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Abstract  

     We introduce the notion of t-polyform modules. The class of t- polyform 

modules contains the class of polyform modules and contains the class of t-essential 

quasi-Dedekind. 

     Many characterizations of t-polyform modules are given. Also many connections 

between these class of modules and other types of modules are introduced. 
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 T-الصيغ من النمطة المقاسات المتعدد
 

 *ء عباس عليهي انعام محمدعلي،الا
 قدم الرياضيات، كلية التربيو ابن الييثم، جامعة بغداد، بغداد، العراق1

 قدم الرياضيات ، كلية العلهم، جامعة بغداد، بغداد، العراق2
 

 الخلاصه
الريغ من  .ىذا الرنف من المقاسات المتعدده T-الريغ من النمط قدمنا مفيهم المقاسات المتعدده     
-لى صنف المقاسات  المتعددة الريغ ويحتهي على المقاسات شبو الديدكانديو من النمطيحتهي ع T-النمط

Tالريغ من النمط .عدة تذخيرات للمقاسات المتعدده-T  قد اعطيت وكذلك عدة روابط بين ىذا الرنف من
 . المقاسات وانهاع اخرى من المقاسات قد قدمت

Introduction 

     Throughout the paper, rings will have a nonzero identity element and modules will be unitary right 

modules. We first briefly review some background materials relevant to the topics discussed in this 

paper. 

     Recall that, a submodule N of an R-module M is called essential submodule of M( briefly MN
ess
 ) 

if for each nonzero submodule W of M , NW   [1]. Equivalently MN
ess
  if whenever W   M, 

NW=(0) implies W=(0) [1] A submodule N of M is called closed (denoted by MN
c
 ) if has no 

proper essential extension in M; that is, if WN
ess
   M, then N=W [1]. Ashari et. al in  [2], introduced 

the concept of t-essential submodule, where a submodule N of M is called t-essential (briefly WN
tes
 ) 

if whenever W   M, NWZ2(M), then W   (M) where   (M) is the second singular submodule 

of M and defined by Z(
 

    
)  

     

    
 [1]. It is well known that R}Isomefor0,mI:{mZ(M)

ess
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.Equivalentently Z(M)={mM:ann(m) R
ess
 },[1] where ann(m)=  {        } .Similarly  

Rann(m):M{mR}Isomefor0,mI:M{m(M)Z
testes

2   

     Obviously, every essential submodule is t-essential, but not conversely, for example the submodule

)4( of the z-module     is t-essential but not essential. 

     However, the two concepts are equivalent if M  is nonsingular (ie Z(M)=0). A module M is called 

singular if Z(M)= M and is called Z2-torslon if        . If  A M   then               

   Asgari..etc, in [2], introduced the concept t-closed submodule where a submodule N of an R- 

Module M is t-closed (denoted by MN
tc
  if N has no proper t-essential extension in M. It is clear that 

every t –closed submodule is closed, but the converse  is not true for example ( 0 ) is closed in Z8 as Z-

module but it is not t-closed. The two concepts closed submodule and t-closed submodule are coincide 

in nonsignular modules. 

     An R-module M is called polyform if for each L  M and for each : L M, LKer
ess
  implies =0 

(i.e if0, then LKer
ess
 ). [3, 4]. 

Rizvi in [5] introduced  the nation of k-nonsingular module, where an R-module M is called K-

nonsingular if  End (M), MKer
ess
  implies =0, where End (M) means the ring of endomorphism 

on M. 

     It is clear that polyform module implies K-nonsingular but not conversely see   [5]. 

     Thaa’r in [4] gave the notion of essentially quasi- Dedekind modules as a generalization  of quasi – 

Dedekind modules by restricting the definition of quasi-Dedekind modules (which is introduced in [6] 

on essential submodules, where an R-module M is called essentially quasi-Dedekind if 

0M),
N

M
Hom(    for each MN

ess
 (that is M is essentially quasi- Dedekind if every MN

ess
 , N is quasi-

invertible. Thaa’r in [7]proved  that k-nonsingular modules and essentially quasi-Dedekind are 

coincided. 

