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Abstract

COVID-19 is a universal infectious disease recognized first by people with
influenza and bacterial pneumonia symptoms in Wuhan, Hubei Province. Currently,
a new mutated disease has the same symptoms as COVID-19 and influenza and
causes dangerous infections in the body. Due to the fact that these two diseases
share some diagnostic features and symptoms in common with one another,
healthcare workforces require aid and support in predicting patients' conditions. This
was done by using machine learning methods in diagnosis. From this point, this
paper proposes a diagnostic model to detect patients’ symptoms and classify them
into one of five disease groups, utilizing Neighborhood Component Analysis (NCA)
as a feature selection method and the Hidden Naive Bayes (HNB) method as a
multiclass classifier. This paper suggests the model consists of two significant
phases: the pre-processing phase (cleaning, normalization, and discretization) and
the classification phase. Conducting the COVID-19 dataset, the experimental
findings showed that the suggested multi-class model had 89% accuracy for disease
diagnoses. Furthermore, according to the patient’s symptoms, the proposed
classification model led to a good diagnosis for the mutated COVID-19 disease.
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1. Introduction

Data mining (DM) has gained popularity in the commercial and healthcare sectors as a
synthetic intelligence tool. It is also known as fact gathering, data/pattern analysis, knowledge
extraction, and discovery. The development in health care is due to the many varied uses of
smart devices and the creation of intelligent systems for diagnosis in the early stages.
Hospitals gather much data in the form of electronic health records (EHR), which contain
patient information. Expert systems based on machine learning and decision support systems
(DSSs) are currently needed in health and medical applications that rely on the early diagnosis
of disorders. Most of these algorithms, including Hidden Naive Bayes (HNB), an extension of
Naive Bayes, deal with classifications established based on the kind of processed data [1]. A
severe respiratory syndrome, the coronavirus illness (COVID-19), which was initially
identified in Chinese Wuhan City in 2019 and resulted in serious community health and social
economic turmoil, is initiated by the SARS coronavirus. Some of the primary symptoms of
COVID-19 are breathing difficulties, fever, coughing, and a sore throat [2]. Numerous
classification algorithms have been used for illness datasets to diagnose chronic diseases, and
the results are extremely promising [3]. Nave Bayes (NB) and Hidden Naive Bayes (HNB)
classifiers are probabilistic classifiers that predict a class based on membership probability. It
is among the most effective classification techniques because it analyzes the correlation
between the independent and dependent variables to calculate conditional probability. In the
last two decades, several studies have been done to lessen the independence assumption of the
NB classifier. The HNB classifier, based on creating an additional layer representing a hidden
parent for each feature, was first developed in one of these investigations [1]. In terms of
attribute interdependence, Compared to naive Bayes, hidden naive Bayes is a more accurate
classification method. A Bayesian classifier called HNB avoids unsolvable complexity and
considers the impact of all features [4].

In this work, an algorithm for classification HNB is utilized to predict whether a patient is
thought to have one of the five mutation-related diseases (asymptomatic, mild COVID-19,
severe COVID-19, flu, or normal), according to the patient's symptoms. The rest of this article
is structured as follows: Section 2 describes the nature of the problem definition and prime
objective. Then, the related work that has been highlighted is presented properly in Section 3.
In Section 4, the machine learning definitions are summed up. Next, Section 5 explains
feature selection categorizations. Then, Section 6 describes the proposed model. Section 7
presented a discussion and the results from the suggested model, while Section 8 concluded
the discussion.

2. Problem Definition and Main Objective

Because of the wide spread of infected people with similar symptoms and diseases, early
illness diagnosis is crucial for treating and managing the conditions. The healthcare system
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may now be protected from overload by quickly identifying and isolating affected individuals,
which will flatten the epidemic curve. The main task is to help healthcare organizations detect
the disease cases of tested patients in their early stages to help reveal to what level the
similarities between COVID-19 and flu infections are and to decrease the side effects of both.
According to the fast mutation of COVID-19, accurate disease detection will be more helpful
during the pandemic and assist in developing promising approaches and taking creative
decisions.

