , 

there exists                such that              and        where      is the 

injective hull of  . 

Proof: Assume   is t-stable extending. Let   be a stable submodule of  . Then there exists 

     of   such that        and so there is     such that      . Hence      
         . Let             be the projection endomorphism from      onto     . Clearly 

       is idempotent). Thus we have           . Also,                implies 

                 . 

 Let   be a stable submodule of  . By hypothesis, There exists      (    )       such that 

             and       .Since       , then         (    )       . It is easy 

to see that  (    )       . Also, since      , hence          . But        [7, 

Lemma 1.1.22], so   is t-essential in stable direct summand. Thus   is stable extending. 

Lemma 2.11: Let         . Let   be a stable submodule of   . Then              where 

     is stable in   ,      . 
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Proof: Let   be a stable submodule. Then               by [9 , Proposition 4.5] we claim that  

     is stable in   , for each    . To prove this, let            be any  -homomorphism. 

Then           . Consider the following            

 
→     

 
→  

 
→         , 

where   is the natural projection  and   is the inclusion mapping. Then              (since   

is stable in  ). But                                           . Thus 

            . From above           , so we get              and      is a 

stable submodule of   , for each     . 

Theorem 2.12: A direct sum of t-stable extending modules is t-stable extending. 

Proof: Suppose that         ,    is t-stable extending for each    . Let   be a stable 

submodule of  . Then              and      is stable in    for each     by Lemma 2.11 

and so by the t-stable extending property of    ,      is t-essential in a direct summand     of    

for each    . Then                       by [5,Coroallary 1.3]. Put         , so     . 

Thus            and   is t-stable extending. 

       Note that any direct sum of extending is S-extending [7, Corollary 3.2.2], hence by Remarks and 

Examples 2.4(2), it is t-stable extending. 

      By applying Theorem 2.12, each of          (for each prime number P) 

                     as  -module is t-stable extending. Not that       and        are 

not extending. Note that by [7, Corollary 3.2.4] every finitely generated  -module is S-extending, 

hence it is t-stable extending. 

Proposition 2.13: Let   be an  -module which satisfies that the t-closure of any submodule is stable. 

If   is t-stable extending, then every direct summand is t-stable extending. 

Proof: Let     . Since   is t-stable extending, then   is t-extending by Proposition 2.6. Hence   

is t-extending by [4, Proposition 2.14(1)]. It follows that   is FI-t-extending and hence by Remarks 

and Examples 2.3(3),   is t-stable extending. 

Corollary 2.14: Let   be a fully stable  -module. If   is t-stable extending, then every direct 

summand is t-stable extending. 

        Recall that  an R-module   has the summand intersection property (SIP) if the intersection of 

two direct summands of M is a direct summand  [13].  Since S-extending and t-stable extending are 

equivalent in the class of nonsingular modules, thus we have every direct sumand of t-stable extending 

module  (where   is nonsingular with SIP) is t-stable extending module. Also, we have by [2, 

Corollary 3.2.7, Corollary 3.2.8 and Corollary 3.2.9] the following: 

1- Let  be a nonsingular SS-module (that is every direct summand is stable). If   t-stable 

extending, then every direct summand is t-stable extending. 

2- Every direct summand right ideal of a nonsingular t-stable extending commutative ring is t-

stable extending. 

3- Every direct summand of nonsingular cyclic  -module is t-stable extending. 

An R-module M is called stable-injective relative to X (simply, S-X-injective) if for each stable 

submodule A of X, each R-homomorphism f: A M can be extended to 

an R-homomorphism g: X M.  [7, Definition 3.2.10]. 

 

     By using  the procedure of the proof of Theorem 3.2.14 [7], we have the following Lemma. 

Lemma 2.15: Let   be a stable injective module relative to a stable submodule   of  . If     such 

that   is a stable in  , then    is stable in  . 

Proof: Let           . Since   is stable injective relative to  , there exists an  -homomorphism 

      such that       where   is the inclusion mapping from   into  . It follows that      

 , since   is stable in  . So              ; that is        . But   is stable in  , so that 

         . Thus        and   is stable in  . 