     F,S and Inaam in [8] introduced the notion of t-essentially quasi-Dedekind where an R- module M 

is called t-essentially quasi-Dedekind (Shortly  t-ess.q-Ded) if 0M),
N

M
Hom(   for each MN

tes
 . 

Equivalently M is t-ess. q-Ded if for each  End (M) with 0 MKer
tes
  implies  = 0 [8]. 

     It is obvious that every t-ess. q.Ded module is ess. q-Ded, but not conversely [8,Rem&Ex.2.2(2)]. 

     In the present paper, motivated by these works, we introduce and study t-polyform modules as 

follows: An R-module M is called t-polyform if for each L M, and :L→M, LKer
tes
  implies =0. 

Then we have 

     If M is t-polyform then M is polyform model and if M is t-polyform then  M is t-ess q-Ded module 

and none of these implications is reversible (see Rem& Ex.3.2(1),(3)) 

     We give many properties and characterizations of t-polyform modules which are analogous to that 

of polyform modules (See Rem 3.2(3),Th.3.6,Th.4.7) 

     Also, many connections between t-polyform module and other types of modules are presented (see 

Theorems 3.3,3.4,4.1 and 4.4). 

    Next note that our notion ((t-polyform modules)) is different from (st-polyform modules) which is 

appeared recently in [9] as we explain that in S.3, Note 3.5 

2-Preliminaries 

    We list some known results which are relevant for our work. 

Lemma 2.1 [2] 

    The following  statements are equivalent for a submodule A of an R-module M. 

1. MA
tes
  , 

2. A+ Z2(M) M
ess
  , 
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3.
(M)Z

M

(M)Z

(M)ZA

2ess2

2 


 

4. 
A

M
is Z2-torsion (i.e Z2(

A

M
) =

A

M
) 

Lemma 2.2 [10] 

     Let    be a submodule of    for each    . Then  

1.If   is a finite set and λ
tes

λ MA  , then λ
λtes

λ
λ

MA


  , 

2. λ
tes

λ
λ

MA 


 if and only if  λ,MA λ
tes

λ  

Lemma 2.3 [10] 

Let A B M. Then MA
tes
 if and only if MB and  BA

testes
  

Lemma 2.4 [2] 

    Let M  be an R-module. Then 

1. If MC
tc
  then           

2. M(0)
tc
   if and only if M is nonsingular. 

3. If A      , then MC
tc
 if and only if 

A

M

A

C

tc
  

Lemma 2.5 [2] 

    Let C be a submodule of an R-module M. Then the following statements are equivalent: 

1. There exists a submodule S such that C is a maximal with respect to the property C S is Z2-

torsion. 

2. MC
tc
 . 

3. C contain       and
(M)Z

M

(M)Z

C

2c2

  

4. C contains       and MC
c
  

5. C is a complement of a nonsingular submodule of M. 

6. 
C

M
 is nonsignular. 

Lemma 2.6 [2] 

     Let MMWhereMM αα
α




 for each    . Then )(MZ(M)Z 2
α

2 

   

3-  t-polyform Modules 

Definition 3.1: An R-module  M is called t-polyform if for each L   and :L→M,   0, then 

LKer
tes
 .  A ring R is said to be right t-polyform if the module RR is t-polyform.  

Remarks and Examples 3.2 

1.Every t-polyform module is polyform, since every essential submodule is t-essential. However, the 

converse is   

    not always true  for example: 

     Let M be the Z-module Z6 since M has no proper essential submodule, then M is polyform. 

But M is singular hence M is Z2-torsion and so every submodule, 0  L  M is Z2-torsion and hence 

Z2(L)=L. Now for each 0       Ker+ Z2(L)=Ker=L and hence  LKer
tes
  (by Lemma 2.1) 

Thus M=Z6  is not t-polyform       

2. It is known that every semisimple module is polyform,but it is not necessary t-polyform, see the 

example  

     in(1). 

