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Abstract 

     COVID-19 is a universal infectious disease recognized first by people with 

influenza and bacterial pneumonia symptoms in Wuhan, Hubei Province. Currently, 

a new mutated disease has the same symptoms as COVID-19 and influenza and 

causes dangerous infections in the body. Due to the fact that these two diseases 

share some diagnostic features and symptoms in common with one another, 

healthcare workforces require aid and support in predicting patients' conditions. This 

was done by using machine learning methods in diagnosis. From this point, this 

paper proposes a diagnostic model to detect patients' symptoms and classify them 

into one of five disease groups, utilizing Neighborhood Component Analysis (NCA) 

as a feature selection method and the Hidden Naïve Bayes (HNB) method as a 

multiclass classifier. This paper suggests the model consists of two significant 

phases: the pre-processing phase (cleaning, normalization, and discretization) and 

the classification phase. Conducting the COVID-19 dataset, the experimental 

findings showed that the suggested multi-class model had 89% accuracy for disease 

diagnoses. Furthermore, according to the patient’s symptoms, the proposed 

classification model led to a good diagnosis for the mutated COVID-19 disease. 

 

Keywords: Classification, COVID-19, Feature Selection, Flu, Hidden Naïve Bayes. 
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احتاجت   فقد  البعض،  بعضهما  مع  المشتركة  والأعراض  التشخيصية  السمات  بعض  في  يشتركان  المرضين 
هذه   وتمت  المرضى.  بظروف  التنبؤ  في  والدعم  المساعدة  إلى  الصحية  الرعاية  مجال  في  العاملة  القوى 
المساعدة باستعمال أساليب التعلم الآلي في التشخيص. من هذه النقطة، تقترح هذه الورقة نموذجًا تشخيصيًا  
الميزة   أختيار  باستعمال  مرضية  مجموعات  خمس  من  واحدة  إلى  وتصنيفهم  المرضى  أعراض  عن  للكشف 

 .  Hidden Naïve  Bayesو بأستعمال المصنف متعدد الطبقات  NCAبطريقة  
ومرحلة   والتمييز(  والتطبيع  )التنظيف  المسبقة  المعالجة  مرحلة  مهمتين:  مرحلتين  من  المقترح  النموذج  يتكون 

، أظهرت النتائج التجريبية أن النموذج  19-التصنيف. من خلال إجراء الاختبار على مجموعة بيانات كوفيد
٪ للتنبؤ. علاوة على ذلك، ووفقًا لأعراض المريض، أدى نموذج التصنيف  89متعدد الفئات المقترح يتمتع بدقة 

 .المتحور 19-المقترح إلى تشخيص جيد لمرض كوفيد 
 

1. Introduction 

     Data mining (DM) has gained popularity in the commercial and healthcare sectors as a 

synthetic intelligence tool. It is also known as fact gathering, data/pattern analysis, knowledge 

extraction, and discovery. The development in health care is due to the many varied uses of 

smart devices and the creation of intelligent systems for diagnosis in the early stages. 

Hospitals gather much data in the form of electronic health records (EHR), which contain 

patient information. Expert systems based on machine learning and decision support systems 

(DSSs) are currently needed in health and medical applications that rely on the early diagnosis 

of disorders. Most of these algorithms, including Hidden Naive Bayes (HNB), an extension of 

Naive Bayes, deal with classifications established based on the kind of processed data [1]. A 

severe respiratory syndrome, the coronavirus illness (COVID-19), which was initially 

identified in Chinese Wuhan City in 2019 and resulted in serious community health and social 

economic turmoil, is initiated by the SARS coronavirus. Some of the primary symptoms of 

COVID-19 are breathing difficulties, fever, coughing, and a sore throat [2]. Numerous 

classification algorithms have been used for illness datasets to diagnose chronic diseases, and 

the results are extremely promising [3]. Nave Bayes (NB) and Hidden Naïve Bayes (HNB) 

classifiers are probabilistic classifiers that predict a class based on membership probability. It 

is among the most effective classification techniques because it analyzes the correlation 

between the independent and dependent variables to calculate conditional probability. In the 

last two decades, several studies have been done to lessen the independence assumption of the 

NB classifier. The HNB classifier, based on creating an additional layer representing a hidden 

parent for each feature, was first developed in one of these investigations [1]. In terms of 

attribute interdependence, Compared to naive Bayes, hidden naive Bayes is a more accurate 

classification method. A Bayesian classifier called HNB avoids unsolvable complexity and 

considers the impact of all features [4]. 

 

     In this work, an algorithm for classification HNB is utilized to predict whether a patient is 

thought to have one of the five mutation-related diseases (asymptomatic, mild COVID-19, 

severe COVID-19, flu, or normal), according to the patient's symptoms. The rest of this article 

is structured as follows: Section 2 describes the nature of the problem definition and prime 

objective. Then, the related work that has been highlighted is presented properly in Section 3. 

In Section 4, the machine learning definitions are summed up. Next, Section 5 explains 

feature selection categorizations. Then, Section 6 describes the proposed model. Section 7 

presented a discussion and the results from the suggested model, while Section 8 concluded 

the discussion. 

 

2. Problem Definition and Main Objective 

     Because of the wide spread of infected people with similar symptoms and diseases, early 

illness diagnosis is crucial for treating and managing the conditions. The healthcare system 
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may now be protected from overload by quickly identifying and isolating affected individuals, 

which will flatten the epidemic curve. The main task is to help healthcare organizations detect 

the disease cases of tested patients in their early stages to help reveal to what level the 

similarities between COVID-19 and flu infections are and to decrease the side effects of both. 

According to the fast mutation of COVID-19, accurate disease detection will be more helpful 

during the pandemic and assist in developing promising approaches and taking creative 

decisions. 