Proposition 2.16: Let   be a stable injective relative to a stable submodule  . If   t-stable  

extending, then so is  . 

Proof: To prove   is t-stable. Let   be a stable submodule of  . By Lemma 2.15, A is stable in M. 

Since M is t-stable extending, there exists       such that        it follows that        for 

some      and so                   by (5, Corollary 1.3] 

 3. Strongly t-stable extending modules 
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     In this section, we extend the notion of t-stable extending modules into strongly t-stable extending 

modules. We study these classes of modules and their relations with some related concepts. 

Definition 3.1: An  -module   is called strongly t-stable extending if each stable submodule   of  . 

  is t-essential in a stable direct summand. 

Remarks and Examples 3.2: 

(1) It is clear that every strongly t-stable extending is t-stable extending 

(2) Every strongly t-extending (hence every   -torsion) module is strongly t-stable extending. In 

particular, each of  -module        where   is a positive integer is strongly t-extending (see [ 

10, Example 3.3]. Thus   is strongly t-stable extending. 

(3) The converse of (2) is not true as the following example shows: Let   be the  -module    . Let 

  be a stable submodule of  . Then              , where     is stable in   by Lemma 

2.11. Since the only stable submodules of   are  ,    , then       or           and hence 

         . Thus   is a strongly t-stable extending module. On the other hand,         is t-

closed(closed) and   is not a fully invariant direct summand, since there exists      , such that 

             for each         and so       (     )         . 

(4)    Recall that an  -module   is called weak duo if every direct summand is fully invariant   [14]. 

Let   be a week duo. Then      strongly t-stable extending if and only if   is a t-stable extending 

module. 

Proof:  It follows by (1)  

 Let   be a stable submodule of  . Then          . Since   is weak duo,   is a fully 

invariant in   and then by [7, Lemma 2.1.6]   is stable. Thus   is strongly t-stable extending. 

(5) Let   be a fully stable module. Then the following are equivalent: 

(1)   is t-stable extending; 

(2)   is t-extending; 

(3)   is strongly t-stable extending; 

(4)   is strongly t-extending; 

(6)  Every stable t-uniform module is strongly t-stable extending. 

(7)  If   is S-indecomposable and   is strongly t-stable extending, then   is a stable t-uniform. 

Proof: Let   be a stable submodule of  . Since   is strongly t-stable extending,          ,   

is a fully invariant in  . Then by[7,Lemma 2.1.6],  is stable in  , but  is S-indecomposable, so 

   . Thus        and   is a stable t-uniform. 

(8) If   is S-uniform, then   is strongly t-stable extending and  is S-indecomposable. 

(9) Let   be an indecomposable module. Then   is strongly t-stable extending if and only if   is t-

stable extending. 

(10) If   is a FI-t-extending, then   is strongly t-stable extending. The converse holds if   is FI-

quasi injective. 

Proof: Let   be a stable submodule of  . Then   is fully invariant, hence by [11, Theorem 2.2 (1)  

(7)]   is t-essential in a fully invariant direct summand, say  . By [7, Lemma 2.1.6]   is stable. 

Thus   is strongly t-stable extending. 

Proposition 3.3:Let   be an  -module which satisfies that the t-closure of any submodule is stable. 

Then the following statements are equivalent: 

(1)   is strongly t-stable extending; 

(2)   is t-stable extending; 

(3)   is t-extending; 

(4)  Every stable t-closed is a direct summand; 

(5)   is strongly t-extending. 

Proof: (1)  (2) Let N be a stable submodule of N. Then by definition of strongly t-stable extending, 

N is a t-esential in a fully invariant direct summand. Thus M is t-stable extending.    

 (3)  (4)  Since M is t-extending , every t-closed is a direct summand, so it is clear that every stable 

t- closed is a direct summand. 

 (2)  (4)  It follows by Proposition 2.8. 

(2)  (3) It follows by Proposition 2.6. 
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(4)  (1) Let   be a stable submodule of  . Then there exists a t-closure of   say   such that  

      . By hypothesis,   is stable t-closed of  , hence     . Thus   is strongly t-stable 

extending. 

(5)  (1) It follows by Remarks and Examples 3.2(2). 