3. It is clear that every t-polyform module is t-ess.q. Ded. However, the converse may be noted true in 

general, for  

    example: Let M=Zp  as Z-module, where P is a prime number. For each 0  f: Zp   Zp 
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Since f  , and M is simple so Kerf=(0) and hence by lemma 2.1,  Kerf=(0) M
tes
 ,Since  Kerf+ Z2 

(M)=M M
ees
 . Thus M is not t.polyform. But M is t-ess.q.Ded. Since for each f:M     with 0      

M
tes
  implies           and so f=0. 

4. Recall that every nonsingular module M( i.e Z(M)=0) is polyform. Also every nonsingular module 

M is t-   

     polyform 

Proof : Let L  ,:L M and   . Since M is polyform Ker M
tes
 . But M is nonsingular, hence 

Ker M
tes
 . 

In particular each of the Z- module: Z,Q,Z Z,Q  , Z[X] is t-polyform module, also for each prime 

number P, Zp as Zp- module is t-polyform. 

5. Every singular M( hence M is Z2-torsion (Z2(M)=M)) is not t-polyform  module 

Proof: Let L  , :L M and   . Hence Ker              MM
ees
 , so Ker M

tes
 by 

lemma    

        2.1. Thus M  is not t-polyform. 

6. Prime module need not be t-polyform, for example M       as Z-module is prime and M is not 

t- 

    polyform since M is singular. However evey prime faithful module is nonsingular, hence it is t-

polyform by   

     part (4). 

7. Every submodule N   of t-polyform module M is t-polyform. 

Proof: Let       and let f:L N,      Then, 0  iof: L   where i is the inclusion mapping 

from N into   

             M. 

Since M is t-polyform then  Ker(iof) L
tes
 . 

But it is easy to check that Kerf=Ker(iof) and hence Kerf 
 
   

 . Thus N is t-polyform. 

     In particular if  ̅ (quasi-injective hull of M) or E(M) (injective hull of M), then M is t-polyform. 

8. A homomorphic image of t-polyform module is not necessarily t-polyform, for example the Z-

module Z is t- 

    polyform. Let 6)6/(: ZZZ   where   is the natural epimorphism, but    is not t-polyform by 

part(1). 

9. If M is a t-polyform R-module and MN
tc
   then 

N

M
is t-polyform. 

Proof: Since MN
tc
  , 

N

M
 is nonsignular by lemma (2.5). Hence 

 

 
 is t-polyform by part (4). 

10.Recall that an R-module is Co-epi-retractable if for each N  , there exists K   such that 
N

M
 

   [11, 12]. 

    If M is t-polyform and Co-epi-retractable, then 
N

M
 is t-polyform, for each N  . 

Proof: it follows directly  

    The following theorem is a characterization of t-polyform modules. 

Theorem 3.3 An R-module M is t-polyform if for each 0     and 0     , LKerφ
tc
  

Proof: Suppose there exist 0     and 0         but LKerφ
tc
 . By definition of t-closed 

submodule, there exists U   such that U is a proper t-essential extension of kerf. 
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Then MU: i  where i is the inclusion mapping from U into L. Clearly  Ker)Ker(
tes
i  , so that 

U)Ker(
tes
i . Hence i =0 since M is t-polyform. It follows that 0)U(  ; that is  U  Kerf which is 

a contradiction. Thus LKer
tc
   

     Conversely, suppose there exist L  M and  0       with LfKer
tes
 . But LKer

tc
  by 

hypothesis, so Ker =L which implies     which is a contradiction. Thus LfKer
tes
 and So M is t-

polyform. 

