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Abstract

In this paper we introduce the notions of t-stable extending and strongly t-stable
extending modules. We investigate properties and characterizations of each of these
concepts. It is shown that a direct sum of t-stable extending modules is t-stable
extending while with certain conditions a direct sum of strongly t-stable extending is
strongly t-stable extending. Also, it is proved that under certain condition, a stable
submodule of t-stable extending (strongly t-stable extending) inherits the property.
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Introduction

Let R be a ring with unity and M be a right R-module. A submodule N of M is called essential in M
(N <gss M) ITNNK = (0), K <M implies K = (0). "A submodule N of M is called closed in M
if it has no proper essential extension in M, that means if N <,qc W, where W < M, then N = W [1],
[2] ". It is known that for any submodule N of M, there exists a submodule H of M, such that N
<.ss H, hence H is a closed submodule of M, H is called a closure of N [3]. Asgari [4] introduced
the notion of t-essential submodule, where a submodule N of M is called t-essential (denoted by
N <;es M) if whenever W <M, NNW < Z,(M) impliesW < Z,(M), where Z,(M) is the second
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singular submodule defined by Z (%) = % [1], where Z(M) = {x € M: xI = (0) for some

essential ideal of R}. Equivalently, Z(M) = {x € M:ann(x) <,sx R} and ann(x) ={r € R:xr =
0}. M is called singular (nonsingular) if Z(M) = M(Z(M) = 0). Note that Z,(M) = {x € M: xI = (0)
for some t-essential ideal I of R}. M is called Z,-torsion if Z,(M) = M. Asgari  introduced the
concept of t-closed submodule where a submodule N is called t-closed ( <;. M) if N has no proper t-
essential extension in M [4]. It is clear that every t-closed submodule is closed, but the converse is not
true. However, under the class of nonsingular, the two concepts are equivalent. Asgari [5] stated that
for any submodule N of M, there exists a t-closed submodule H of M such that N <;.; H. H is called
a t-closure of N . A module M is called extending if for every submodule N of M there exists a direct
summand W (W <® M) such that N <., W [6]. Equivalently, M is an extending module if every
closed submodule is a direct summand. As a generalization of extending modules, Asgari [4]
introduced the concept of t-extending module, where a module M is t-extending if every t-closed
submodule is a direct summand. Equivalently, M is t-extending if every submodule of M is t-essential
in a direct summand. The notion of a strongly extending module is introduced in another study [7],
which is a subclass of the class of extending module, where an R-module M is called strongly
extending if each submodule of M is essential in a fully invariant direct summand of M, and a
submodule N of M is called fully invariant if for each f € End(M), f(N) < N [8]. A submodule N
of an R-module M is called stable if for each R-homomaorphism f: N—>M, f(N) < N[9]. It is clear that
every stable submodule is fully invariant but not conversely. An R-module M is fully stable if every
submodule of M is stable [9]. An R-module M s called strongly t-extending if every submodule is t-
essential in a stable direct summand. Equivalently, M is strongly t-extending if every t-closed
submodule is a fully invariant direct summand [10]. Saad [7] introduced the stable extending ( S-
extending) modules as a generalization of Fl-extending modules. An R-module M is called stable
extending (S-extending) if every stable submodule of M is essential in a direct summand of M. A ring
R is left (right) S-extending if R is S-extending left (right) R-module and M is called Fl-extending if
every fully invariant submodule of M is essential in a direct summand of M[11]

In this paper, we introduce the concepts of t-stable extending and strongly t-stable extending
modules. The class of t-stable extending modules contains the class of stable extending, and the class
of strongly t-stable contains the class of t-stable extending and it is contained in the class of strongly t-
extending.

In section two we study t-stable extending modules and their relationships with other related modules.
Among other results in this section, we prove that an R-module M is a t-stable-extending R-module if
and only if for each stable submodule A of M, there is a decomposition M = M; @M, such that
A< M; and A+ M, <;,c M. An R-module M is t-stable extending if and only if for each stable
submodule K of M, there exist e = e? € End(E(M)) such that K <,.,s e(E(M)) and e(M) <M
where E(M) is the injective hull of M. Let M be a stable injective relative to a stable submodule X. If
M is t-stable extending, then so is X.
In section three, we study strongly t-stable extending modules. Many properties are given.
2. T-Stable-extending Modules

In this section we introduce the concept of t-stable extending modules which is a generalization of
S-extending modules.
First we give the following definitions.
Definition 2.1: An R-module M is called t-stable extending if every stable submodule of M is t-
essential in a direct summand. A ring R is called right t-stable extending if R is a right t-stable
extending R-module.

