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Abstract

We introduce the notion of t-polyform modules. The class of t- polyform
modules contains the class of polyform modules and contains the class of t-essential
quasi-Dedekind.

Many characterizations of t-polyform modules are given. Also many connections
between these class of modules and other types of modules are introduced.
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Introduction

Throughout the paper, rings will have a nonzero identity element and modules will be unitary right
modules. We first briefly review some background materials relevant to the topics discussed in this

paper.
Recall that, a submodule N of an R-module M is called essential submodule of M( briefly N < M)
€ss

if for each nonzero submodule W of M , NUW= 0 [1]. Equivalently N < M if whenever W < M,
ess

NuUW=(0) implies W=(0) [1] A submodule N of M is called closed (denoted by N<M) if has no
c

proper essential extension in M; that is, if N < w < M, then N=W [1]. Ashari et. al in [2], introduced

ess
the concept of t-essential submodule, where a submodule N of M is called t-essential (briefly N <w)
tes

if whenever W < M, NmMWcZ,(M), then Wc Z,(M) where Z,(M) is the second singular submodule

of M and defined by z(%) =% [1]. It is well known that Z(M) ={m:ml =0,forsomel < R}
ess
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.Equivalentently Z(M)={meM:ann(m) <R }[1] where ann(m)= {r € Rimr = 0} .Similarly
€ss
Zy,(M)={meM:ml=0,forsomel < R}={meM:ann(m) <R
tes tes
Obviously, every essential submodule is t-essential, but not conversely, for example the submodule
(4) of the z-module Z;, is t-essential but not essential.

However, the two concepts are equivalent if M is nonsingular (ie Z(M)=0). A module M is called
singular if Z(M)= M and is called Z,-torslon if Z,(M) = 0. If A<M thenZ,(A) =Z,(M)n A
Asgari..etc, in [2], introduced the concept t-closed submodule where a submodule N of an R-
Module M is t-closed (denoted by NtSM if N has no proper t-essential extension in M. It is clear that
C

every t —closed submodule is closed, but the converse is not true for example (0) is closed in Zg as Z-
module but it is not t-closed. The two concepts closed submodule and t-closed submodule are coincide
in nonsignular modules.
An R-module M is called polyform if for each L< M and for each ¢: L=M, Kerg < L implies $=0
ess

(i.e if$p=0, then Kerg « L). [3, 4].

Rizvi in [5] introduced the nation of k-nonsingular module, where an R-module M is called K-
nonsingular if ¢€End (M), Kerg < M implies =0, where End (M) means the ring of endomorphism
ess

on M.

It is clear that polyform module implies K-nonsingular but not conversely see [5].

Thaa’r in [4] gave the notion of essentially quasi- Dedekind modules as a generalization of quasi —
Dedekind modules by restricting the definition of quasi-Dedekind modules (which is introduced in [6]
on essential submodules, where an R-module M is called essentially quasi-Dedekind if
Hom(%,M) =0 for eachN < M (that is M is essentially quasi- Dedekind if every N <M, N is quasi-

ess ess
invertible. Thaa’r in [7]proved that k-nonsingular modules and essentially quasi-Dedekind are
coincided.

F,S and Inaam in [8] introduced the notion of t-essentially quasi-Dedekind where an R- module M
is called t-essentially quasi-Dedekind (Shortly t-ess.q-Ded) if Hom(%,M) =0 for each N<M .

tes

Equivalently M is t-ess. g-Ded if for each ¢€End (M) with 0+ Kerg < M implies ¢ = 0 [8].
tes

It is obvious that every t-ess. g.Ded module is ess. g-Ded, but not conversely [8,Rem&Ex.2.2(2)].
In the present paper, motivated by these works, we introduce and study t-polyform modules as
follows: An R-module M is called t-polyform if for each L<M, and ¢:L—M, Kerg < L implies ¢=0.
tes

Then we have

If M is t-polyform then M is polyform model and if M is t-polyform then M is t-ess g-Ded module
and none of these implications is reversible (see Rem& Ex.3.2(1),(3))

We give many properties and characterizations of t-polyform modules which are analogous to that
of polyform modules (See Rem 3.2(3),Th.3.6,Th.4.7)

Also, many connections between t-polyform module and other types of modules are presented (see
Theorems 3.3,3.4,4.1 and 4.4).