 

3. Related Work 

     The medical community, particularly the World Health Organization, is under pressure as 

the disease spreads rapidly over the globe. As a result, extensive research is underway to 

determine how to diagnose people with a mutated low-risk COVID-19 infection based on 

symptoms similar to those of other diseases. Widespread interest has developed in studying 

many types of research related to coronaviruses with machine learning algorithms [5]. There 

are numerous related works about COVID-19 with machine learning. In this section, some of 

them are described as the following: 

 

     The research work in [4] developed the HNB algorithm to classify and forecast cardiac 

disease. The suggested method used discretization and IQR filters for improvement. The 

experimental results had the best accuracy of 100 percent compared to the NB classification 

model. It was determined that the suggested approach, which used the HNB model, helped 

create a reliable decision support system for disease diagnosis. This research [5] developed 

machine learning strategies using multilayer perceptron, Bayes network, naive Bayes, and 

locally weighted learning algorithms for classifying patient symptoms into H1N1 and 

COVID-19 classifications. Bayes network had an accuracy of 86.57 percent, while the 

accuracy of the NB was 82.34 percent. The multilayer perceptron accuracy was 99.31 percent, 

while the locally weighted learning method had an accuracy of 88.89 percent, and the random 

forest had an accuracy of 83.16 percent. Another research work in [6] consumed an 

epidemiology COVID-19 dataset from patients from South Korea. To forecast patient 

recovery, they applied decision trees, logistic regression, support vector machines, naive 

Bayes, random forests, and K-nearest neighbor techniques. The results indicate that the 

decision tree approach model has an overall accuracy of 99.85 percent in predicting whether 

or not infected people will recover from the COVID-19 pandemic. One more study on the 

COVID-19 dataset in India [7] explained the concept of SVM (support vector machine) and 

cross-validation. The results show that support vector machine SVM produced accurate 

results in classifying data on recovered and deceased patients, with an accuracy of 99 percent 

and a precision of 98 percent, while a recall of 95 percent in the performance measure. In 

additional research work in [8], Hidden Naive Bayes and Ada-Boost algorithms were used. 

They employed a discretization approach instead of replacing missing values. Also, the 

feature selection method is utilized to remove unnecessary features in each iteration of Ada-

Boost. The suggested technique required less training time and provided a greater chance of 

scaling to data mining applications. In one more research work [9], reports for textual clinical 

were divided into four groups using ensemble learning techniques. Three feature extraction 

methods were used: (TF/IDF) term frequency/inverse document frequency, (BOW) bag of 

words, and report length. The results demonstrated that logistic regression and the 

multinomial Naïve Bayes algorithm outperformed all other algorithms, with a precision of 94 

percent, recall of 96 percent, F1 score of 95 percent, and accuracy of 96.2 percent. At the 

same time, random forest and gradient boosting also performed well, with an accuracy of 94.3 

percent and 94.3 percent, respectively. Furthermore, the study [10] outlined a novel 

coronavirus detection method using a Naïve Bayes classifier by calculating all individual 

probabilities that could be applied to the coronavirus attribute that is the target, including all 
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possible probabilities. As a result, three groups of coronaviruses were divided. Mammalian 

coronaviruses fall under groups 1 and 2, and avian coronaviruses fall under group 3. Also, 

different classical methods were used in coronavirus diagnosis, including RT-PCR and 

ORF1ab. The research [11] described and categorized pandemics using two algorithms: the 

fuzzy C-mean (FCM) clustering technique and the back propagation (BP) classification 

algorithm. Two phases made up the implementation: first, the FCM algorithm determines the 

type of virus. Then, use BP as a classifier to determine the pandemic class. And for 

optimization, the associated features that improve the model to enhance accuracy are used in 

information gain (IG). The system's accuracy was up to 0.79 percent using the back 

propagation method. In additional research work in [12], an improved algorithm—the double-

hidden naive Bayes algorithm—is proposed to make full use of the dependency relationship 

between attributes. Experimental results show that this classification algorithm based on 

improved TF-IDF and double-hidden naive Bayes can improve the speed, accuracy, and recall 

rate of classification results. 

 

4. Machine Learning Categorization 

1. The main areas within machine learning methods are: 

2.  

3. Supervised Learning: takes train-set input variables with previously identified labels. A 

specific classifier is utilized for learning the map function from input to output, also known as 

the one-label classification. Some of the classification methods are: naïve Bayes, hidden naïve 

Bayes and support vector machines [13] and [14]. 

4. Unsupervised learning takes input variables from training datasets with no previously 

known labels, such as clustering methods. [15] [16]. 

 

4.1 Hidden Naïve Bayes Classifier 

     Over the past two decades, much research has been done on the objectivity theory of the 

Naïve Bayes NB classifier. As shown in Figure 1, the HNB classifier, proposed in one of the 

studies, is a novel classifier that is based on building a second layer that acts as a hidden 

parent for each attribute, which is represented as a dashed circle in the figure. The advantage 

of employing hidden parents (𝐴ℎ𝑝𝑖) is the combination of the weighted inspirations from all 

other attributes (𝐴𝑖) where i, j = 1, 2... N and (𝑗 ≠ 𝑖). Prob(C) is the probability of class. The 

definition of the joint distribution is given by Eq. (1). The hidden parent is illustrated in Eq. 

(2), and the HNB classifier is formulated in Eq. (3) [14, 17]. 