Recall that an R-module is t-uniform if every submodule of M is t-essential in M [12]. As a
generalization of t-uniform module, we present the following concept.

Definition 2.2: An R-module is called stable-t- uniform if every stable submodule of M is t-essential
inM.

Remarks and Examples 2.3:

(1) It is clear that every S-extending module (or t-extending module) is t-stable extending, for
example:
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(i)For arbitrary Z-module M, E(M)®Z,®Zg is t-extending [4], so it is t-stable extending. Also Z,®Q
as Z-module is S-extending, so it is t-stable extending.

Recall that an R-module M is called t-continuous if M satisfies the following: M is t-extending, and
every submodule of M which contains Z, (M) and isomorphic to direct summand of M is itself a direct
summand [3]. Hence, every t-continuous module is t-stable extending. Hence, we can give the
following examples:

(NBy [6, Example 2.6(2)], Let R be a Z,-torsion ring (e.g R = Pf—z, for a prime number P) and set

T = (ﬁ g) . T2 t-continuous T-module. It follows that T2 is a t-stable extending module. However,

T2 is not stable extending. Hence T2 is not stable extending.
(1) Let R be aring and M be an R-module and I <,4 R. The R-module E(M)@? is t-continuous [6,

Example 2.6(1)], so it is t-stable extending. In particular if M = Z, as Z-module. Then preai =
Zp@®Z, is t-stable

(2) Let M be a nonsingular R-module. Then M is S-extending if and only if M is t-stable extending.
Proof: since M is non-singular, then the two concepts essential and t-essential coincide [5]. Hence the
two concepts, S-extending and t-stable extending, are equivalent.

(3) If Misasingular module then M is t-stable extending.

Proof: since M is a singular module then Z,(M)=M and for every submodule N of M,N+ Z, (M)=
N+M=M<,,s M, hence N<;.sM by[5,Propl.1]. But M is a direct summand of M, so every stable
submodule of M is t-essential in a direct summand. Thus M is t-stable extending

(4) Every Fl-t-extending is t-stable-extending where M is Fl-t-extending if every fully invariant is t-
essential in a direct summand.

Proof: Let N be a stable submodule of M. Then N is fully invariant, hence N is t-essential in a direct
summand.

(5) The converse of (4) holds if M is Fl-quasi-injective, where an R-module M is called Fl-quasi-
injective if for each fully invariant submodule N of M, each R-homomorphism f: N—M can be
extended to an R-endomorphism g: M—M [7].

Proof: Let N be a fully invariant submodule of M. By [7, Proposition 3.1.19] N is stable. Hence by t-
stable extending property of M, N is t-essential in direct summand. Thus M is a FI-t-extending.

(6) t-stable extending module need not be extending, for example the Z-module Zg®Z, is not
extending but it is S-extending by [7, Remarks and Examples 3.1.3(3)] hence it is t-stable extending.
(7) Every stable t-uniform (hence every t-uniform) is t-stable extending.

Proof: Let N be a stable submodule of M. Hence N <, M. But M <® M, so N is t-essential in a
direct summand.

Recall that an R-module M is called an S-indecomposable if (0) , M are the only stable direct
summand. M is S-extending and S-indecomposable if M is S-uniform. "An R-module M is called
stable uniform (shortly, S-uniform) if every stable submodule of M is essential in M " [7]. However
we have:

Proposition 2.4: If M is t- stable extending and indecomposable, then M is stable t- uniform.

Proof: Let N be a stable submodule in M. Then N <,,; W for some W <® M. Since M is
indecomposable, W = M. Thus N <;.¢ M and so M is a t-stable uniform.

Note that a stable t- uniform module does not imply indecomposable, for example Z, as Z-module is
stable t- uniform, but Z, is not indecomposable. Also, Z is not S-indecomposable.

Proposition 2.5: Let M be an R-module. If M is t-stable extending, then every stable t-closed
submodule is a direct summand and the converse holds if every t-closure of stable submodule is stable.
Proof: Let N be a stable t-closed submodule. Since M is t-stable extending, N <;.c W for some
W <® M. Hence N = W <® M, since N is a t-closed. Now if N is a stable submodule of M, then
N <;.s W, where W is a t-closure of N [5,Lemma 2.3]. By hypothesis, W is stable, and so W is stable
t-closed, which implies W <® M. Thus N is t-essential in a direct summand and M is t-stable
extending.
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Proposition 2.6: Let M be an R-module which satisfies that the t-closure of any submodule is stable.
Then M is t-stable extending if and only if M t-extending.