Next note that our notion ((t-polyform modules)) is different from (st-polyform modules) which is
appeared recently in [9] as we explain that in S.3, Note 3.5
2-Preliminaries

We list some known results which are relevant for our work.
Lemma 2.1 [2]

The following statements are equivalent for a submodule A of an R-module M.
1L.LAM,

tes

2.A+Z,(M) <M ,
ess
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3.A+ZZ(M)S M
Zy(M)  ess Z5(M)

M . . . M M
4, — s Z,-torsion (i.e Zy(— ) =—
1S Z; (ieZo(~-)="r)

Lemma 2.2 [10]
Let A, be a submodule of M, for each A €A. Then
1If Aisafinitesetand A, <M, ,then N A, < N M,
tes

AEA teshen

2. ® Ay <oM, ifandonlyif A, <M,, Vien
rEA tes tes

Lemma 2.3 [10]
Let A<B<M. ThenA <Mifandonlyif A<BandB<M

tes tes tes
Lemma 2.4 [2]
Let M be an R-module. Then
1. 1If Cth thenZ,(M) < C
Cc

2. (0)<M ifand only if M is nonsingular.
tc

3. IFA< C <M, then c<mifand only if <M
tc Atc A

tc
Lemma 2.5 [2]
Let C be a submodule of an R-module M. Then the following statements are equivalent:

1. There exists a submodule S such that C is a maximal with respect to the property CNS is Z,-
torsion.
2. C<M.

tc
3. C contain Z,(M) and ¢ < M
Z(M) ¢ Z,(M)

4. Ccontains Z,(M) and C<M
C

5. Cisacomplement of a nonsingular submodule of M.
M . .
6. < is nonsignular.

Lemma 2.6 [2]
LetM=@& M, WhereM, <M foreach a €A. Then z,(M)=® Z,(M,)

3- t-polyform Modules
Definition 3.1: An R-module M is called t-polyform if for each L< M and ¢:L—M, ¢ = 0, then
Kerg « L. Aring R is said to be right t-polyform if the module Ry is t-polyform.

tes

Remarks and Examples 3.2
1.Every t-polyform module is polyform, since every essential submodule is t-essential. However, the
converse is

not always true for example:

Let M be the Z-module Zg since M has no proper essential submodule, then M is polyform.
But M is singular hence M is Z,-torsion and so every submodule, 0+ L< M is Z,-torsion and hence
Z,(L)=L. Now for each 0+ ¢ : L —» M,Kerp+ Z,(L)=Ker¢p=L and hence Ker¢t£ L (by Lemma 2.1)

es

Thus M=Z; is not t-polyform
2. It is known that every semisimple module is polyform,but it is not necessary t-polyform, see the
example

in(1).
3. It is clear that every t-polyform module is t-ess.q. Ded. However, the converse may be noted true in
general, for

example: Let M=Z, as Z-module, where P is a prime number. For each 0+ . Z, - Z,
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Since f= 0, and M is simple so Kerf=(0) and hence by lemma 2.1, Kerf=(0) < M ,Since Kerf+ Z,
tes
(M)=M < M. Thus M is not t.polyform. But M is t-ess.q.Ded. Since for each f:M — M, with 0% Kerf

ees

< M implies Kerf =M and so f=0.
tes

4. Recall that every nonsingular module M( i.e Z(M)=0) is polyform. Also every nonsingular module
M is t-
polyform
Proof : Let L< M,¢:L—M and ¢+ 0. Since M is polyform Ker$ « M. But M is nonsingular, hence
tes

Kerdp £ M.

tes
In particular each of the Z- module: Z,Q,ZZ,Q® Q, Z[X] is t-polyform module, also for each prime
number P, Z, as Z,- module is t-polyform.
5. Every singular M( hence M is Z,-torsion (Z,(M)=M)) is not t-polyform module
Proof: Let L< M, ¢:L—-M and ¢+ 0. Hence Ker¢p+Z,(M) = Kerd + M = M < M, so Kerp < Mby

ees tes
lemma
2.1. Thus M is not t-polyform.