     The following is another characterization of t-polyform modules 

Theorem 3.4  Let M be an R-module. Then M is t-polyform if and only if for each 0 M
tes
N  and for 

nonzero fHom (N,M), then Nkerf
tes
   

Proof:() it is clear 

()Let NM,  If MN
tes
  then nothing to prove if MN

tes
 , let f:        . Since MN

tes
 then MN

ess


. Hence there exists K (a relative complement) of N and so that MKN
ess
 . which implies MKN

tes


. Define g: N     by g(n+k)= f(n), n N, k k.g is well-defined and g  . By hypothesis, 

KNgker 
tes

  But Kerg=KerfK and so that Nfker
tes
 by lemma 2.2 (2). Thus M is t-polyform. 

    The notion of ((st-polyform modules)) appeared in [9], where an R-module M is called st-polyform  

if for each 0             Lfker
st.c
 . A submodule U of M is called st-closed( MU

st.c
 ) if   

has no proper semiessentiall extension of U , and a submodule U of M is called semi-essential in M if 

U has nonzero intersection with any nonzero prime submodule  

Note 3.5 

     The two concepts (t-polyform modules) and (st-polyform modules) are independent as we can see 

by the following examples. 

1. Z6 as Z-module is not t-polyform ( see Rem 3.2(1)) and it is is st-poly by [5,Rem.3(vii)] 

2. Z as Z-module is t-polyform (See Rem 3.2.(4)), and it is not st-polyform [see 5, Ex.5(ii)] 

  [4] gave the following; An R-module M is polyform if and only if every essential submodule is 

rational, where a submodule N of M is called rational in M( briefly MN
r
 )  if Hom M),

N

V
( =0for each 

N     [1]. 

     Note that every rational submodule is essential but not conversely [1] 

    We give the following: 

Theorem 3.6 An R-module M is t-polyform implies every nonzero t-essential submodule of M is 

rational. 

Proof: Assume   MN
tes
  and f Hom M),

N

V
( ,where        Then M)Hom(v,πf   where   is 

the natural epimorphism from V onto 
N

V
. Hence    ker(f ) , but MN

tes
  implies M)fker(

tes
  by 

lemma (2.3).So that V)ker(f
tes
  (since )ker(f   V)  . Since M is t-polyform , πf  =0, and hence 

f=0. Thus Hom M),
N

V
( =0  that is MN

r
 . 

Remark  3.7 The converse of theorem (3.6) is not true in general, for example: 

The Z-module Z6 is not t-polyform, but Z6 has only Z6 as t-essential submodule of Z6 and 6
r

6 ZZ  . 

      However, we have: 

Theorem 3.8 if M is an R-module such that every nonzero t-essential submodule is rational, then M is 

polyform. 
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Proof: Let MN
ess
 , hence 0 MN

ess
 . Then by hypothesis  is MN

r
 . Thus every essential submodule 

is rational. It follows that M is polyform. 

     Recall a nonzero R-module M is called monoform if for each 0     and for each 0   
   (N,M),then ker f=0 , [9]. 

Equivalently a nonzero R-module M is monoform if for each nonzero submodule N of M, MN
r
 , [9]. 

     It is known that every monoform is polyform . Now we ask the following: Is there any relation 

between t-polyform modules and monoform? 

   Consider the following remarks 

Remarks 3.9 

1. t-polyform modules need not be monoform, for example: The Z-module      is t-polyform 

(Rem 3.2.(4)), but it is not monoform since there exists ZZZZf 2:  such that f(x,y)=(y,0) for 

each xZ, y2Z then Kerf=       zero submodule. 

2. Monoform module may be not t-polyform module, for example: The Z-module Zp, where p is a 

prime number, is monoform but it is not t-polyform. 

     We introduce the following 

Definition3.10  An R-module M is called t-essentialy monoform (shortly t-ess- mono) if for each 0

MN
tes
  and        (N,M) then kerf=0 . 

     Every simple module is t-ess mono and every monoform module is t-ess. mono. 

Proposition 3.11: Let M be a t-ess-mono. module. Then M is quasi-Dedekind and hence M is t-ess.q.-

Ded. 