Proof: = Let N be a t-closed of M. Hence N is a t-closure of N and so by hypothesis, N is stable. But
M is t-stable extending, so there exists W <® M such that N <,,; W. Thus N = W because N is t-
closed and so M is t-extending.

< If M is t-extending, then by Remarks and Examples 2.3(1), M is t-stable extending.

Corollary 2.7: Let M be a fully stable R-module. Then the following statements are equivalent:

(1) M is at-stable extending module;

(2) M is at-extending module ;

(3) M is astrongly t-extending module.

Proof: Since M is a fully stable R-module, and the t-closure of any submodule of M is stable . Then
(1) < (2) follows by Proposition 2.6.

(1)=(3) Let N < M. Since M is fully stable, then N is stable. Hence N is t-essential in a direct
summand W. But W is stable in M. Then N is t-essential in a stable direct summand and so M is
strongly t-extending.

(3)=(2) obvious.

Proposition 2.8: Let M be an R-module that satisfies that the t-closure of any submodule is stable.
Then the following statements are equivalent:

(1) M is at-stable extending module;

(2) Every stable t-closed submodule of M is a direct summand;

(3) Every stable submodule is t-essential in stable direct summand.

Proof: (1)=(2) Let N be a stable t-closed submodule. Condition (1) implies N is t-essential in a direct
summand W. Hence N = W <® M since N is a t-closed.

(2)=(3) Let N be a stable submodule in M. Then N has a t-closure W; such that N <;,; W and W is a
t-closed. But W is stable by hypothesis , so that W is t-closed stable. Then by condition (2) W <® M
and hence N is t-essential in a stable direct summand.

(3)=(1) clear.

The following are characterizations of the t-stable extending modules.

Theorem 2.9: An R-module M is t-stable-extending if and only if for each stable submodule A of M,
there is a decomposition M = M; @M, suchthat A < M; and A + M, <;.c M.

Proof: = Suppose M is t-stable-extending. Let A be a stable submodule of M. Then
A <ios M; <® M, hence M;®M, = M for some M, < M. It follows that A®M, <,.; M;®M, =
M(since A <o M, and M, <..s M, [5, Corollary1.3].

< Let A be a stable submodule of M. By hypothesis, there is a decomposition M = M, @M, with
A< M; and A+ M, <ips M = M;®M,. It follows that A<,.; M; by [5, Corollary 1.3]. Thus
A<,.c M; <® M. Therefore M is t-stable-extending.

The following is another characterization of t-stable extending modules.

Theorem 2.10: An R-module M is t-stable extending if and only if for each stable submodule K of M,
there exists e = e? € End(E(M)) such that K <,.s e(E(M)) and e(M) < M where E(M) is the
injective hull of M.

Proof:= Assume M is t-stable extending. Let K be a stable submodule of M. Then there exists
D <® M of M such that K <., D and so there is H < M such that = D@®H . Hence E(M) =
E(D)®E(H). Let e: E(M) — E(D) be the projection endomorphism from E (M) onto E(D). Clearly
e? =e(e is idempotent). Thus we have e(M) < (D®H). Also, K <;.s D <.sc E(D) implies
K <tes E(D) = e(E(M)).

< Let K be a stable submodule of M. By hypothesis, There exists e € End(E(M)), e? = e such that
K <ies e(E(M)) and e(M) < M.Since M <;s M, then KNM <5 e(E(M))NM = e(M). It is easy
to see that e(E(M))NM = e(M). Also, since K N M = K, hence K <,.; e(M). But e(M) <® M[7,
Lemma 1.1.22], so K is t-essential in stable direct summand. Thus M is stable extending.

Lemma 2.11: Let M = @;¢;M;. Let N be a stable submodule of M. Then N = @;¢;(NNM;) where
NNM; is stable in M;, Vi € I.
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Proof: Let W be a stable submodule. Then W = @;¢;(WNM;) by [9, Proposition 4.5] we claim that
NNM; is stable in M;, for each i € I. To prove this, let g:WNM; — M; be any R-homomorphism.