6. Prime module need not be t-polyform, for example M= Z, @ Z, as Z-module is prime and M is not
t-

polyform since M is singular. However evey prime faithful module is nonsingular, hence it is t-
polyform by

part (4).
7. Every submodule N+ 0 of t-polyform module M is t-polyform.
Proof: Let0 # L < Nand let f:L—N, f # 0. Then, 0+ iof: L— M where i is the inclusion mapping
from N into

M.
Since M is t-polyform then Ker(iof) t;<_ L.
es

But it is easy to check that Kerf=Ker(iof) and hence Kerf tst' Thus N is t-polyform.

In particular if M (quasi-injective hull of M) or E(M) (injective hull of M), then M is t-polyform.

8. A homomorphic image of t-polyform module is not necessarily t-polyform, for example the Z-
module Z is t-
polyform. Letz:Z — Z/(6) ~ Zg Where m is the natural epimorphism, but Z4 is not t-polyform by

part(1).

9. If Mis a t-polyform R-module andN <M then % is t-polyform.
tc

Proof: SinceN<M , % is nonsignular by lemma (2.5). Hence% is t-polyform by part (4).
tc

10.Recall that an R-module is Co-epi-retractable if for each N< M, there exists K< M such that %
=~ K11, 12].
If M is t-polyform and Co-epi-retractable, then % is t-polyform, for each N< M.

Proof: it follows directly
The following theorem is a characterization of t-polyform modules.
Theorem 3.3 An R-module M is t-polyform if for each 0+ L < M and 0+ ¢: L - M, Kerp<L
tc

Proof: Suppose there exist 0= L <M and 0+ ¢: L - M, but Kerp«L . By definition of t-closed
tc

submodule, there exists U< L such that U is a proper t-essential extension of kerf.
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Then ¢oi:U— M where i is the inclusion mapping from U into L. Clearly Ker(i-¢) < Ker¢g , SO that
tes
Ker(goi) < U. Hence ¢oi =0 since M is t-polyform. It follows that ¢(U)=0 ; that is U< Kerf which is
tes
a contradiction. Thus Kerg <L
tc

Conversely, suppose there exist L<M and 0+ ¢:L - M with Kerf <L . But Kerg<L by
tes tc

hypothesis, so Ker ¢=L which implies ¢ = 0 which is a contradiction. ThusKer f « L and So M is t-
tes

polyform.
The following is another characterization of t-polyform modules
Theorem 3.4 Let M be an R-module. Then M is t-polyform if and only if for each 0=N <M and for

tes

nonzero feHom (N,M), then kerf £ N
tes

Proof:(L) it is clear
(L)Let N<M, If N <M then nothing to prove if N « M, letf: N = M, f # 0. Since N « Mthen N ¢ M

tes tes tes ess
. Hence there exists K (a relative complement) of N and so that N® K < M. which impliessSN® K < M
ess tes

. Define g: N@®k = M by g(n+k)= f(n), neN, kek.g is well-defined and g+ 0. By hypothesis,
kerg £ N@® K But Kerg=Kerf@K and so that kerf « N by lemma 2.2 (2). Thus M is t-polyform.

tes tes
The notion of ((st-polyform modules)) appeared in [9], where an R-module M is called st-polyform
if foreach0# L <M,0 # ¢:L > M kerf < L. A submodule U of M is called st-closed(U < M) if U

st.c st.c
has no proper semiessentiall extension of U , and a submodule U of M is called semi-essential in M if
U has nonzero intersection with any nonzero prime submodule
Note 3.5
The two concepts (t-polyform modules) and (st-polyform modules) are independent as we can see

by the following examples.
1. Zg as Z-module is not t-polyform ( see Rem 3.2(1)) and it is is st-poly by [5,Rem.3(vii)]
2. Z as Z-module is t-polyform (See Rem 3.2.(4)), and it is not st-polyform [see 5, Ex.5(ii)]

[4] gave the following; An R-module M is polyform if and only if every essential submodule is

rational, where a submodule N of M is called rational in M( briefly N<M) if Hom(%,M) =0for each
r

N<V<MI[1].