3. Related Work

The medical community, particularly the World Health Organization, is under pressure as
the disease spreads rapidly over the globe. As a result, extensive research is underway to
determine how to diagnose people with a mutated low-risk COVID-19 infection based on
symptoms similar to those of other diseases. Widespread interest has developed in studying
many types of research related to coronaviruses with machine learning algorithms [5]. There
are numerous related works about COVID-19 with machine learning. In this section, some of
them are described as the following:

The research work in [4] developed the HNB algorithm to classify and forecast cardiac
disease. The suggested method used discretization and IQR filters for improvement. The
experimental results had the best accuracy of 100 percent compared to the NB classification
model. It was determined that the suggested approach, which used the HNB model, helped
create a reliable decision support system for disease diagnosis. This research [5] developed
machine learning strategies using multilayer perceptron, Bayes network, naive Bayes, and
locally weighted learning algorithms for classifying patient symptoms into HIN1 and
COVID-19 classifications. Bayes network had an accuracy of 86.57 percent, while the
accuracy of the NB was 82.34 percent. The multilayer perceptron accuracy was 99.31 percent,
while the locally weighted learning method had an accuracy of 88.89 percent, and the random
forest had an accuracy of 83.16 percent. Another research work in [6] consumed an
epidemiology COVID-19 dataset from patients from South Korea. To forecast patient
recovery, they applied decision trees, logistic regression, support vector machines, naive
Bayes, random forests, and K-nearest neighbor techniques. The results indicate that the
decision tree approach model has an overall accuracy of 99.85 percent in predicting whether
or not infected people will recover from the COVID-19 pandemic. One more study on the
COVID-19 dataset in India [7] explained the concept of SVM (support vector machine) and
cross-validation. The results show that support vector machine SVM produced accurate
results in classifying data on recovered and deceased patients, with an accuracy of 99 percent
and a precision of 98 percent, while a recall of 95 percent in the performance measure. In
additional research work in [8], Hidden Naive Bayes and Ada-Boost algorithms were used.
They employed a discretization approach instead of replacing missing values. Also, the
feature selection method is utilized to remove unnecessary features in each iteration of Ada-
Boost. The suggested technique required less training time and provided a greater chance of
scaling to data mining applications. In one more research work [9], reports for textual clinical
were divided into four groups using ensemble learning techniques. Three feature extraction
methods were used: (TF/IDF) term frequency/inverse document frequency, (BOW) bag of
words, and report length. The results demonstrated that logistic regression and the
multinomial Naive Bayes algorithm outperformed all other algorithms, with a precision of 94
percent, recall of 96 percent, F1 score of 95 percent, and accuracy of 96.2 percent. At the
same time, random forest and gradient boosting also performed well, with an accuracy of 94.3
percent and 94.3 percent, respectively. Furthermore, the study [10] outlined a novel
coronavirus detection method using a Naive Bayes classifier by calculating all individual
probabilities that could be applied to the coronavirus attribute that is the target, including all
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possible probabilities. As a result, three groups of coronaviruses were divided. Mammalian
coronaviruses fall under groups 1 and 2, and avian coronaviruses fall under group 3. Also,
different classical methods were used in coronavirus diagnosis, including RT-PCR and
ORF1lab. The research [11] described and categorized pandemics using two algorithms: the
fuzzy C-mean (FCM) clustering technique and the back propagation (BP) classification
algorithm. Two phases made up the implementation: first, the FCM algorithm determines the
type of virus. Then, use BP as a classifier to determine the pandemic class. And for
optimization, the associated features that improve the model to enhance accuracy are used in
information gain (IG). The system's accuracy was up to 0.79 percent using the back
propagation method. In additional research work in [12], an improved algorithm—the double-
hidden naive Bayes algorithm—is proposed to make full use of the dependency relationship
between attributes. Experimental results show that this classification algorithm based on
improved TF-IDF and double-hidden naive Bayes can improve the speed, accuracy, and recall
rate of classification results.

4. Machine Learning Categorization

1. The main areas within machine learning methods are:

2.

3. Supervised Learning: takes train-set input variables with previously identified labels. A
specific classifier is utilized for learning the map function from input to output, also known as
the one-label classification. Some of the classification methods are: naive Bayes, hidden naive
Bayes and support vector machines [13] and [14].

4. Unsupervised learning takes input variables from training datasets with no previously
known labels, such as clustering methods. [15] [16].

4.1 Hidden Naive Bayes Classifier

Over the past two decades, much research has been done on the objectivity theory of the
Naive Bayes NB classifier. As shown in Figure 1, the HNB classifier, proposed in one of the
studies, is a novel classifier that is based on building a second layer that acts as a hidden
parent for each attribute, which is represented as a dashed circle in the figure. The advantage
of employing hidden parents (Ay,;) is the combination of the weighted inspirations from all
other attributes (4;) where i, j =1, 2... N and (j # i). Prob(C) is the probability of class. The
definition of the joint distribution is given by Eq. (1). The hidden parent is illustrated in Eq.
(2), and the HNB classifier is formulated in Eq. (3) [14, 17].
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Figure 1: Hidden Naive Bayes Structure [17]
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Prob(4,,.Ay|C) = Prob(C) [T}, Prob(A;|Any;, C) 1)

Where
Prob(A;|Anpi, C) = X7-y jui Wij * Prob(4;|4;,C) (2)
And Z?’:Lj# W;; = 1. the hidden parent A,; for A; is a combination effect from all other

weighted attributes. Then the classifier for the hidden Naive Bayes on an event E= {a:... an}
is shown as:
c(E) = arg max Prob(c) [1i=, Prob(a;|any;, c) 3)
c
Using conditional mutual information (CMI) between each pair of features (4;) and (4;),

the weights W;; are computed initially. The formulas Eq. (4), Eq. (5) depicts the CMI
formulation [14, 17].