Then g(WNM,) € M;. Consider the following W = @,c;(WNM; > wnM; 5 M, > M = @, M,,
where p is the natural projection and i is the inclusion mapping. Then (i o g o p)(W) € W (since W
is stable in M). But (iogop)W)=iogWNM;) =i(g(WNM;) = g(WNM;). Thus
WNM;))(W) € W. From above g(WNM;) € M;, so we get gl(WNM;) € WNM; and WNM; is a
stable submodule of M;, for each i € I.

Theorem 2.12: A direct sum of t-stable extending modules is t-stable extending.

Proof: Suppose that M = @;¢;M;, M; is t-stable extending for each i € I. Let W be a stable
submodule of M. Then W = @;¢;(WNM;) and WNM; is stable in M; for each i € I by Lemma 2.11
and so by the t-stable extending property of M;, WNM,; is t-essential in a direct summand N; of M;
for each i € I. Then @;c;(WNM,;) <tes ®;c;N; by [5,Coroallary 1.3]. Put N = ®;¢;N;, so N <® M.
Thus N <, N <® M and (] is t-stable extending.

Note that any direct sum of extending is S-extending [7, Corollary 3.2.2], hence by Remarks and
Examples 2.4(2), it is t-stable extending.

By applying Theorem 212, each of Z,®Z,Z,®Q(for each prime number P)
Z®Z,72,P74,Z®Z,ZBZDZ ... as Z-module is t-stable extending. Not that Z,®Zg and ZHZDZ ... are
not extending. Note that by [7, Corollary 3.2.4] every finitely generated Z-module is S-extending,
hence it is t-stable extending.

Proposition 2.13: Let M be an R-module which satisfies that the t-closure of any submodule is stable.
If M is t-stable extending, then every direct summand is t-stable extending.

Proof: Let N <® M. Since M is t-stable extending, then M is t-extending by Proposition 2.6. Hence N
is t-extending by [4, Proposition 2.14(1)]. It follows that N is Fl-t-extending and hence by Remarks
and Examples 2.3(3), N is t-stable extending.

Corollary 2.14: Let M be a fully stable R-module. If M is t-stable extending, then every direct
summand is t-stable extending.

Recall that an R-module M has the summand intersection property (SIP) if the intersection of
two direct summands of M is a direct summand [13]. Since S-extending and t-stable extending are
equivalent in the class of nonsingular modules, thus we have every direct sumand of t-stable extending
module M(where M is nonsingular with SIP) is t-stable extending module. Also, we have by [2,
Corollary 3.2.7, Corollary 3.2.8 and Corollary 3.2.9] the following:

1- Let Mbe a nonsingular SS-module (that is every direct summand is stable). If M t-stable
extending, then every direct summand is t-stable extending.

2- Every direct summand right ideal of a nonsingular t-stable extending commutative ring is t-
stable extending.

3- Every direct summand of nonsingular cyclic Z-module is t-stable extending.

An R-module M is called stable-injective relative to X (simply, S-X-injective) if for each stable
submodule A of X, each R-homomaorphism f: A—M can be extended to

an R-homomorphism g: X—M. ” [7, Definition 3.2.10].

By using the procedure of the proof of Theorem 3.2.14 [7], we have the following Lemma.
Lemma 2.15: Let M be a stable injective module relative to a stable submodule X of M. If A € X such
that 4 is a stable in X, then A is stable in M.

Proof: Let f € Hom(A, M). Since M is stable injective relative to X, there exists an R-homomorphism
g:X — M such that g o i = f where i is the inclusion mapping from A into X. It follows that g(X) <
X, since X is stable in M. So g o i(A) = g(A) € X; that is g| ,: A — X. But A is stable in X, so that
gl 4(4) S A. Thus f(A) S A and A is stable in M.

Proposition 2.16: Let M be a stable injective relative to a stable submodule X. If M t-stable

extending, then so is X.

Proof: To prove X is t-stable. Let A be a stable submodule of X. By Lemma 2.15, A is stable in M.
Since M is t-stable extending, there exists D <® M such that A <, D it follows that M = D@D’ for
some D' € Mandso A = XND <., X ND <® M by (5, Corollary 1.3]