 

 

 

Figure 1: Hidden Naïve Bayes Structure [17] 
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                               𝑃𝑟𝑜𝑏(𝐴1,…,𝐴𝑁|C)  =  𝑃𝑟𝑜𝑏(C) ∏ 𝑃𝑟𝑜𝑏(𝐴𝑖|𝐴ℎ𝑝𝑖,
𝑁
𝑖=1 𝐶)                           (1) 

   Where  

                           𝑃𝑟𝑜𝑏(𝐴𝑖|𝐴ℎ𝑝𝑖 , 𝐶) = ∑  𝑊𝑖𝑗 ∗ 𝑃𝑟𝑜𝑏(𝐴𝑖|𝐴𝑗 , 𝐶)𝑛
𝑗=1,𝑗≠𝑖                                     (2) 

And ∑  𝑊𝑖𝑗 = 1.𝑁
𝑗=1,𝑗≠𝑖  the hidden parent 𝐴ℎ𝑝𝑖 for 𝐴𝑖  is a combination effect from all other 

weighted attributes. Then the classifier for the hidden Naïve Bayes on an event E= {a1… an} 

is shown as: 

                           𝑐(𝐸) = arg max
𝑐∈𝐶

𝑃𝑟𝑜𝑏(𝑐) ∏ 𝑃𝑟𝑜𝑏(𝑎𝑖|𝑎ℎ𝑝𝑖, 𝑐)𝑛
𝑖=1                                   (3) 

Using conditional mutual information (CMI) between each pair of features (𝐴𝑖)  and (𝐴𝑗) , 

the weights  𝑊𝑖𝑗 are computed initially. The formulas Eq. (4), Eq. (5) depicts the CMI 

formulation [14, 17]. 

 

                                        𝑊𝑖𝑗 =  
𝐶𝑀𝐼 (𝐴𝑖;𝐴𝑗|𝐶)

∑ 𝐶𝑀𝐼(𝐴𝑖;𝐴𝑗|𝐶)𝑛
𝑗=1,𝑗≠𝑖

                                                                   (4) 

Where  

                      𝐶𝑀𝐼(𝐴𝑖; 𝐴𝑗|𝐶) = ∑ 𝑃𝑟𝑜𝑏(𝑎𝑖, 𝑎𝑗 , 𝑐)𝑙𝑜𝑔
𝑃𝑟𝑜𝑏(𝑎𝑖,𝑎𝑗|𝑐)

𝑃𝑟𝑜𝑏(𝑎𝑖|𝑐)𝑃(𝑎𝑗|𝑐)𝑎𝑖,𝑎𝑗,𝑐                           (5) 

 

By estimating the parameters using the training data, it is simple to integrate the effects of all 

the other variables using CMI information. However, estimating the parameters in HNB using 

the training data is a key step in model learning [14]. 

 

5. Feature Selection 

Before using a learning system, feature selection is a crucial data processing step. To increase 

the effectiveness of the classification and reduce the amount of data stored in memory, it is 

required to identify a subset of important features from the original features. It helps lessen 

the effects of the curse of dimensionality, reduces processing requirements, increases learning 

accuracy, and helps to pinpoint which characteristics could be relevant to a given issue [18]. 

 

5.1 Feature Selection Methods 

     They are classified into unsupervised, supervised, and semi-supervised according to the 

dataset (label or un-label) as follows: [18] 

• Unsupervised: A feature selection method that depends on clustering quality metrics and 

might result in several equally valid feature subsets is a less confined search issue without 

class labels. 

• Supervised: A feature selection method that can be divided into embedded models, filter 

models, and wrapper models. Firstly, the filter model separates selecting features from 

classifier learning, preventing one algorithm's bias from influencing the other's prejudice. It is 

based on the training data's general properties, including distance and correlation. The most 

representative filter model techniques are information gain, Fisher score, and relief 

approaches. Secondly, wrapper models employ a chosen learning algorithm's predicted 

accuracy to assess the features' quality. Unfortunately, the cost of implementing these 

algorithms for data with a lot of characteristics is high. Lastly, the embedded model fills the 

space left by the wrapper and filter models. As with the filter model, it begins by 

incorporating the statistical criteria to choose potential feature subsets with a specific 

cardinality. The subgroup with the best classification accuracy is then selected. 

• Semi-supervised: A feature selection method used when both labeled and unlabeled data 

are used to provide relevant estimates. 
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5.2 Neighborhood Component Analysis (NCA) 

     This method is used to choose features to increase the predictive power of classification 

and regression algorithms. It's non-parametric and embedded method. Regularization of 

feature weight learning aims to minimize the mean (leave-one-out) loss classification over the 

train set of data by minimizing the objective function [8]. 

 

6. General Design of the Proposed System 

     The present medical analysis reveals identical symptoms between the flu and COVID-19 

(mild or severe). Therefore, a machine learning algorithm is needed to classify patients 

according to their symptoms (asymptomatic information). In this section, the essential phases 

of the suggested model are presented. Utilizing the COVID-19 dataset, the proposed model 

will reveal whether the patient is affected by: 1-asymptomatic (class 1), 2-mild COVID-19 

(class 2), 3-severe COVID-19 (class 3), 4-flu (class 4), and 5-normal (class 5). Accordingly, 

the model is composed of two phases: (1) The pre-processing phase. (2) Classification phase. 

Figure 2 shows our proposed model's general structure, which is made up of the following 

steps: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: The Proposed Model Block Diagram 

 

6.1 Pre-Processing Stage 

     During this phase, a transformation is performed to convert the incomplete and 

inadequately extracted raw data into quality data and provide a useful data pattern for the 

proposed models. The COVID-19 dataset was loaded and conducted from the website 

https://covid19-influenza-response.cells.ucsc.edu for 59,570 patient records with 26 data 

columns (not considering the label column) for patients as shown in Table 1 (a, b, and c). The 

features are: Cell Id, Sample ID, Patient ID, Disease group, Comorbidity, Hospital-day, 

WBC/micro-L, Neutrophil/micro-L (%), Lymphocyte/micro-L (%), Monocyte/micro-L (%), 

C-reactive protein (mg/ dl), Chest X-ray, Treatment, Respiratory rate (BPM), O2 Saturation, 

O2 Supplement, Temperature (Temp.), Systolic BP, Heart rate, Consciousness, Score for 

NEWS, Severity, Cell type, UMI number, Gene number, and Percentage of mitochondrial 

gene. Three essential pre-processing steps are performed. They are: 

1. Cleaning data: in this step, data cleaning routines are done to clean the data by removing 

the columns that do not affect decision making, such as Patient Id and Sample Id. Also, 

columns with many no values (NAN), such as Lymphocyte/micro-L, Monocyte/micro-L, and 