Proof: Since MM
tes
 and M is t-ess-mono, the for each     End (M) implies kerf=0 Thus M is 

quasi-Dedekind by [6 ,Th1.5,p.26] and hence M is t-ess-q-Ded. 

By th.(3.6), We have: If M is t-polyform, then for each 0 MN
tes
   implies MN

r
 . 

     Now we give the following 

Proposition 3.12: If M is t-ess-mono. R-module, then for each 0 MN
tes
    implies MN

r
 . 

Proof: Suppose there exists 0 MN
tes
  but MN

r
  Hence there exists VN such that Hom M),

N

V
( 0 

,so Let f Hom M),
N

V
( ,f0.It follows that fo Hom M)(V, , where   is natural epimorphism from V 

onto 
N

V
, and fo0 (Since    ). But NV, hence MV

tes
  and since M is t-ess-mono, Ker(fo)=0. 

Since NKer(fo)=0 thus N=0 which is a contradiction therefore MN
r
 . 

Corollary 3.13: Let M be a t-ess-mono. Then M is polyform. 

Proof: It follows by prop.(3.12) and Th.(3.8) 

Proposition 3.14: Let M a quasi-injective R-module. I f M  is t-ess.q.Ded, then for each MN0
tes
  

implies MN
r
   

Proof: Let MN0
tes
  Since M is t-ess,q-Ded, Hom M),

N

M
( =0;that  is N is a quasi-invertible 

submodule of M. Since M is quasi-injective, then by [6,Th3.5 p.16], M is a rational extension of N; 

that is MN
r
  . 

Corollary 3.15:  Let  M be a quasi-injective if M is t-ess.q.Ded, then M is polyform 

Proof: It follows by prop .(3.14) and Th.( 3.7)  

We can Summarize results of S.3 by the following tables 
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$.4 More about t-polyform module 

     It is known that, for an R-module M, the following are equivalent:-  

1. Every essential submodule is rational (i.e. M is polyform) 

2. For each                  then kerf 
c
  N (i.e. All partial endomorphism of M have 

closed kernels in their domains) 

3. End( M ) is vonneuman regular  

4. For each MN
ess
 , Hom )M,

N

M
( =0  

Proof 

(1)   (2)   (3) [2 , 4.9.P.34] . 

(2)  (3)  (4) [13]. 

     Our aim is to give analogize property for t-polyform module. 

     In S.3 we prove that an R- module M is t-polyform if and only if  for each 0 ≠ MN , f: N→M, 

    implies Kerf 
tc
 M. 

    Now we prove the following: 

Theorem 4.1 An R- module M is t-polyform if and only if for each 0 ≠ MN
tes
 , Hom )M,

N

M
( =0 . 

Proof:() suppose there exists  ( MN
tes
 ) ≠ 0 such that Hom )M,

N

M
( 0. Hence there exists M

N

M
:f    

and f ≠ 0, and so there exists     
N

M
        such that        m

/
≠ 0. Since MM

ess
 , 

there exists rR  with 0m
/
rM let m

/
r=x .Define                             for each 

         To show that  is well – defined: if               , then       

Nonsingular module 

Polyform 

module 
t-polyform module 

Every nonzero t-essential submodule  

Is rational  

t-essentailly  

quasi-Dede 

t-essentailly  

Monoform 

Monoform 

modules 

t-essentailly  

quasi-Dedekind 
Quasi-injective polyform 

+ 
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            . Hence                 [          ]   , this implies 0)mt(t /
12   and 

so 0)mt(t /
12  r  .Thus            

     So that         . It is clear that     

Now io: N + Rm → M where i: Rx→M is the inclusion i  ≠ 0. Hence Ker(i )= Ker .But N   

Ker and MN
tes
  implies MKer

tes
   , so that    M)K e r (

t e s
i . But RmN)Ker(

tes
i .Hence 

RmN)Ker(
tes

i  which is a contradiction with Th.(3.4). 