3. Strongly t-stable extending modules
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In this section, we extend the notion of t-stable extending modules into strongly t-stable extending
modules. We study these classes of modules and their relations with some related concepts.
Definition 3.1: An R-module M is called strongly t-stable extending if each stable submodule N of M.
N is t-essential in a stable direct summand.
Remarks and Examples 3.2:
(1) Itis clear that every strongly t-stable extending is t-stable extending
(2) Every strongly t-extending (hence every Z,-torsion) module is strongly t-stable extending. In
particular, each of Z-module M = Z,,@®Z where n is a positive integer is strongly t-extending (see [
10, Example 3.3]. Thus M is strongly t-stable extending.
(3) The converse of (2) is not true as the following example shows: Let M be the Z-module Z®~Z. Let
N be a stable submodule of M. Then N = (NNZ)®(NNZ), where NNZ is stable in Z by Lemma
2.11. Since the only stable submodules of Z are Z, (0), then N = Z&Z or N = (0)®(0) and hence
N <.s N <® M. Thus M is a strongly t-stable extending module. On the other hand, N = Z&®(0) is t-
closed(closed) and N is not a fully invariant direct summand, since there exists f: M — M, such that
f(x,y) = (y,x) foreach (x,y) € Mand so f(N) = f(Z®(0)) = (0)®Z % N.
(4) Recall that an R-module M is called weak duo if every direct summand is fully invariant [14].
Let M be a week duo. Then M is strongly t-stable extending if and only if M is a t-stable extending
module.
Proof: = It follows by (1)
& Let N be a stable submodule of M. Then N <., W <® M. Since M is weak duo, W is a fully
invariant in M and then by [7, Lemma 2.1.6] W is stable. Thus M is strongly t-stable extending.
(5) Let M be a fully stable module. Then the following are equivalent:
(1) M ist-stable extending;
(2) M ist-extending;
(3) M is strongly t-stable extending;
(4) M is strongly t-extending;
(6) Every stable t-uniform module is strongly t-stable extending.
(7) If M is S-indecomposable and M is strongly t-stable extending, then M is a stable t-uniform.
Proof: Let N be a stable submodule of M. Since M is strongly t-stable extending, N <,,c W <® M, W
is a fully invariant in M. Then by[7,Lemma 2.1.6], Wis stable in M, but Nis S-indecomposable, so
W =M. Thus N <;.c M and M is a stable t-uniform.
(8) If M is S-uniform, then M is strongly t-stable extending andM is S-indecomposable.
(9) Let M be an indecomposable module. Then M is strongly t-stable extending if and only if M is t-
stable extending.
(10) If M is a Fl-t-extending, then M is strongly t-stable extending. The converse holds if M is FI-
quasi injective.
Proof: Let N be a stable submodule of M. Then N is fully invariant, hence by [11, Theorem 2.2 (1) <
(N] N is t-essential in a fully invariant direct summand, say W. By [7, Lemma 2.1.6] W is stable.
Thus M is strongly t-stable extending.
Proposition 3.3:Let M be an R-module which satisfies that the t-closure of any submodule is stable.
Then the following statements are equivalent:
(1) M is strongly t-stable extending;
(2) M ist-stable extending;
(3) M ist-extending;
(4) Every stable t-closed is a direct summand;
(5) M is strongly t-extending.
Proof: (1) = (2) Let N be a stable submodule of N. Then by definition of strongly t-stable extending,
N is a t-esential in a fully invariant direct summand. Thus M is t-stable extending.
(3) = (4) Since M is t-extending , every t-closed is a direct summand, so it is clear that every stable
t- closed is a direct summand.
(2) < (4) It follows by Proposition 2.8.
(2) & (3) It follows by Proposition 2.6.
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(4) = (1) Let N be a stable submodule of M. Then there exists a t-closure of N say W such that
N <..s W. By hypothesis, W is stable t-closed of M, hence W <® M. Thus M is strongly t-stable
extending.
(5) = (1) It follows by Remarks and Examples 3.2(2).
(1) = (5) Let N be a t-closed of M. Hence N is a t-closure of N and so by hypthesis N is stable.
Since M is strongly t-stable extending, N <;.; W for some stable direct summand W. It follows that
N = W, since N is t-closed. Thus N is a stable direct summand and M is strongly t-extending.
Recall that an Rmodule M is a multiplication module if for each N < M, there exists an ideal I of R
such that N = MI [15].
Proposition 3.4: Let M be a multiplication t-extending. ThenM is strongly t-stable extending.
Proof: Let N be a stable subomodule of M. Since M is t-stable extending, then there exists H <® M
such that N <tes H <® M. But M is a multiplication module implies H is a fully invariant
submodule of M and so by [7, Lemma2.1.6], H is stable. Thus M is t-essential in stable direct
summand of M. Therefore, M is strongly t-stable extending.
Corollary 3.5: Every cyclic t-stable extending module over a commutative ring is strongly t-stable
extending.
Corollary 3.6: Every commutative t-stable extending ring is strongly t-stable extending.