CMI (Aj;:Af(C)

4)
?:1,j¢iCMI(Ai;Aj|C)

Wij ==
Where

Prob(a;aj|c)
Prob(@;|C)P(aj|c) ()

CMI(A;; 4|C) = Xaya,c Prob(a, aj,c)log

By estimating the parameters using the training data, it is simple to integrate the effects of all
the other variables using CMI information. However, estimating the parameters in HNB using
the training data is a key step in model learning [14].

5. Feature Selection

Before using a learning system, feature selection is a crucial data processing step. To increase
the effectiveness of the classification and reduce the amount of data stored in memory, it is
required to identify a subset of important features from the original features. It helps lessen
the effects of the curse of dimensionality, reduces processing requirements, increases learning
accuracy, and helps to pinpoint which characteristics could be relevant to a given issue [18].

5.1 Feature Selection Methods

They are classified into unsupervised, supervised, and semi-supervised according to the
dataset (label or un-label) as follows: [18]
e Unsupervised: A feature selection method that depends on clustering quality metrics and
might result in several equally valid feature subsets is a less confined search issue without
class labels.
e Supervised: A feature selection method that can be divided into embedded models, filter
models, and wrapper models. Firstly, the filter model separates selecting features from
classifier learning, preventing one algorithm's bias from influencing the other's prejudice. It is
based on the training data's general properties, including distance and correlation. The most
representative filter model techniques are information gain, Fisher score, and relief
approaches. Secondly, wrapper models employ a chosen learning algorithm's predicted
accuracy to assess the features' quality. Unfortunately, the cost of implementing these
algorithms for data with a lot of characteristics is high. Lastly, the embedded model fills the
space left by the wrapper and filter models. As with the filter model, it begins by
incorporating the statistical criteria to choose potential feature subsets with a specific
cardinality. The subgroup with the best classification accuracy is then selected.
e Semi-supervised: A feature selection method used when both labeled and unlabeled data
are used to provide relevant estimates.
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5.2 Neighborhood Component Analysis (NCA)

This method is used to choose features to increase the predictive power of classification
and regression algorithms. It's non-parametric and embedded method. Regularization of
feature weight learning aims to minimize the mean (leave-one-out) loss classification over the
train set of data by minimizing the objective function [8].

6. General Design of the Proposed System

The present medical analysis reveals identical symptoms between the flu and COVID-19
(mild or severe). Therefore, a machine learning algorithm is needed to classify patients
according to their symptoms (asymptomatic information). In this section, the essential phases
of the suggested model are presented. Utilizing the COVID-19 dataset, the proposed model
will reveal whether the patient is affected by: 1-asymptomatic (class 1), 2-mild COVID-19
(class 2), 3-severe COVID-19 (class 3), 4-flu (class 4), and 5-normal (class 5). Accordingly,
the model is composed of two phases: (1) The pre-processing phase. (2) Classification phase.
Figure 2 shows our proposed model's general structure, which is made up of the following
steps:

Pre-p ssing
(No‘on y
Discretization)