C-reactive protein (mg/dL), are ignored. 
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Table 1: a- The First 10 Features of COVID-19 Dataset  
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AAACCCAAG 

GGCAATC-1 
nCoV-1 C1 

severe 

COVID-19 
none 16 21540 

19235 

(89.3) 

1055 

(4.9) 

1271 

(5.9) 

AAACCCACA 

GCTGAAG-1 
nCoV-1 C1 

severe 

COVID-19 
none 16 21540 

19235 

(89.3) 

1055 

(4.9) 

1271 

(5.9) 

AAACCCAGT 

CTTCGAA-1 
nCoV-1 C1 

severe 

COVID-19 
none 16 21540 

19235 

(89.3) 

1055 

(4.9) 

1271 

(5.9) 
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severe 

COVID-19 
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(89.3) 
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(5.9) 
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none 16 21540 
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(5.9) 

AAACGCTAG 

GCTTAAA-1 
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Table 1: b- The Next Features of COVID-19 Dataset  
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Table 1: c- The Last Continuing Features of COVID-19 Dataset with Label Column 
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AAACCCAAG 

GGCAATC-1 
122 Unresponsive 14 severe 

B cell, 

IgG+ 
15679 3311 7.296384 

COVID-19 

(Severe) 

AAACCCACA 

GCTGAAG-1 
122 Unresponsive 14 severe 

B cell, 

IgG- 
3630 1146 13.16804 

COVID-19 

(Severe) 

AAACCCAGT 

CTTCGAA-1 
122 Unresponsive 14 severe 

CD4, 

EM-like 
6796 1785 3.546204 

COVID-19 

(Severe) 

AAACCCAGT 

TCCGCTT-1 
122 Unresponsive 14 severe 

classical 

Monocyte 
6803 2147 7.393797 

COVID-19 

(Severe) 

AAACGAAAG 

GGAGGTG-1 
122 Unresponsive 14 severe Platelet 819 332 2.319902 

COVID-19 

(Severe) 

AAACGAACA 

AGGTTGG-1 
122 Unresponsive 14 severe Platelet 1188 488 5.30303 

COVID-19 

(Severe) 

AAACGAAGT 

CTACAAC-1 
122 Unresponsive 14 severe NK cell 5444 1958 5.180015 

COVID-19 

(Severe) 

AAACGCTAG 

GCTTAAA-1 
122 Unresponsive 14 severe 

classical 

Monocyte 
11649 2946 9.22826 

COVID-19 

(Severe) 

 

2. Normalization: In this step, the data is normalized to provide better results for the next 

step. The scaled information falls within a smaller range [0.0 to 1.0]. The normalization 

equation given by Eq. (6) is applied to the continuous features as follows: 

 

Value X =
ValueX in 𝐹𝑖 −Minimum value for feature 𝐹𝑖

Maximum value for feature 𝐹𝑖−Minimum value for feature 𝐹𝑖
                           (6) 

 

Where X is value in feature  𝐹𝑖 

 

3. Discretization: In this step, the continuous features of the dataset are converted to discrete 

forms with a finite number of values. The conversion is to increase the speed and accuracy of 

the model. Moreover, HNB cannot handle new untrained continuous values during the testing 

phase. The Entropy Minimization Discretization method is utilized for conversion. After our 

calculation using MATLAB, the normalized and discretized values for each attribute in the 

dataset are shown in Table 2. Also, Table 3 depicts our computed intervals for each attribute 

using the discretization process. 
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Table 2: Sample of COVID-19 Dataset after Pre-processing Stage 
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0.6-0.9 0.6-0.9 0.6-0.9 0.6-0.9 0.6-0.9 0 0 0.6-0.9 0 1 0.5 

0.6-0.9 0.6-0.9 0.6-0.9 0.6-0.9 0.6-0.9 0 0 0.6-0.9 0 1 0.5 

0.6-0.9 0.6-0.9 0.6-0.9 0.6-0.9 0.6-0.9 0 0 0.6-0.9 0 1 0.5 

0.6-0.9 0.6-0.9 0.6-0.9 0.6-0.9 0.6-0.9 0 0 0.6-0.9 0 1 0.5 

0.6-0.9 0.6-0.9 0.6-0.9 0.6-0.9 0.6-0.9 0 0 0.6-0.9 0 1 0.5 

0.6-0.9 0.6-0.9 0.6-0.9 0.6-0.9 0.6-0.9 0 0 0.6-0.9 0 1 0.5 

0.6-0.9 0.6-0.9 0.6-0.9 0.6-0.9 0.6-0.9 0 0 0.6-0.9 0 1 0.5 

0.6-0.9 0.6-0.9 0.6-0.9 0.6-0.9 0.6-0.9 0 0 0.6-0.9 0 1 0.5 

0.6-0.9 0.6-0.9 0.6-0.9 0.6-0.9 0.6-0.9 0 0 0.6-0.9 0 1 0.5 

 

Table 3: The Discretized Features Formulation using Discretization Process 
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Feature name 
Values 

range 
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Feature name 
Values 

range 

F
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 N
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Feature name 
Values 

range 

1 Disease group 

0 

0.25 

0.5 

0.75 

1 

7 Treatment 

0 

0.1-0.5 

0.6-0.9 

1 

13 
Heart rate 

(BPM) 

0 

0.1-0.5 

0.6-0.7 

1 

2 Comorbidity 

0 

0.1-0.5 

0.6-0.9 

1 

8 
Respiratory rate 

(BPM) 

0 

0.1-0.5 

0.6-0.9 

1 

14 Consciousness 

0 

0.5 

1 

3 Hospital-day 0.1-0.8 9 O2 saturation 

0 

0.6-0.9 

1 

15 NEWS score 

0 

0.1-0.5 

0.6-0.7 

1 

4 WBC/micro-L 

0 

0.1-0.5 

0.6-0.9 

1 

10 O2 supplement 

0 

0.3-0.7 

1 

16 Severity 

0 

0.5 

1 

5 Neutrophil 

0 

0.1-0.5 

0.6-0.9 

1 

11 Temperature 

0 

0.1-0.5 

0.6-0.9 

1 

17 Cell-type 

0 

0.1-0.5 

0.6-0.9 

1 

6 Chest X-ray 

0 

0.1-0.5 

0.6-0.9 

1 

12 Systolic BP 

0 

0.1-0.5 

0.6-0.9 

1 

   

 

6.2 Classification Process 

     After the pre-processing steps, the data is suitable for applying the feature selection 

method to select the most relevant features that are most effective in the classification process. 