Note that every rational submodule is essential but not conversely [1]

We give the following:
Theorem 3.6 An R-module M is t-polyform implies every nonzero t-essential submodule of M is
rational.

Proof: Assume 0 = N <M and feHom (%,M) where N <V < M. Then f o e Hom(v, M) where 7 is
tes

the natural epimorphism from V onto % Hence N < ker(fom), but N <M implies ker(foz) <M by
tes tes

lemma (2.3).So thatker(foz) <V (since ker(foz)c V) . Since M is t-polyform ,f o= =0, and hence
tes

f=0. Thus Hom(%,lvl) =0 thatis N<M.
r

Remark 3.7 The converse of theorem (3.6) is not true in general, for example:
The Z-module Zs is not t-polyform, but Zs has only Zg as t-essential submodule of Zg and Zg<Zg.
r

However, we have:
Theorem 3.8 if M is an R-module such that every nonzero t-essential submodule is rational, then M is
polyform.
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Proof: Let N < M, hence 0= N <M. Then by hypothesis is N<M. Thus every essential submodule
ess ess r

is rational. It follows that M is polyform.
Recall a nonzero R-module M is called monoform if for each 0# N < M and for each 0+ f €
Hom(N,M),then ker f=0, [9].
Equivalently a nonzero R-module M is monoform if for each nonzero submodule N of M, N<M, [9].
r

It is known that every monoform is polyform . Now we ask the following: Is there any relation
between t-polyform modules and monoform?
Consider the following remarks
Remarks 3.9
1. t-polyform modules need not be monoform, for example: The Z-module Z @ Z is t-polyform
(Rem 3.2.(4)), but it is not monoform since there exists f:Z®2Z -z ®Z such that f(x,y)=(y,0) for

each xeZ, ye2Z then Kerf=Z @ (0) #zero submodule.
2. Monoform module may be not t-polyform module, for example: The Z-module Z,, where p is a
prime number, is monoform but it is not t-polyform.

We introduce the following
Definition3.10 An R-module M is called t-essentialy monoform (shortly t-ess- mono) if for each 0+
N <M and 0 # f € Hom(N,M) then kerf=0 .

tes

Every simple module is t-ess mono and every monoform module is t-ess. mono.
Proposition 3.11: Let M be a t-ess-mono. module. Then M is quasi-Dedekind and hence M is t-ess.q.-
Ded.

Proof: Since M < Mand M is t-ess-mono, the for each 0 # f eEnd (M) implies kerf=0 Thus M is
tes

quasi-Dedekind by [6 ,Th1.5,p.26] and hence M is t-ess-q-Ded.
By th.(3.6), We have: If M is t-polyform, then for each 0N < M implies N<M.

tes r
Now we give the following

Proposition 3.12: If M is t-ess-mono. R-module, then for each 0N <M implies N<M.
tes r

Proof: Suppose there exists 0=N < M but N«M Hence there exists V[N such that Hom (%,M) #0

tes r

,50 Let fe Hom (%,M) F20.1t follows that fore Hom (v, M), where = is natural epimorphism from V

onto % and for=0 (Since f # 0). But NcV, hencev <M and since M is t-ess-mono, Ker(for)=0.
tes

Since NcKer(for)=0 thus N=0 which is a contradiction therefore N<M.
r

Corollary 3.13: Let M be a t-ess-mono. Then M is polyform.
Proof: It follows by prop.(3.12) and Th.(3.8)

Proposition 3.14: Let M a quasi-injective R-module. | f M is t-ess.q.Ded, then for each0= N <M
tes

implies N<M
r

Proof: Let 0N <M Since M is t-ess,g-Ded, Hom (%,M) =0;that is N is a quasi-invertible
tes

submodule of M. Since M is quasi-injective, then by [6,Th3.5 p.16], M is a rational extension of N;
that iSN<M .

r
Corollary 3.15: Let M be a quasi-injective if M is t-ess.q.Ded, then M is polyform
Proof: It follows by prop .(3.14) and Th.( 3.7)
We can Summarize results of S.3 by the following tables
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Nonsingular module