The following is a characterization of strongly t-stable extending modules.
Theorem 3.7: Let M be an R-module. M is strongly t-stable extending if for each stable submodule A
of M, there is a decomposition M = M; @M, such that A < M; and M, is a stable submodule ofM and
A+ M, <gps M.
Proof:=> Let A be a stable submodule of M. Since M is strongly t-stable extending, A <;.c M; <® M
and M, is stable in M. Hence M = M;@[1M, for some M, < M. Since A <;os M; , M, <;.s M,, then
A+ M, <;os M;®M, = M, by [5, Corollary 1.3].
< Let A be a stable submodule of M. By hypothesis, there is a decomposition M = M;&[ M, such
that A < M;, M; isstablein M and A + M, <;os M. Since A + M, = A®M, <;.c M = M;®M,, then
A <;.s M;. But M; is a stable direct summand of M. Thus M is strongly t-stable extending.
Theorem 3.8: Let M = M;®M,, where M; and M, are R-module , such that M is an abelian module
(annM,; ,@annM,, = R). If M, and M, are strongly t-stable extending, then [ = [1,6], is strongly
t-stable extending.
Proof: : Let N be a stable submodule of M. By Lemma 2.11, N = (NNM;)®(NNM,) where NNM;
is stable in M;, NNM,, is stable in M,. Put N; = (NNM;),N, = (NNM,) . Since M; and M, are
strongly t-stable extending, there exist W; <® M; ,W, <® M, and W; is stable in M; for i = 1,2 and
Ni <tes W;. It follows that N;®N, <(.c W;®W, by [5  Corollary 1.3]. Since
w; <® M, ,W, <® M,, then W;@®W, <® M. On other hand M is abelian (or (annM; ;@annM,, =
R)implies Hom(M;,M,) =0, Hom(M,, M;) = 0,by[14,Theorem4.6].Hence End(M) =

End(M;) Hom(MZ,Ml)) - (End(Ml) 0 ) _
(Hom(Ml,MZ) End(M,) =~ 0 End(M,)) Hence for each fe€End(M),f=

f .
(5 fi) f, € End(M,),f, € End(M,) and f(W; ®W,) = f(W;)®f(W,). But W; and W, are stable in
M;, M, respectively and so that f(W;) € W;,f(W,) € W,. Thus f(W,;®W,) € W,®W,, hence
W, ®W, is a fully invariant in M, W; ®@W, <® M, then [2,Lemma 2.1.6] W; ®W, is stable in M.

Now we ask the following: Is the property of being strongly t-stable extending inherit to a
submodule?
First we give the following
Definition 3.9: An R-module M is said to be stable-injective if M is stable-injective to N(M is S-N-
injective), where N is any R-module.
Theorem 3.10: Let M be a stable-injective R-module. If M is strongly t-stable extending, then every
stable submodule of M is strongly t-stable extending.
Proof: Let X be a stable submodule of M. To prove X is strongly t-stable extending, let A be a stable
submodule of X. Since M is stable-njective, then M stable-injective relative to X and hence by Lemma
2.15, A stable submodule of M. Now M is strongly t-stable extending and A is stable in M imply there
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exists a stable direct summand D such that A <(.s D <® M. Thus M = D@D’ for some D’ < M.
Since X is stable in , X = (XND)&(XND') where XND is stable of D, XND’ is stable of D’ by Lemma
2.11. Now A <s D implies A = XNA <(s XND by [3,Corllary 1.3]. But(XND) <® X, so that
A <(es XNA <® X. We claim that XND is stable in X. Since D is stable of M and XND is stable in D,
then XND is stable of M by Lemma 2.15. But XND is stable in M and XND < X imply XND is stable in
X.

Proposition 3.11: Let M be an R-module which satisfies that the t-closure of any submodule is stable.
If M is strongly t-stable extending, then every direct summand is strongly t-stable extending.

Proof: Let W <® M. Since M satisfies that the t-closure of any submodule is stable, then by
(Proposition 3.3) M is strongly t-extending and so by [8, Theorem 3.5] W is strongly t-extending.
Thus by Remarks and Examples 3.2(2), W is strongly t-stable extending.

Corollary 3.12: Let M be a fully stable R-module. If M is strongly t-stable extending, then every
direct summand is strongly t-stable extending.
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