-

-

Ev'on
-w
Figure 2: The Proposed Model Block Diagram

6.1 Pre-Processing Stage

During this phase, a transformation is performed to convert the incomplete and
inadequately extracted raw data into quality data and provide a useful data pattern for the
proposed models. The COVID-19 dataset was loaded and conducted from the website
https://covid19-influenza-response.cells.ucsc.edu for 59,570 patient records with 26 data
columns (not considering the label column) for patients as shown in Table 1 (a, b, and c). The
features are: Cell Id, Sample ID, Patient ID, Disease group, Comorbidity, Hospital-day,
WBC/micro-L, Neutrophil/micro-L (%), Lymphocyte/micro-L (%), Monocyte/micro-L (%),
C-reactive protein (mg/ dl), Chest X-ray, Treatment, Respiratory rate (BPM), O2 Saturation,
02 Supplement, Temperature (Temp.), Systolic BP, Heart rate, Consciousness, Score for
NEWS, Severity, Cell type, UMI number, Gene number, and Percentage of mitochondrial
gene. Three essential pre-processing steps are performed. They are:
1. Cleaning data: in this step, data cleaning routines are done to clean the data by removing
the columns that do not affect decision making, such as Patient Id and Sample Id. Also,
columns with many no values (NAN), such as Lymphocyte/micro-L, Monocyte/micro-L, and
C-reactive protein (mg/dL), are ignored.
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Table 1: a- The First 10 Features of COVID-19 Dataset
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AAACCCAAG severe 19235 1055 1271
GGCAATC-1 | "COV1 | CL | coypgg | Mone | 16 1 21840 | 95 | (49) | (5.9
AAACCCACA severe 19235 1055 1271
GCTGAAG-1 | "COV1 | CL | coyipag | MOne | 16 | 21540 | (g9 | 49) | (59)
AAACCCAGT severe 19235 1055 1271
cTTcGAA1 | "V | C1 | coyipgg | Mone | 16 | 21540 | g0 s | 49 | (5.9)
AAACCCAGT severe 19235 1055 1271
TeceeTT-1 | MOV | €L covipag | MOne | 16| 21940 | g9 | a9) | (59)
AAACGAAAG severe 19235 1055 1271
GGAGGTG-1 | "COV1| CL | coyipaag | Mone | 16| 21540 | (g9 | 49) | (59)
AAACGAACA severe 19235 1055 1271
AGGTTGG-1 | "COV1 | CL | coyipag | MOne | 16 | 21540 | (g9 | 49) | (59)
AAACGAAGT severe 19235 1055 1271
CTACAAC-1 | "COV-1 | CL | coyipoqg | Mone | 16| 21540 | g5y | (49) (5.9)
AAACGCTAG severe 19235 1055 1271
GCTTAAA-1 | OOV | €L ooy pqg | Mone | 16| 21540 | g4y | (49 (5.9)
AAACGCTC severe 19235 1055 1271
ATGACCCG-1 | "COV-1 | C1 | coyipgg | Mone | 16 | 21540 | (g5 | (1) (5.9)
Table 1: b- The Next Features of COVID-19 Dataset
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oy nucleoside/ritonavir,
GGC?ACAC\:'I%A-\f 7.58 | Pneumonia | hydroxychloroquine, 24 90 EC,\'XI\? 37.6 92
anticoagulant
nucleoside/ritonavir,
Aé’%’?}%iigcf‘ 7.58 | Pneumonia | hydroxychloroquine, 24 90 EC,\'XI\? 37.6 92
anticoagulant
nucleoside/ritonavir,
Ag_?_(é(éCAiGlT 7.58 | Pneumonia | hydroxychloroquine, 24 90 EC|\I>|/I\(/D 37.6 92
anticoagulant
nucleoside/ritonavir,
A_I,_B(\:A(\:%%(;Ifr(_}lT 7.58 | Pneumonia | hydroxychloroquine, 24 90 EC|\I>|/I\(/D 37.6 92
anticoagulant
A AA A nucleoside/ritonavir,
GG:GGGTG—E 7.58 | Pneumonia | hydroxychloroquine, 24 90 EC|\I>|/I\(/D 37.6 92
anticoagulant
AAA nucleoside/ritonavir,
AGGCTQI%AC\;(-T 7.58 | pneumonia | hydroxychloroquine, 24 90 ECM\(/) 37.6 92
anticoagulant
oy nucleoside/ritonavir,
cT A%i%?l-r 7.58 | pneumonia | hydroxychloroquine, 24 90 ECM\(/) 37.6 92
anticoagulant
nucleoside/ritonavir,
Ag(‘:'?l‘_c.:rigxf 7.58 | pneumonia | hydroxychloroquine, 24 90 ECM\(/) 37.6 92
anticoagulant
nucleoside/ritonavir,
AA'I\'AGQ%%CC-gcl 7.58 | pneumonia | hydroxychloroquine, 24 90 EC|\I>|A\? 37.6 92
anticoagulant
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Table 1: c- The Last Continuing Features of COVID-19 Dataset with Label Column
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AC\BAC\SASACEAC'I"A(‘:AE 122 | Unresponsive | 14 | severe ?gcélll 15679 | 3311 | 7.206384 C(('DSX\:@DTSQ
%ﬁgiiécf 122 | Unresponsive | 14 | severe B;gc (ESI-I | 3630 | 1146 | 13.16804 C(ZX\LIeDr 39
%ggiﬁGlT 122 | Unresponsive | 14 | severe EIC\:/II?I?I’(e 6796 | 1785 | 3.546204 cg;/\:339
ARCEAST | 122 | Unresponsive | 14 | severe &fﬁg‘fﬂe 6803 | 2147 | 7.393797 cg;/\:339
%%’:Cgér%Af 122 | Unresponsive | 14 | severe | Platelet 819 332 | 2.319902 C(%ZJSSQ
%%CTC;%%C? 122 | Unresponsive | 14 | severe | Platelet 1188 488 | 5.30303 c(%;/\:gsg
ACAT':%?A\':%T 122 | Unresponsive | 14 | severe | NKcell | 5444 | 1958 | 5.180015 C(%Z\:Er;g
%’A&'?‘r?riiLAlG 122 | Unresponsive | 14 | severe I\Slléﬁzig;tle 11649 | 2946 | 9.22826 C(%Z\:eDr;g