- i Polyform
t-polyform module Every nonzero t es_sentlal submodule yf
Is rational module
t-essentailly t-essentailly Monoform
quasi-Dede Monoform modules

- +
ql;t;:?-s[e;t(;a;u%d Quasi-injective — polyform

$.4 More about t-polyform module
It is known that, for an R-module M, the following are equivalent:-
1. Every essential submodule is rational (i.e. M is polyform)

2. For each0 # N < M,f:N - M, f# 0, then kerf < N (i.e. All partial endomorphism of M have
c

closed kernels in their domains)
3. End(M) is vonneuman regular
4. Foreach N <M, Hom(M,M) =0
ess N

Proof
Ve e B)[2,49.P.34].
Qe Q)= (4) [13].

Our aim is to give analogize property for t-polyform module.

In S.3 we prove that an R- module M is t-polyform if and only if for each 0 ZN<M, f: N>M,
f # 0 implies Kerf ts M.

C

Now we prove the following:

Theorem 4.1 An R- module M is t-polyform if and only if for each 0 #N < M, Hom (%,M) =0.
tes
Proof:([]) suppose there exists (N < M) # 0 such that Hom (%,M) #0. Hence there exists f :% —->M
tes

and f # 0, and so there exists m+ N € %,m + N # 0 such that f(m + N) =m'# 0. SinceM < M,
ess

there exists reR with 0=m’reM let m'r=x .Define ¢ : N+ Rm —» Rx € M, ¢ (n+ tm) = tx for each
n€e€N,teR. To show that ¢ is well — defined: if ny +t;m=n, +t,m , then n; —n, =
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(t, —t;)m € N . Hence (t, — t;) f(m + N) = f[(t, — t;)m + N] = 0, this implies (t, —t;)m’ =0 and

50 (t, —t))m'r=0 .Thus (t, — t;)x = 0
Sothata,x = a;x. Itisclearthat$ = 0
Now io¢: N + Rm — M where i: Rx—M is the inclusion i© ¢ # 0. Hence Ker(io ¢)= Kerd .But N <

Ker¢ and N <M implies Ker¢< M , so that Keidg) <M . But Ker(iog) < N+Rm .Hence
tes tes tes

Ker(io¢) < N+Rm whichisa contradlction with Th.(3.4).
tes

(F)Suppose that M is not t-polyform. Then there exists K<M, fe Hom (K, M) ,f0 and Kerf < K. Since

tes
M is quasi — injective there exist g € End (M) such that goi=jof wherei:K > M,j:M — M be the
inclusion mappings
Since f # 0, then g # 0. Itis clear that kerf C kerg

Define by g % — M by g(m + kerf) = g(m) for each m € M.Then it is easy to see that g is well

— defined it follows that goi; € Hom (—]c ,M) , where i;: % ﬁ by hypothesisgoi; =0 .

That is for each m € M, goi(m + Kerf) = g(m + Kerf) = g(m) = 0. Thus g =0 which is a

contradiction. Therefore Kerf « K and M is a t-polyform module.
tes

Recall that an R-module M is called Rickart if for each feEnd(M), Kerf ést [14 ,Def 2.11,P.20].
The following results is given in [14,Lemma 2.4.21.P.59].
Lemma 4.2
The following condition are equivalent for a right R-module M:
1. M is a polyform module
2. Mis K-nonsingular (where M is the quassi-injective hull of M.
3. Mis a Rickart module.
We prove the following characterization for t-polyform modules
Theorem 4.3
An R-module M is t-polyform if and only if M is t-ess. g-Ded.

Proof:([) suppose there exists K <M and ¢€ Hom (K, M) with ker¢< K. To prove ¢=0. Since
tes

M < M, henceM <M .ThusKer¢g < K <M < M which implies Kerg <M and K < M by lemma (2.30.
€ss tes tes tes tes tes

Now K=KNEK) <MNEK) by lemma 2.2(1), where E(K) is the |nject|ve hull of K. Hence
tes

MﬂE(K)iM S0 M=(MNE(K) @ X for someX <M .Define y:K®X —Mby y=¢ onkand ¢ =0
on X. Since M is quasi — injective, there exist ¥ : M — M such thatyoi =y where i: KX — M be the
inclusion mapping. Since y =y on K@X, theny =¢ on K andy =0 on X.