()Suppose that M is not t-polyform. Then there exists KM, f Hom M)(K, ,f0 and KKerf
tes
 . Since 

M is quasi – injective there exist         ̅  such that fjig     where      ̅      ̅ be the 

inclusion mappings  

Since    , then    . It is  clear  that            

Define by M
kerf

M
: g  by  ̅  ̅           ̅   for each  ̅   .Then it is easy to see that  ̅ is well 

– defined it follows that        Hom )M,
Kerf

M
( , where i1: 

kerf

M

kerf

M
  by hypothesis 01ig   . 

That is for each    ,  ̅            ̅               . Thus     which is a 

contradiction. Therefore KfKer
tes
  and M is a t-polyform module. 

     Recall that an R-module M is called Rickart if for each fEnd(M), MKerf


  [14 ,Def 2.11,P.20]. 

The following results is given in [14,Lemma 2.4.21.P.59]. 

Lemma 4.2  

    The following condition are equivalent for a right R-module M: 

1. M is a polyform module 

2. M is K-nonsingular (where M  is the quassi-injective hull of M. 

3. M is a Rickart module. 

    We prove the following characterization for t-polyform modules 

Theorem 4.3  

     An R-module M is t-polyform if and only if  ̅ is t-ess. q-Ded. 

Proof:() suppose there exists MK
tes
  and   Hom (K, M) with Kker

tes
 . To prove =0. Since

MM
ess
 , hence MM

tes
  .Thus MMKKer

testestes
  which implies MK and  MKer

testes
  by lemma (2.30. 

Now E(K)ME(K)KK
tes

   by lemma 2.2(1), where E(K) is the injective hull of K. Hence 

ME(K)M


  ,so XE(K))M(  M     for some MX   .Define  ψbyMXK:ψ  on k and   = 0 

on X. Since M  is quasi – injective, there exist ψoψsuch that MM:ψ  i  where         be the 

inclusion mapping. Since ψψ   on    , then ψ  on K and 0ψ  on X. 

     We can easily see that: XKerKer    but XX andKKer
testes
 , hence by lemma 2.2(1), 

XKKer
tes

  .On the other hand, MXK  so  ,  MK
testes
 . Therefore  MKer

tes
  .Also KerψψKer  . 

     It follows that MKer
tes
 , hence  ̅    since  ̅ is t-ess. q-Ded. However  ̅    implies  =0. 

Thus M is t-poly form.  

()To prove  ̅ is t-ess. q-Ded. Let fEnd (M) and f0. To show that MKerf
tes
 , we shall prove that 

MKerf
tc
  and hence MKerf

tes
   By [3, Lemma 2.3], there exists MK

tc
  such that KKerf

tes
 . Hence 

MK
c
  by Lemma 2.5, so that AKM   for some     ̅ . Define     ̅   ̅  by  |    and 

 |   |  . Hence Kerh = kerf  . But KKerf
tes
   AA

tes
 , implies 

tes
AKerfKerh  AK  by 
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Lemma 2.2(2). Now for any   End  ̅, Ker(ho) =   (Kerh). Since MKerh
tes
 , then MKerh

tes

-1 

by [10, 2014, cor. 1.2]. Thus )Ker(h    

MMMM
tes

   by Lemma (2.2). Then by Theorem (4.1), )Hom((h)M,
)Ker(h

M
Hom(0 







M

)M(M), and so        . Since           is arbitrary, 




)MEnd(α

0(M)h)Mh(   .Thus h=0 and 

MK  Kerf
tc
 . Thus M Kerf

tes
  . 

Corollary 4.4  

     Let M be a quasi-injective module then M is t-poly form if and only if M is t-ess-q-Ded  

Proof:   It follows directly by Th. (4.3). 

     Recall that an R-module M is called a t-Rickart if      
          is a direct summand of M 

for every End (M)[1,Def2.1]. 