The dataset is partitioned into a 2/3 training set and a 1/3 testing set. Subsequently, the 

training set is forwarded to the Neighborhood Component Analysis (NCA) feature selection 

algorithm. Table 4 lists the 17 features out of 20 and their weights. Table 5 shows a sample of 

values for the 17 selected features 
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Table 4: The Resulted Selected Feature’s Names and Their Weights using NCA Algorithm 
Feature 

No. 
Feature Name Weight 

Feature 

No. 
Feature Name Weight 

1 Disease group 3.6454 10 O2 supplement 1.482561 

2 Comorbidity 0.626398 11 Temperature 1.171667 

3 Hospital-day 0.676937 12 Systolic BP 0.54072 

4 WBC/micro-L 0.218827 13 Heart rate (BPM) 0.377473 

5 Neutrophil 0.703579 14 Consciousness 0.650335 

6 Chest X-ray 0.878778 15 NEWS score 0.49488 

7 Treatment 0.937299 16 Severity 3.191692 

8 Respiratory rate BPM 1.171097 17 Cell-type 0.036733 

9 O2 saturation 0.256953    

Table 5: The COVID-19 Dataset after Feature Selection Process 
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0.75 0.9 1 0.96 0.92 0.8 0.57 0.69 0 0 0.7 0 1 0.5 1 1 0.07 

0.75 0.9 1 0.96 0.92 0.8 0.57 0.69 0 0 0.7 0 1 0.5 1 1 0 

0.75 0.9 1 0.96 0.92 0.8 0.57 0.69 0 0 0.7 0 1 0.5 1 1 0.14 

0.75 0.9 1 0.96 0.92 0.8 0.57 0.69 0 0 0.7 0 1 0.5 1 1 0.43 

0.75 0.9 1 0.96 0.92 0.8 0.57 0.69 0 0 0.7 0 1 0.5 1 1 0.79 

0.75 0.9 1 0.96 0.92 0.8 0.57 0.69 0 0 0.7 0 1 0.5 1 1 0.79 

0.75 0.9 1 0.96 0.92 0.8 0.57 0.69 0 0 0.7 0 1 0.5 1 1 0.64 

0.75 0.9 1 0.96 0.92 0.8 0.57 0.69 0 0 0.7 0 1 0.5 1 1 0.43 

0.75 0.9 1 0.96 0.92 0.8 0.57 0.69 0 0 0.7 0 1 0.5 1 1 0.64 

0.75 0.9 1 0.96 0.92 0.8 0.57 0.69 0 0 0.7 0 1 0.5 1 1 0.64 

0.75 0.9 1 0.96 0.92 0.8 0.57 0.69 0 0 0.7 0 1 0.5 1 1 0.43 

0.75 0.9 1 0.96 0.92 0.8 0.57 0.69 0 0 0.7 0 1 0.5 1 1 0.43 

0.75 0.9 1 0.96 0.92 0.8 0.57 0.69 0 0 0.7 0 1 0.5 1 1 0.43 

0.75 0.9 1 0.96 0.92 0.8 0.57 0.69 0 0 0.7 0 1 0.5 1 1 0.29 

0.75 0.9 1 0.96 0.92 0.8 0.57 0.69 0 0 0.7 0 1 0.5 1 1 0.79 

0.75 0.9 1 0.96 0.92 0.8 0.57 0.69 0 0 0.7 0 1 0.5 1 1 0.43 

0.75 0.9 1 0.96 0.92 0.8 0.57 0.69 0 0 0.7 0 1 0.5 1 1 0.43 

0.75 0.9 1 0.96 0.92 0.8 0.57 0.69 0 0 0.7 0 1 0.5 1 1 0.43 

0.75 0.9 1 0.96 0.92 0.8 0.57 0.69 0 0 0.7 0 1 0.5 1 1 0.14 

0.75 0.9 1 0.96 0.92 0.8 0.57 0.69 0 0 0.7 0 1 0.5 1 1 0.29 

0.75 0.9 1 0.96 0.92 0.8 0.57 0.69 0 0 0.7 0 1 0.5 1 1 0.36 

0.75 0.9 1 0.96 0.92 0.8 0.57 0.69 0 0 0.7 0 1 0.5 1 1 0.43 

0.75 0.9 1 0.96 0.92 0.8 0.57 0.69 0 0 0.7 0 1 0.5 1 1 0.79 

0.75 0.9 1 0.96 0.92 0.8 0.57 0.69 0 0 0.7 0 1 0.5 1 1 0.64 

0.75 0.9 1 0.96 0.92 0.8 0.57 0.69 0 0 0.7 0 1 0.5 1 1 0.43 

0.75 0.9 1 0.96 0.92 0.8 0.57 0.69 0- 0 0.7 0 1 0.5 1 1 0.43 

0.75 0.9 1 0.96 0.92 0.8 0.57 0.69 0 0 0.7 0 1 0.5 1 1 0.43 

0.75 0.9 1 0.96 0.92 0.8 0.57 0.69 0 0 0.7 0 1 0.5 1 1 0.36 

0.75 0.9 1 0.96 0.92 0.8 0.57 0.69 0 0 0.7 0 1 0.5 1 1 0.07 

0.75 0.9 1 0.96 0.92 0.8 0.57 0.69 0 0 0.7 0 1 0.5 1 1 0.14 
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     The resulting output from the previous step is split into training and testing sets and 

forwarded to the Hidden Naïve Bayes (HNB) multiclass algorithm. Accordingly, the training 

records are used to build the HNB classifier, and the testing records are used to classify the 

test patients’s data into the designated five classes. To implement HNB, a calculation is done 

to compute the probability for each class (label) of the dataset as given by Eq. (7): 

 

Probability (Class) = 
   class Frequency in training set of  covid−19 dataset

Total number of records in training set of covid−19 dataset
                            (7) 

 

Table 6 shows our calculations for each class's probability and their frequency. As it is shown, 

COVID-19 mild has the highest probability, which is considered the common class in the 

dataset. 