2. Normalization: In this step, the data is normalized to provide better results for the next
step. The scaled information falls within a smaller range [0.0 to 1.0]. The normalization
equation given by Eq. (6) is applied to the continuous features as follows:

ValueX in F; —Minimum value for feature F;
Value X = - : (6)

Maximum value for feature F;—Minimum value for feature F;
Where X is value in feature F;

3. Discretization: In this step, the continuous features of the dataset are converted to discrete
forms with a finite number of values. The conversion is to increase the speed and accuracy of
the model. Moreover, HNB cannot handle new untrained continuous values during the testing
phase. The Entropy Minimization Discretization method is utilized for conversion. After our
calculation using MATLAB, the normalized and discretized values for each attribute in the
dataset are shown in Table 2. Also, Table 3 depicts our computed intervals for each attribute
using the discretization process.
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Table 2: Sample of COVID-19 Dataset after Pre-processing Stage

(@) I -§' X é % oS % £ S 2 £ oS 2
S5| 57| EE | §-|§°EE858:F i | 25 |Evg £¢
= | 2 G E e T & 2 @ 1 O

0.6-09 | 06-09 | 0.6-09 | 0.6-09 | 0.6-0.9 0 0 0.6-0.9 0 1 0.5
0.6-09 | 06-09 | 0.6-09 |0.6-09 | 0.6-09 0 0 0.6-0.9 0 1 0.5
0.6-09 | 06-09 | 0.6-09 |0.6-09 | 0.6-0.9 0 0 0.6-0.9 0 1 0.5
0.6-09 | 06-09 | 0.6-09 | 06-09 | 0.6-0.9 0 0 0.6-0.9 0 1 0.5
0.6-09 | 06-09 | 0.6-09 |0.6-09 | 0.6-0.9 0 0 0.6-0.9 0 1 0.5
0.6-09 | 06-09 | 0.6-09 |0.6-09 | 0.6-0.9 0 0 0.6-0.9 0 1 0.5
0.6-09 | 06-09 | 0.6-09 | 0.6-09 | 0.6-0.9 0 0 0.6-0.9 0 1 0.5
0.6-09 | 06-09 | 0.6-09 | 06-09 | 0.6-0.9 0 0 0.6-0.9 0 1 0.5
0.6-09 | 06-09 | 0.6-09 | 0.6-09 | 0.6-0.9 0 0 0.6-0.9 0 1 0.5

Table 3: The Discretized Features Formulation using Discretization Process

o @) o
P pd z
£ Feature name VEIES < Feature name VELES g Feature name VELGE
% range = range 2 range
(5] (5] [«F)
LL LL LL
0 %5 0 0
. . 0.1-0.5 Heart rate 0.1-0.5
1 Disease group 00.755 7 Treatment 06-09 13 (BPM) 0.6-0.7
' 1 1
1
0 0 0
- 0.1-05 Respiratory rate | 0.1-0.5 .
2 Comorbidity 0.6-0.9 8 (BPM) 0.6-0.9 14 Consciousness 0i5
1 1
0
0 0.1-05
3 Hospital-day 0.1-0.8 9 02 saturation 0.6-09 [ 15 NEWS score 0.6—0.7
1 1
. 0105 0 . 0
4 | WBC/micro-L 0.6—0.9 10 | 02 supplement 0.3-0.7 | 16 Severity 0.5
R 1 1
1
0 0 0
. 0.1-05 0.1-05 0.1-0.5
5 Neutrophil 0.6-0.9 11 Temperature 0.6-0.9 17 Cell-type 06-09
1 1 1
0 0
0.1-0.5 . 0.1-0.5
6 Chest X-ray 0.6-0.9 12 Systolic BP 06-09
1 1

6.2 Classification Process

After the pre-processing steps, the data is suitable for applying the feature selection
method to select the most relevant features that are most effective in the classification process.
The dataset is partitioned into a 2/3 training set and a 1/3 testing set. Subsequently, the
training set is forwarded to the Neighborhood Component Analysis (NCA) feature selection
algorithm. Table 4 lists the 17 features out of 20 and their weights. Table 5 shows a sample of
values for the 17 selected features
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Table 4: The Resulted Selected Feature’s Names and Their Weights using NCA Algorithm