     Note that every nonsingular Rickart module is t-Rickart, every extending module and every 

   torsion module (i.e a module M for which          is t-Rickart. A Rickart module need not 

be t-Rickart, see[1, Ex.2.10]  

     We prove that 

Theorem 4.5  

     If M is a t-polyform module, then  ̅ is t-Rickart 

Proof: 

     Since
)M(Z

M

2

 is nonsingular, M)M(Z
tc

2    and hence M)M(Z
C

2  . But  ̅ is quasi-injective (hence 

extending) so that     ̅  is a direct summand of  ̅  Thus  ̅      ̅    for some    ̅ . But

)M(Z

M

2

C  which is nonsingular, so C is nonsingular. But M is t-polyform, hence  ̅ is t-ess. Quasi-

Ded by Theorem 4.3. Thus  ̅ is K-nonsingular (i.e ess. q-Ded) . On other,  ̅ is quasi-injective, so  ̅ is 

extending. But  ̅ is K-nonsingular extending module implies  ̅ is Baer which implies Rickart by [15, 

Lemma 2.2.4, r.13]. 

Since MC


 , then C is Rickart. Thus  ̅ is t- Rickart by [11,Th2.6.1 (12)]  

Remarks 4.6 

1.  The converse of Th.(4.5) is not true if     ̅    

Proof: 

Since  ̅ is t-Rickart,  ̅      ̅    , for some nonsingular Rickart submodule C of  ̅.If     ̅   , 

then there       ̅   , where i is the inclusion mapping, and i0. Thus ker f = (0). But 

)M(Z)M(Z(0) 2
ess

2  ,thus 

)M(Z(0) 2
ess
 . That is )M(ZKerf 2

tes
  and so  ̅ is not t-polyform therefore   ̅  is not t-ess.q-Ded by 

cor (4.4) 

2. If     ̅    and M is t-Rickart, then M is t-polyform.  

Proof: As in (1) , C)M(ZM 2  where C is nonsingular Rickart. Since     ̅   , then  ̅   ; that 

is  ̅ is nonsingular, hence  ̅ is t-polyform thus M is t-polyform by Rem & Ex.2.2.(7) 

     Now we have: 

Theorem 4.7  

     Let M be a t-polyform extending module. Then  ̅    is t-Rickart module. 

Proof: Since M is extending, M is t-Rickart. Also M is t-polyform implies  ̅ is t-Rickart by (4.4). By 

[1, Th.2.6.1]          , A is nonsingular Rickart sub- module of M,  ̅      ̅   , B is a 

nonsingular Rickart sub module of  ̅ . Hence 

 ̅       ̅                  ̅           by Lemma 2.6 hence     is a nonsingular 

submodule of  ̅   since MA


 , then A is t-polyform and extending and so A is polyform and 
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extending MB


  and  ̅  is quasi-injective, hence B is a quasi-injective. On the other hand,   
        implies  ̅       ̅̅ ̅̅ ̅̅ ̅̅   ̅      ̅   ̅. But  ̅      ̅   , So    ̅  Thus      ̅   

and hence by [14 , prop 2.4.22, p.60],     is Rickart and then by [11, Th 2.6.1],  ̅   is t-Rickart . 

     It is well-known that a sub module N of M is fully invariant if for each                   . 

Also recall the following basic fact: if N is a fully invariant sub module of         then   
              
Proposition 4.8  

     For an R-module M. if E (M) (injective hull of M) is t-poly form, then        is a direct summand 

of M.  

Proof: Since E(M) is t-polyform, then     ̅̅ ̅̅ ̅̅ ̅ is t-Rickart by Th.(4.5). But     ̅̅ ̅̅ ̅̅ ̅      , hence E (M) 

is t-Rickart. Then by [1 , Th.2.6.1]               , A is a nonsingular Rickart submodule of E 

(M) since M is a fully invariant submodule of E(M), then                    , but 

                . Thus               therefore M(M)Z2



 . 
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