 

Table 6: Frequency and Probability for each Class label 

Class Type 
Frequency of Class in Training 

Dataset 

Probability of Class in Training 

Dataset 

1 Asymptomatic 4425 0.10612 

2 COVID-19(Mild) 16742 0.40149 

3 COVID-19(Sever) 10296 0.24691 

4 Flu 6226 0.14930 

5 Normal 4011 0.09619 

 Sum =41700 Sum =1 

 

     After that, the probability of each value in each interval of the 17 selected features for all 

classes is computed. We performed this by finding the frequency and the probability of each 

value in the interval for each of the selected features, as shown in Table 7. 

Based on the previous resulted computation, a conditional mutual information CMI is 

computed, which is the sum of the conditional mutual information probability for each pair of 

features Fi, Fj in each class C for 𝑖, 𝑗 = 1 𝑡𝑜 17 in the training set.  

 

     As a result, we find the conditional mutual information probability CMIP first for each 

interval, as shown in Table 8. This is obtained by computing the following requirements: 

• Calculating the probability (Fi, Fj, C) by dividing Frequency of seemed (Fi&Fjin C) on total 

size of training records of the dataset. 

• Calculating the Probability(Fi, Fj|C) by dividing Frequency of seemed (Fi&Fjin C) on 

Frequency of class C. 

• Calculating Probability(Fi|C) by dividing Frequency of seemed (Fi in C) on Frequency of 

class C. 

• Calculating Probability(Fj|C) by dividing Frequency of seemed (Fj in C) on Frequency of 

class C. 

Then, the CMI will be summed for all paired features to find the weight between each two 

features. Table 9 shows our calculated weight between the attribute comorbidity and the 

sixteen other attributes. As a final step, the hidden parent is computed using Eqs. (4) and (5). 
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Table 7: The Frequency and Probability values for each of the selected feature’s Intervals 

for all Classes 
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1 

D
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se

 g
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p

 0 0 0 0 0 0 0 0 0 17590 1 

0.25 0 0 16742 1 0 0 0 0 0 0 

0.5 4425 1 0 0 0 0 0 0 0 0 

0.75 0 0 0 0 10296 1 0 0 0 0 

1 0 0 0 0 0 0 10519 1 0 0 

2 

C
o

m
o

rb
id

it
y

 

0 0 0 4526 0.270 0 0 0 0 0 0 

0.1-

0.5 
4425 1 12216 0.729 5832 0.566 4895 0.465 17590 1 

0.6-

0.9 
0 0 0 0 4464 0.433 4293 0.408 0 0 

1 0 0 0 0 0 0 1331 0.126 0 0 

3 

H
o
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it

a
l-

d
a

y
 

0.1-

0.8 
4425 1 16742 1 10296 1 10519 1 17590 1 

4 

W
B

C
/m
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ro

-L
 

0 0 0 0 0 0 0 0 0 5677 
0.3

22 

0.1-

0.5 
4425 1 8504 0.507 3717 0.361 4212 0.400 3459 

0.1

96 

0.6-

0.9 
0 0 7576 0.452 4860 0.472 6307 0.599 8454 

0.4

80 

1 0 0 662 0.039 1719 0.166 0 0 0 0 

5 

N
eu
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o

p
h

il
 

0 4425 1 0 0 1345 0.130 0 0 0 0 

0.1-

0.5 
0 0 16742 1 2587 0.251 4895 0.465 17590 1 

0.6-

0.9 
0 0 0 0 5966 0.579 4293 0.408 0 0 

1 0 0 0 0 398 0.038 1331 0.126 0 0 

6 

C
h
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t 

X
-r

a
y

 

0 0 0 0 0 1873 0.181 0 0 0 0 

0.1-

0.5 
4425 1 0 0 3959 0.384 1040 0.098 17590 1 

0.6-

0.9 
0 0 13503 0.806 4464 0.433 9479 0.901 0 0 

1 0 0 3239 0.193 0 0 0 0 0 0 

7 

T
re

a
tm

en
t 

0 0 0 3978 0.237 0 0 0 0 0 0 

0.1-

0.5 
0 0 12764 0.762 3932 0.381 10519 1 17590 1 

0.6-

0.9 
0 0 0 0 6364 0.618 0 0 0 0 

1 4425 1 0 0 0 0 0 0 0 0 

8 

R
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p
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a
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 0 4425 1 0 0 0 0 0 0 0 0 

0.1-

0.5 
0 0 13503 0.806 3375 0.327 10519 1 17590 1 

0.6-

0.9 
0 0 0 0 6921 0.672 0 0 0 0 

1 0 0 3239 0.193 0 0 0 0 0 0 
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0 0 0 0 0 4464 0.433 0 0 0 0 