We can easily see that: Kery =Kerg®X but Kerg < KandX <X , hence by lemma 2.2(1),

tes tes

Kery < K@®X .On the other hand, K <M , so K&X <M. Therefore Kery <M .Also Kery o Kery.

tes tes tes tes

It follows that Keriy <M , hence 1 = 0 since M is t-ess. g-Ded. However 1 = 0 implies ¢ =0.
tes

Thus M is t-poly form.
(7)To prove M is t-ess. g-Ded. Let feEnd (M) and f£0. To show that Kerf £ M , we shall prove that

tes

Kerf <M and hence Kerf « M By [3, Lemma 2.3], there exists K<M such that Kerf < K . Hence
tc tes tes

K<M by Lemma 2.5, so that M=K®A for some A< M. Deflne h:M — M by h|, =0 and
C

h|x = flx . Hence Kerh = kerf@A. But Kerf <K , A<A , implies Kerh=Kerf DA< K®A by

tes tes tes
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Lemma 2.2(2). Now for any o. € End M, Ker(hoo) =<~1(Kerh). Since Kerh <M , then o 'Kerh <M
tes tes
by [10, 2014, cor. 1.2]. Thus Ker(h o @)

_ M _
< =M by L 2.2). Then by Th 4.1), 0=Hom(————— M) ~H ho
th:sMnM M by Lemma (2.2). Then by Theorem (4.1) Om(Ker(hoa)ﬂM ) ~ Hom((ho @)
(M), M) and so h(a(M) = 0. Since o € End (M) is arbitrary, h(M)= > ha(M)=0 .Thus h=0 and

acEnd(M)
Kerf =K<M . Thus Kerf £ M .
tc tes
Corollary 4.4

Let M be a quasi-injective module then M is t-poly form if and only if M is t-ess-g-Ded
Proof: It follows directly by Th. (4.3).

Recall that an R-module M is called a t-Rickart if ty(¢) = ¢~ *(Z,(M)) is a direct summand of M
for every ¢cEnd (M)[1,Def2.1].

Note that every nonsingular Rickart module is t-Rickart, every extending module and every
Z, —torsion module (i.e a module M for which Z,(M) = M) is t-Rickart. A Rickart module need not
be t-Rickart, see[1, Ex.2.10]

We prove that
Theorem 4.5

If M is a t-polyform module, then M is t-Rickart
Proof:

Since > l\(AM) is nonsingular, ZZ(M)tsM and hence ZZ(M)EM . But M is quasi-injective (hence

2 Cc
extending) so that Z,(M) is a direct summand of M Thus M = Z,(M)®C for some C < M. But

C~ MM) which is nonsingular, so C is nonsingular. But M is t-polyform, hence M is t-ess. Quasi-

Zy(
Ded by Theorem 4.3. Thus M is K-nonsingular (i.e ess. g-Ded) . On other, M is quasi-injective, so M is
extending. But M is K-nonsingular extending module implies M is Baer which implies Rickart by [15,
Lemma 2.2.4,r.13].

Since CESBM , then C is Rickart. Thus M is t- Rickart by [11,Th2.6.1 (1—2)]
Remarks 4.6
1. The converse of Th.(4.5) is not true if Z,(M) # 0
Proof:
Since M is t-Rickart, M = Z,(M)@®C , for some nonsingular Rickart suomodule C of M.If Z,(M) = 0,
then there i:Z,(M) — M, where i is the inclusion mapping, and i#0. Thus ker f = (0). But
(0)+Z,(M) < Z,(M) ,thus
ess

(0) < Z,(M). That is Kerf <Z,(M) and so M is not t-polyform therefore (M) is not t-ess.q-Ded by
ess tes

cor (4.4)
2. If Z,(M) = 0 and Miis t-Rickart, then M is t-polyform.
Proof: As in (1), M =Z,(M)®C where C is nonsingular Rickart. Since Z,(M) = 0, then M = C; that
is M is nonsingular, hence M is t-polyform thus M is t-polyform by Rem & Ex.2.2.(7)