(1)  (5) Let   be a t-closed of  . Hence   is a t-closure of    and so by hypthesis    is stable. 

Since   is strongly t-stable extending,        for some stable direct summand   . It follows that 

   ,  since   is t-closed. Thus   is a stable direct summand and   is strongly t-extending. 

Recall that an  module   is a multiplication module if for each    , there exists an ideal   of   

such that      [15]. 

Proposition 3.4: Let   be a multiplication t-extending. Then  is strongly t-stable extending. 

Proof: Let   be a stable submodule of  . Since   is t-stable extending, then there exists      

such that          . But    is a multiplication module implies   is a fully invariant 

submodule of   and so by [7, Lemma2.1.6],   is stable. Thus   is t-essential in stable direct 

summand of  . Therefore,   is strongly t-stable extending. 

Corollary 3.5: Every cyclic t-stable extending module over a commutative ring is strongly t-stable 

extending. 

Corollary 3.6: Every commutative t-stable extending ring is strongly t-stable extending. 

     The following is a characterization of strongly t-stable extending modules. 

Theorem 3.7: Let   be an  -module.   is strongly t-stable extending if for each stable submodule   

of  , there is a decomposition         such that      and    is a stable submodule of  and  

         . 

Proof: Let   be a stable submodule of  . Since   is strongly t-stable extending,            

and    is stable in  . Hence          for some     . Since         ,         , then 

                 by [5, Corollary 1.3]. 

 Let   be a stable submodule of  . By hypothesis, there is a decomposition          such 

that      ,    is stable in   and          . Since                     , then 

       . But    is a stable direct summand of  . Thus   is strongly t-stable extending. 

Theorem 3.8: Let        , where    and    are  -module , such that    is an abelian module  

       
          . If    and    are strongly t-stable extending, then         is strongly 

t-stable extending. 

Proof:  : Let   be a stable submodule of  . By Lemma 2.11,                 where      

is stable in   ,      is stable in   . Put                     . Since    and    are 

strongly t-stable extending, there exist                 and    is stable in    for       and 

         . It follows that                 by [5, Corollary 1.3]. Since 

              , then         . On other hand   is abelian (or        
        

  implies             ,             ,by[14,Theorem4.6].Hence        

(
                 

                 
)  (

        

        
). Hence for each            

(
   
   

),                       and                     . But    and    are stable in 

  ,    respectively  and so that                  . Thus               , hence 

      is a fully invariant in  ,         , then [2,Lemma 2.1.6]       is stable in  . 

     Now we ask the following: Is the property of being strongly t-stable extending inherit to a 

submodule? 

First we give the following  

Definition 3.9: An  -module   is said to be stable-injective if   is stable-injective to  (  is S-N-

injective), where   is any  -module. 

Theorem 3.10: Let   be a stable-injective  -module. If   is strongly t-stable extending, then every 

stable submodule of   is strongly t-stable extending. 

Proof:  Let   be a stable submodule of  . To prove   is strongly t-stable extending, let   be a stable 

submodule of  . Since   is stable-njective, then   stable-injective relative to   and hence by Lemma 

2.15,   stable submodule of  . Now   is strongly t-stable extending and   is stable in   imply there 
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exists a stable direct summand   such that            . Thus        for some     . 

Since   is stable in  ,                 where     is stable of  ,      is stable of    by Lemma 

2.11. Now         implies               by [3,Corllary 1.3]. But        , so that 

            . We claim that     is stable in  . Since   is stable of   and     is stable in  , 

then     is stable of   by Lemma 2.15. But     is stable in   and       imply     is stable in 

 . 

Proposition 3.11: Let   be an  -module which satisfies that the t-closure of any submodule is stable. 

If   is strongly t-stable extending, then every direct summand is strongly t-stable extending. 

Proof: Let     . Since   satisfies  that the t-closure of any submodule is stable, then by 

(Proposition 3.3)   is strongly t-extending and so by [8, Theorem 3.5]   is strongly t-extending. 

Thus by Remarks and Examples 3.2(2),   is strongly t-stable extending. 

Corollary 3.12: Let   be a fully stable  -module. If   is strongly t-stable extending, then every 

direct summand is strongly t-stable extending. 
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