0.6-

0.9 
4425 1 16742 1 3561 0.345 10519 1 17590 1 

1 0 0 0 0 2271 0.220 0 0 0 0 

10 

O
2

 s
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p
p
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e
n

t 

0 0 0 0 0 7839 0.761 0 0 0 0 

0.3-

0.7 
0 0 0 0 2457 0.238 10519 1 17590 1 

1 4425 1 16742 1 0 0 0 0 0 0 

11 

T
em

p
er

a
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re
 

0 4425 1 0 0 1873 0.181 0 0 0 0 

0.1-

0.5 
0 0 12216 0.729 1502 0.145 10519 1 17590 1 

0.6-

0.9 
0 0 4526 0.270 5178 0.502 0 0 0 0 

1 0 0 0 0 1743 0.169 0 0 0 0 

12 

S
y

st
o

li
c 

B
P

 

0 0 0 4526 0.270 5966 0.579 0 0 0 0 

0.1-

0.5 
4425 1 7217 0.431 1112 0.108 10519 1 17590 1 

0.6-

0.9 
0 0 0 0 3218 0.312 0 0 0 0 

1 0 0 4999 0.298 0 0 0 0 0 0 

13 

H
ea

rt
 r

a
te

  

0 0 0 0 0 398 0.038 0 0 0 0 

0.1-

0.5 
4425 1 12764 0.762 3932 0.381 10519 1 17590 1 

0.6-

0.7 
0 0 3978 0.237 1502 0.145 0 0 0 0 

1 0 0 0 0 4464 0.433 0 0 0 0 

14 

C
o

n
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io
u

sn
es

s 

0 4425 1 16742 1 1345 0.130 0 0 0 0 

0.5 0 0 0 0 7449 0.723 10519 1 17590 1 

1 0 0 0 0 1502 0.145 0 0 0 0 

15 

N
E

W
S
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0 0 0 8965 0.535 12 0.001 0 0 0 0 

0.1-

0.5 
4413 0.997 7765 0.463 3218 0.312 10519 1 17590 1 

0.6-

0.7 
12 0.002 12 0.001 2590 0.251 0 0 0 0 

1 0 0 0 0 4476 0.434 0 0 0 0 

16 

S
ev

er
it

y
 0 0 0 16742 1 0 0 0 0 0 0 

0.5 4425 1 0 0 0 0 10519 1 17590 1 

1 0 0 0 0 10296 1 0 0 0 0 

17 

C
el
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ty
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e
 

0 490 0.110 1333 0.079 915 0.088 322 0.030 1285 
0.0

73 

0.1-

0.5 
2781 0.628 10429 0.622 5528 0.536 7669 0.729 10546 

0.5

99 

0.6-

0.9 
1139 0.2574 4906 0.293 3839 0.372 2520 0.239 5688 

0.3

23 

1 15 0.003 74 0.004 14 0.001 8 0.001 71 
0.0

04 
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Table 8: Frequency and CMI computation for Comorbidity feature and Neutrophil feature 

from Class 3 

Comorbidity 

feature value 

Neutrophil 

feature Value 

Freq. of 

Comorbidity 

feature 

Freq. of 

Neutrophil 

Freq. of 

Comorbidity & 

Neutrophil 

CMIP 

0 0 0 1345 0 0 

0.1-0.5 0 5832 1345 1345 1.07060116 

0.6-0.9 0 4464 1345 1345 0.81947249 

1 0 0 1345 0 0 

0 0.1-0.5 0 2587 0 0 

0.1-0.5 0.1-0.5 5832 2587 2587 0.55661328 

0.6-0.9 0.1-0.5 4464 2587 2587 0.42604967 

1 0.1-0.5 0 2587 0 0 

0 0.6-0.9 0 5966 0 0 

0.1-0.5 0.6-0.9 5832 5966 5832 0.2413608 

0.6-0.9 0.6-0.9 4464 5966 4464 0.18474531 

1 0.6-0.9 0 5966 0 0 

0 1 0 398 0 0 

0.1-0.5 1 5832 398 398 3.61798633 

0.6-0.9 1 4464 398 398 2.76932287 

1 1 0 398 0 0 

    
 

CMI=∑ 𝑪𝑴𝑰𝑷 = 
9.68615193 

 

Table 9: Weight Values between Feature Comorbidity and the other Features of dataset 

 
Pair of Features 

Weight 

Value 

 
Pair of Features 

Weight 

Value 

1 
W (Comorbidity & Disease group) 0.0080 

9 W (Comorbidity & O2 

supplement) 
0.0004 

2 W (Comorbidity &Hospital) 0.0080 10 W (Comorbidity & Temperature) 0.0017 

3 W (Comorbidity &WBC) 0.0009 11 W (Comorbidity &Systolic) 0.0012 

4 W (Comorbidity, Neutrophil) 0.0034 12 W (Comorbidity &Heart Rate) 0.0033 

5 
W (Comorbidity & Chest X-ray) 

0.0009 13 W (Comorbidity & 

Consciousness) 
0.0013 

6 W (Comorbidity &treatment) 0.0003 14 W (Comorbidity &news) 0.0763 

7 W (Comorbidity & Respiratory rate) 0.0003 15 W (Comorbidity & Severity) 8.8068 

8 W (Comorbidity & O2 saturation)  0.0008 16 W (Comorbidity &Cell-Type) 0.9081 

 

In testing phase, the hidden value is used to classify the tested records. Table 10 shows our 

testing record implementation using values from COVID-19 test set. 
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Table 10: Sample of Testing Record from COVID-19 Test Set 
  Features description Classes 

N

o. 
Feature Name 

Interval 

 
Asymptomatic 

COVID-

19(Mild) 

COVID-

19(Sever) 
Flu Normal 

1 Disease group 0.5 

 
1 0 0 0 0 

2 Comorbidity 0.3 

 
1 0.73 0.57 

 

0.79 

 

1.00 

 
3 Hospital-day 0.3 1 1 1 1 1 

4 WBC/micro-L 0.2 

 
1 0.51 0.36 0.40 0 

5 Neutrophil 0.5 

 
0 1 0.25 0.79 1 

6 Chest X-ray 

 

 

0.9 

 
0 0.81 0.43 1 0 

7 Treatment 0.4 

 
0 0.76 0.38 1 1 

8 Respiratory rate 

(BPM) 