Now we have:
Theorem 4.7

Let M be a t-polyform extending module. Then M + M is t-Rickart module.
Proof: Since M is extending, M is t-Rickart. Also M is t-polyform implies M is t-Rickart by (4.4). By
[1, Th.2.6.1]1 M = Z,(M)®A, A is nonsingular Rickart sub- module of M, M = Z,(M)®B, B is a
nonsingular Rickart sub module of M : Hence
M®M = Z,(M)DZ, M)D(BDA) = Z,(MOM)D(BHA) by Lemma 2.6 hence BA is a nonsingular

_ @
submodule of M@®M since A<M, then A is t-polyform and extending and so A is polyform and
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extending BC;)M and M is quasi-injective, hence B is a quasi-injective. On the other hand, M =
Z,(M)@A implies M = Z, (M)A = Z,(M)DA. But M = Z,(M)®B, So B = A. Thus BOA = AGA
and hence by [14 , prop 2.4.22, p.60], BDA is Rickart and then by [11, Th 2.6.1], M@®M is t-Rickart .
It is well-known that a sub module N of M is fully invariant if for each f € End (M),f(N) S N.
Also recall the following basic fact: if N is a fully invariant sub module of M = M; @M, then N =
(NN MBI NM;)
Proposition 4.8
For an R-module M. if E (M) (injective hull of M) is t-poly form, then Z,(M) is a direct summand
of M.
Proof: Since E(M) is t-polyform, then E(M) is t-Rickart by Th.(4.5). But E(M) = E(M), hence E (M)
is t-Rickart. Then by [1, Th.2.6.1] E(M) = Z,(E(M)®A, A is a nonsingular Rickart submodule of E
(M) since M is a fully invariant submodule of E(M), then M = (Z,(E(M) n M)®(A N M), but

Z,(M) = Z,(E(M)) N M. Thus M = Z,(M)® (A n M) therefore ZZ(M)(EM.

References

1. Gooderl K.R. 1976. Ring theory, Nonsingular Rings and Module Theorey, Marcel Dekker, Inc.
New York and Basel.

2. Asgari, Sh., and Haghany, A. 2011. t-extending Modules and t-Baer Modules, Comm. Algebra,
39: 1605 — 1623.

3. Dung, N. V., Huynh, D. V. and Smith P.F. 1996. Wisbauer Extending Modules, John wiely &
sons, Inc. New York 1996.

4. Zelmanowitze, J. M 1986. Representation of ring with faithful polyform modules, Comm In
Algebra, 14(6):1141 — 11609.

5. Rizvi, S. T. and Roman, C. S. 2007. On K-nonsingular modules and applications, Comm Algebra,
35: 2960.

6. Mijbass A.S. 1997. Quasi-Dedkind modules, Ph. D. thesis, college of science, university of
Baghdad.

7. Ghawi, Th. Y. 2010. Some Generalizations of Quasi-Dedekind modules. M.Sc. Thesis, College of
Education Ibn AL-Haitham,University of Baghdad

8. Shyaa, F. D., Alaeashi, S. N. and Hadi, I. M. A. 2018.T-essentially Quasi-Dedekind modules,
accepted for publication in Journal of AL-Qadisya, 2018.

9. Ahmed, M. A. 2018. St-Polyform Modules and Related Concepts, Baghdad Science Journal, 5:
335 -—343.

10. Asgari, Sh., and Haghany, A. 2014. Modules whose t-closed sub modules have summand as a
complement, Comm. Algebra, 42(2014): 5299 — 5318.

11. Asgari, Sh., and Haghany A. 2015. t-Rick art and Dual t-Rick art Modules, Algebra colloquium,
22: 849 — 870.

12. Ghorbani, A. 2010. Co-epi-retractable modules and Co-pri-rings, Comm Algebra, 38: 3589 —
3596.

13. Weakly W. D. 1983. modules whose proper sub modules are finitely generated, J. Algebra, 189 —
219.

14. Gongyoung. Lee, M. S. 2010. Theory of Rickart modules, Ph. D. Thesis. The ohio state university.

15. Rizvi, S. T. and Roman, C. S. 2004. Baer and quasi-Baer modules. Comm. Algebra, 32(1): 103 —
123.

2052