Feﬁ? re Feature Name Weight Fesgf re Feature Name Weight
1 Disease group 3.6454 10 02 supplement 1.482561
2 Comorbidity 0.626398 11 Temperature 1.171667
3 Hospital-day 0.676937 12 Systolic BP 0.54072
4 WBC/micro-L 0.218827 13 Heart rate (BPM) 0.377473
5 Neutrophil 0.703579 14 Consciousness 0.650335
6 Chest X-ray 0.878778 15 NEWS score 0.49488
7 Treatment 0.937299 16 Severity 3.191692
8 Respiratory rate BPM 1.171097 17 Cell-type 0.036733
9 02 saturation 0.256953

Table 5: The COVID-19 Dataset after Feature Selection Process

| e 1)

5| S| E| E| E| %) E|E8 5| 8| k| &lcd 2| 8 2
S| E| 21 8| 2| 2| 2|8 |8 2 5 289 ¢E |3 3
a S| 2 g z (@) i o) o 2| @ I =

075|109 | 1 |09 |092| 08 |057|069| 0 0 |07 0 1 1051 1 |0.07
075109 | 1 |09 |092| 08 |057|069]| 0 0 |07] 0 1 1051 1 0
0751 09| 1 |09 | 092 | 08 |057|069| 0 0 (07 0 1 1051 1| 014
075109 | 1 |09 |092| 08 |057|069]| 0 0 |07] 0 1 1051 1 | 043
0751 09| 1 |09 | 092 | 08 |057|069| 0 0 (070 1 1051 1| 079
075109 | 1 |09 |092| 08 |057|069]| 0 0 |07] 0 1 1051 1] 079
0751 09| 1 |09 |092| 08 |057|069| 0 0 (07 0 1 1051 1 | 064
0751 09| 1 |09 | 092 | 08 |057|069| 0 0 (070 1 1051 1 | 043
075109 | 1 |09 |092| 08 |057|069]| 0 0 |07] 0 1 1051 1 | 0.64
0751 09| 1 |09 |092| 08 |057|069| 0 0 (070 1 1051 1 | 0.64
07509 | 1 |09 | 092 | 08 |057|069| 0 0 |07] 0 1 1051 1 | 043
0751 09| 1 |09 | 092 | 08 |057|069| 0 0 (070 1 1051 1 | 043
07509 | 1 |09 |092| 08 |057|069| 0 0 |07] 0 1 1051 1 | 043
07509 | 1 |09 | 092 | 08 |057|069| O 0 |07] 0 1 1051 1] 029
0751 09| 1 |09 |092| 08 |057|069| 0 0 (070 1 1051 1| 079
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07509 | 1 |09 |092| 08 |057|069]| 0 0 |07] 0 1 1051 1 | 043
07509 | 1 |09 |092| 08 | 057 |069|0-| 0 |07 O 1 1051 1 | 043
075|109 | 1 |09 |092| 08 |057|069| 0 0 (070 1 1051 1| 043
07509 | 1 |09 |092| 08 |057|069]| 0 0 |07] 0 1 1051 1 | 0.36
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07509 | 1 |09 |092| 08 |057|069]| O 0 |07] 0 1 05| 1 1| 014
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The resulting output from the previous step is split into training and testing sets and
forwarded to the Hidden Naive Bayes (HNB) multiclass algorithm. Accordingly, the training
records are used to build the HNB classifier, and the testing records are used to classify the
test patients’s data into the designated five classes. To implement HNB, a calculation is done
to compute the probability for each class (label) of the dataset as given by Eq. (7):

class Frequency in training set of covid—19 dataset

Probability (Class) =

(7)

Total number of records in training set of covid—19 dataset

Table 6 shows our calculations for each class's probability and their frequency. As it is shown,
COVID-19 mild has the highest probability, which is considered the common class in the
dataset.

Table 6: Frequency and Probability for each Class label

Frequency of Class in Training | Probability of Class in Training
CleEs My Dataset Dataset
1 Asymptomatic 4425 0.10612
2 COVID-19(Mild) | 16742 0.40149
3 COVID-19(Sever) | 10296 0.24691
4 Flu 6226 0.14930
5 Normal 4011 0.09619
Sum =41700 Sum =1

After that, the probability of each value in each interval of the 17 selected features for all
classes is computed. We performed this by finding the frequency and the probability of each
value in the interval for each of the selected features, as shown in Table 7.

Based on the previous resulted computation, a conditional mutual information CMI is
computed, which is the sum of the conditional mutual information probability for each pair of
features F;, F; in each class C for i, j = 1 to 17 in the training set.