0.1 

 
0 0.81 0.33 1 1 

9 O2 saturation 0.8 

 
1 1 0.35 1 1 

10 O2 supplement 0.2 0 0 0.25 1 1 

11 Temperature 0.5 

 
0 0.73 0.15 1 1 

12 Systolic BP 0 

 
0 0.27 0.58 0 0 

13 Heart rate (BPM) 0.7 0 0.24 0.15 0 0 

14 Consciousness 1 0 0 0.15 0 0 

15 NEWS score 0.4 0.99729 

 
0.46 0.31 1 1 

16 Severity 0.5 1 0 0 1 1 

17 Cell type 0 0.11073 

 
0.08 0.09 0.03 0.13 

 

8. Experimental Results and Discussion  

     In this section, a proposed multi-class model using NCA as a feature selection method and 

Hidden Naïve Bayes HNB as a statistical type classifier on the COVID-19 dataset will be 

evaluated and discussed. The model is implemented in multiple stages, first considering the 

COVID-19 dataset for evaluation. A total of about 59,570 patient records are submitted to 

pre-processing steps (cleaning, normalization, and discretization). Following that, the dataset 

is split into 2/3. 

Training set, which is about 41,700 records, and 1/3 testing set, which is about 17,870 

records. Using the training set, the feature selection method is utilized by adapting the NCA 

algorithm to select the most influent features extracted from patients’s records. After applying 

the feature selection method, we calculated and computed the interval of each feature. A 

distribution of each selected feature is depicted in Figure 3. Then, the data is forwarded to the 

HNB classifier for classification. Figure 4 shows our distribution of each class in the COVID-

19 training dataset. 
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Figure 3: Dataset Features Distribution 

 

 

 
 

Figure 4: Distribution of each Class 

 

     To be noted, during the feature weighting module, for each feature, a hidden parent value 

is computed considering all other features. Therefore, many calculations are done during the 

HNB process. These resulted in a considerable number of values that can't be shown as a 

table. For this reason, in Figure 5, which depicts 16 charts, we show an example of 

conducting feature neutrophil intervals with all remaining features, including their intervals 

for class 3 (Severe COVID-19). 
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Figure 5: Neutrophil Feature with the other Remaining Features in Class 3 

 

Throughout the conducted experiments, four assessment measures (accuracy is given by Eq. 

(8), recall is given by Eq. (9), precision is given by Eq. (10), and the F measure is given by 

Eq. (11)) were used to assess the proposed model [19]: 

 

Accuracy is the rate of classification. Its formula is: 

                                    accuracy =  
TP+TN

TP+TN+FP+FN
                                                                         (8)  

 

The recall measures how many times it predicts yes. Its formula is: 

                                      𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
                                                       (9) 

Precision measures the number of times correctly predicted yes. Its formula is: 

                 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

=
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
                                                                    (10) 

 

The F1 measure represents the recall and precision in the following formula: 

                                             𝐹1𝑀𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                                                 (11) 

 

In Table 11, we show the confusion matrix for the COVID-19 test set based on five classes. 
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Table 11: Multi Class Confusion Matrix 

 Asymptomatic COVID-19(Mild) COVID-19(Sever) Flu Normal 

Asymptomatic 1858 500 500 200 800 

COVID-19(Mild) 300 2711 500 1800 200 

COVID-19(Sever) 500 500 1344 350 250 

Flu 300 1000 500 1600 10 

Normal 800 1000 150 20 1222 

 

Table 12 shows our evaluation of the proposed model using the COVID-19 testing dataset. 

The testing phase used 17800 patients’ records to evaluate the model's performance. 

 

Table 12: Performance Measure for each Class in COVID-19 Dataset 

Class type Accuracy Recall Precision F measure 

Asymptomatic 0.95 0.92 0.97 0.94 

COVID-19(Mild) 0.95 0.96 0.90 0.92 

COVID-19(Sever) 0.86 0.84 0.81 0.82 

Flu 0.81 0.88 0.67 0.76 

Normal 0.88 0.62 0.96 0.75 

The Average 0.89 0.84 0.86 0.83 

 

     According to the value of the results shown in Table 12, the accuracy of detecting flu was 

low, whereas the accuracy of detecting asymptomatic and COVID-19 (mild) was 95%. The 

precision measure for asymptomatic and normal classes reached 97% and 96%, respectively. 

Additionally, the recall for COVID-19 (mild) reached the highest, which is approximately 

96% compared with other classes. A comparison is made on the accuracy between the 

proposed model and ref. [11] using the same COVID-19 dataset. It was shown that despite the 

vast calculations using HNB, the average accuracy was raised to 0.89 in comparison with the 

results yielded from ref. [11]. This is because each attribute (symptom) has a hidden parent 

value that reflects the influence of other attribute values. Table 13 shows our calculated 

accuracy value after implementing our proposed model and comparing it with the accuracy 

value found in [11]. 

 

Table 13: Accuracy Comparison with Reference [11] 

 Method Dataset Accuracy 

Ref [11] Back propagation COVID-19 dataset 0.79 

Our Proposed Model HNB COVID-19 dataset 0.89 

  

9. Conclusions  

     This paper suggests a proposed model to provide medical assistance in diagnosing 

COVID-19 according to specified symptoms. The model used a statistical classification 

method called Hidden Naïve Bayes to alleviate the feature’s conditional independence 

assumption. Compared to other statistical classifiers, HNB creates a hidden parent value for 

each feature that synthesizes all of the other qualified features’ influences. As a consequence, 

this assumption led to an improvement in the quality of the COVID-19 diagnosis because 

every symptom had a weight computed from all other symptoms, and a class probability was 

calculated taking into account the entire condition of each symptom. Hence, all symptoms 

contribute to diagnosing a patient's illness, which is a very important issue in obtaining 

accurate performance. Furthermore, HNB showed better efficiency than the work in [11], 

which used a backpropagation classifier.  
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