As a result, we find the conditional mutual information probability CMIP first for each
interval, as shown in Table 8. This is obtained by computing the following requirements:
« Calculating the probability (F;, F;, C) by dividing Frequency of seemed (F;&F;in C) on total
size of training records of the dataset.
e Calculating the Probability(F;, F;|C) by dividing Frequency of seemed (F;&F;inC) on
Frequency of class C.
e Calculating Probability(F;|C) by dividing Frequency of seemed (F; in C) on Frequency of
class C.
e Calculating Probability(F;|C) by dividing Frequency of seemed (F; in C) on Frequency of
class C.
Then, the CMI will be summed for all paired features to find the weight between each two
features. Table 9 shows our calculated weight between the attribute comorbidity and the
sixteen other attributes. As a final step, the hidden parent is computed using Egs. (4) and (5).
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Table 7: The Frequency and Probability values for each of the selected feature’s Intervals
for all Classes
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Table 8: Frequency and CMI computation for Comorbidity feature and Neutrophil feature
from Class 3

Conorty | ettt | comrbiy | (e | comorbiiys, | cue
eature Neutrophil
0 0 0 1345 0 0
0.1-0.5 0 5832 1345 1345 1.07060116
0.6-0.9 0 4464 1345 1345 0.81947249
1 0 0 1345 0 0
0 0.1-0.5 0 2587 0 0
0.1-0.5 0.1-0.5 5832 2587 2587 0.55661328
0.6-0.9 0.1-0.5 4464 2587 2587 0.42604967
1 0.1-0.5 0 2587 0 0
0 0.6-0.9 0 5966 0 0
0.1-0.5 0.6-0.9 5832 5966 5832 0.2413608
0.6-0.9 0.6-0.9 4464 5966 4464 0.18474531
1 0.6-0.9 0 5966 0 0
0 1 0 398 0 0
0.1-0.5 1 5832 398 398 3.61798633
0.6-0.9 1 4464 398 398 2.76932287
1 1 0 398 0 0
CMI=y cmip — 968615193

Table 9: Weight Values between Feature Comorbidity and the other Features of dataset

Pair of Features \\I/\giggt Pair of Features aﬁigeht

1| W (Comorbidity & Disease group) | 0.0080 | ° | W (Comorbidity & 021, 554,
supplement)

2 | W (Comorbidity &Hospital) 0.0080 | 10 | w (Comorbidity & Temperature) | 0.0017

3 | W (Comorbidity &WBC) 0.0009 |11 | w (Comorbidity &Systolic) 0.0012

4 | W (Comorbidity, Neutrophil) 0.0034 |12 | w (Comorbidity &Heart Rate) 0.0033

5 | W (Comorbidity & Chest X-ray) 00009 | 13 | W~ (Comorbidity &1 0.0013
Consciousness)

6 | W (Comorbidity &treatment) 0.0003 | 14 | W (Comorbidity &news) 0.0763

71w (Comorbidity & Respiratory rate) | 0.0003 5 |w (Comorbidity & Severity) 8.8068

8 |w (Comorbidity & O2 saturation) 0.0008 16 | w (Comorbidity &Cell-Type) 0.9081

In testing phase, the hidden value is used to classify the tested records. Table 10 shows our
testing record implementation using values from COVID-19 test set.
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Table 10: Sample of Testing Record from COVID-19 Test Set

Features description Classes

(': Feature Name e Asymptomatic 1CQ?I?/I/|III3) 1C9(()S\e/\I/eDr) Flu Normal
1 Disease group 0.5 1 0 0 0 0
2 Comorbidity 0.3 1 0.73 0.57 0.79 1.00
3 Hospital-day 0.3 1 1 1 1 1
4 WBC/micro-L 0.2 1 0.51 0.36 0.40 0
5 Neutrophil 0.5 0 1 0.25 0.79 1
6 Chest X-ray 0.9 0 0.81 0.43 1 0
7 Treatment 0.4 0 0.76 0.38 1 1
8 Respiratory rate 0.1 0 0.81 0.33 1 1
9 02 saturation 0.8 1 1 0.35 1 1
10| O2 supplement 0.2 0 0 0.25 1 1
11 Temperature 0.5 0 0.73 0.15 1 1
12 Systolic BP 0 0 0.27 0.58 0 0
13| Heart rate (BPM) 0.7 0 0.24 0.15 0 0
14 Consciousness 1 0 0 0.15 0 0
15 NEWS score 0.4 0.99729 0.46 0.31 1 1
16 Severity 0.5 1 0 0 1 1
17 Cell type 0 0.11073 0.08 0.09 0.03 0.13

8. Experimental Results and Discussion

In this section, a proposed multi-class model using NCA as a feature selection method and
Hidden Naive Bayes HNB as a statistical type classifier on the COVID-19 dataset will be
evaluated and discussed. The model is implemented in multiple stages, first considering the
COVID-19 dataset for evaluation. A total of about 59,570 patient records are submitted to
pre-processing steps (cleaning, normalization, and discretization). Following that, the dataset
is split into 2/3.
Training set, which is about 41,700 records, and 1/3 testing set, which is about 17,870
records. Using the training set, the feature selection method is utilized by adapting the NCA
algorithm to select the most influent features extracted from patients’s records. After applying
the feature selection method, we calculated and computed the interval of each feature. A
distribution of each selected feature is depicted in Figure 3. Then, the data is forwarded to the
HNB classifier for classification. Figure 4 shows our distribution of each class in the COVID-
19 training dataset.
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Figure 3: Dataset Features Distribution

18000
16000 |
14000
. 10296

16742

[

oN

o O

o O

o o
L

8000 - 6226

6000 | 4425 4011
4000 -
2000 -

Frequency of class

classes

Figure 4: Distribution of each Class

To be noted, during the feature weighting module, for each feature, a hidden parent value
is computed considering all other features. Therefore, many calculations are done during the
HNB process. These resulted in a considerable number of values that can't be shown as a
table. For this reason, in Figure 5, which depicts 16 charts, we show an example of
conducting feature neutrophil intervals with all remaining features, including their intervals
for class 3 (Severe COVID-19).
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Figure 5: Neutrophil Feature with the other Remaining Features in Class 3

Throughout the conducted experiments, four assessment measures (accuracy is given by Eq.
(8), recall is given by Eq. (9), precision is given by Eqg. (10), and the F measure is given by
Eq. (11)) were used to assess the proposed model [19]:

Accuracy is the rate of classification. Its formula is:

accuracy =

TP+TN
TP+TN+FP+FN

(8)

The recall measures how many times it predicts yes. Its formula is:

Recall =

True Positive

True Positive+False Negative

€)

Precision measures the number of times correctly predicted yes. Its formula is:

precision

True Positive

" True Positive + False Positive

(10)

The F1 measure represents the recall and precision in the following formula:

FlMeasure = 2 *

Precision xRecall

Precision+Recall

(11)

In Table 11, we show the confusion matrix for the COVID-19 test set based on five classes.
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Table 11: Multi Class Confusion Matrix
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Asymptomatic COVID-19(Mild) COVID-19(Sever) Flu Normal
Asymptomatic 1858 500 500 200 800
COVID-19(Mild) 300 2711 500 1800 200
COVID-19(Sever) 500 500 1344 350 250
Flu 300 1000 500 1600 10
Normal 800 1000 150 20 1222

Table 12 shows our evaluation of the proposed model using the COVID-19 testing dataset.
The testing phase used 17800 patients’ records to evaluate the model's performance.

Table 12: Performance Measure for each Class in COVID-19 Dataset

Class type Accuracy Recall Precision F measure
Asymptomatic 0.95 0.92 0.97 0.94
COVID-19(Mild) 0.95 0.96 0.90 0.92
COVID-19(Sever) 0.86 0.84 0.81 0.82
Flu 0.81 0.88 0.67 0.76
Normal 0.88 0.62 0.96 0.75
The Average 0.89 0.84 0.86 0.83

According to the value of the results shown in Table 12, the accuracy of detecting flu was
low, whereas the accuracy of detecting asymptomatic and COVID-19 (mild) was 95%. The
precision measure for asymptomatic and normal classes reached 97% and 96%, respectively.
Additionally, the recall for COVID-19 (mild) reached the highest, which is approximately
96% compared with other classes. A comparison is made on the accuracy between the
proposed model and ref. [11] using the same COVID-19 dataset. It was shown that despite the
vast calculations using HNB, the average accuracy was raised to 0.89 in comparison with the
results yielded from ref. [11]. This is because each attribute (symptom) has a hidden parent
value that reflects the influence of other attribute values. Table 13 shows our calculated
accuracy value after implementing our proposed model and comparing it with the accuracy
value found in [11].

Table 13: Accuracy Comparison with Reference [11]

Method Dataset Accuracy
Ref [11] Back propagation COVID-19 dataset 0.79
Our Proposed Model HNB COVID-19 dataset 0.89

9. Conclusions

This paper suggests a proposed model to provide medical assistance in diagnosing
COVID-19 according to specified symptoms. The model used a statistical classification
method called Hidden Naive Bayes to alleviate the feature’s conditional independence
assumption. Compared to other statistical classifiers, HNB creates a hidden parent value for
each feature that synthesizes all of the other qualified features’ influences. As a consequence,
this assumption led to an improvement in the quality of the COVID-19 diagnosis because
every symptom had a weight computed from all other symptoms, and a class probability was
calculated taking into account the entire condition of each symptom. Hence, all symptoms
contribute to diagnosing a patient's illness, which is a very important issue in obtaining
accurate performance. Furthermore, HNB showed better efficiency than the work in [11],
which used a backpropagation classifier.
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