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Abstract  

     We introduce the notion of t-polyform modules. The class of t- polyform 

modules contains the class of polyform modules and contains the class of t-essential 

quasi-Dedekind. 

     Many characterizations of t-polyform modules are given. Also many connections 

between these class of modules and other types of modules are introduced. 
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 T-الصيغ من النمطة المقاسات المتعدد
 

 *ء عباس عليهي انعام محمدعلي،الا
 قدم الرياضيات، كلية التربيو ابن الييثم، جامعة بغداد، بغداد، العراق1

 قدم الرياضيات ، كلية العلهم، جامعة بغداد، بغداد، العراق2
 

 الخلاصه
الريغ من  .ىذا الرنف من المقاسات المتعدده T-الريغ من النمط قدمنا مفيهم المقاسات المتعدده     
-لى صنف المقاسات  المتعددة الريغ ويحتهي على المقاسات شبو الديدكانديو من النمطيحتهي ع T-النمط

Tالريغ من النمط .عدة تذخيرات للمقاسات المتعدده-T  قد اعطيت وكذلك عدة روابط بين ىذا الرنف من
 . المقاسات وانهاع اخرى من المقاسات قد قدمت

Introduction 

     Throughout the paper, rings will have a nonzero identity element and modules will be unitary right 

modules. We first briefly review some background materials relevant to the topics discussed in this 

paper. 

     Recall that, a submodule N of an R-module M is called essential submodule of M( briefly MN
ess
 ) 

if for each nonzero submodule W of M , NW   [1]. Equivalently MN
ess
  if whenever W   M, 

NW=(0) implies W=(0) [1] A submodule N of M is called closed (denoted by MN
c
 ) if has no 

proper essential extension in M; that is, if WN
ess
   M, then N=W [1]. Ashari et. al in  [2], introduced 

the concept of t-essential submodule, where a submodule N of M is called t-essential (briefly WN
tes
 ) 

if whenever W   M, NWZ2(M), then W   (M) where   (M) is the second singular submodule 

of M and defined by Z(
 

    
)  

     

    
 [1]. It is well known that R}Isomefor0,mI:{mZ(M)

ess

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.Equivalentently Z(M)={mM:ann(m) R
ess
 },[1] where ann(m)=  {        } .Similarly  

Rann(m):M{mR}Isomefor0,mI:M{m(M)Z
testes

2   

     Obviously, every essential submodule is t-essential, but not conversely, for example the submodule

)4( of the z-module     is t-essential but not essential. 

     However, the two concepts are equivalent if M  is nonsingular (ie Z(M)=0). A module M is called 

singular if Z(M)= M and is called Z2-torslon if        . If  A M   then               

   Asgari..etc, in [2], introduced the concept t-closed submodule where a submodule N of an R- 

Module M is t-closed (denoted by MN
tc
  if N has no proper t-essential extension in M. It is clear that 

every t –closed submodule is closed, but the converse  is not true for example ( 0 ) is closed in Z8 as Z-

module but it is not t-closed. The two concepts closed submodule and t-closed submodule are coincide 

in nonsignular modules. 

     An R-module M is called polyform if for each L  M and for each : L M, LKer
ess
  implies =0 

(i.e if0, then LKer
ess
 ). [3, 4]. 

Rizvi in [5] introduced  the nation of k-nonsingular module, where an R-module M is called K-

nonsingular if  End (M), MKer
ess
  implies =0, where End (M) means the ring of endomorphism 

on M. 

     It is clear that polyform module implies K-nonsingular but not conversely see   [5]. 

     Thaa’r in [4] gave the notion of essentially quasi- Dedekind modules as a generalization  of quasi – 

Dedekind modules by restricting the definition of quasi-Dedekind modules (which is introduced in [6] 

on essential submodules, where an R-module M is called essentially quasi-Dedekind if 

0M),
N

M
Hom(    for each MN

ess
 (that is M is essentially quasi- Dedekind if every MN

ess
 , N is quasi-

invertible. Thaa’r in [7]proved  that k-nonsingular modules and essentially quasi-Dedekind are 

coincided. 

     F,S and Inaam in [8] introduced the notion of t-essentially quasi-Dedekind where an R- module M 

is called t-essentially quasi-Dedekind (Shortly  t-ess.q-Ded) if 0M),
N

M
Hom(   for each MN

tes
 . 

Equivalently M is t-ess. q-Ded if for each  End (M) with 0 MKer
tes
  implies  = 0 [8]. 

     It is obvious that every t-ess. q.Ded module is ess. q-Ded, but not conversely [8,Rem&Ex.2.2(2)]. 

     In the present paper, motivated by these works, we introduce and study t-polyform modules as 

follows: An R-module M is called t-polyform if for each L M, and :L→M, LKer
tes
  implies =0. 

Then we have 

     If M is t-polyform then M is polyform model and if M is t-polyform then  M is t-ess q-Ded module 

and none of these implications is reversible (see Rem& Ex.3.2(1),(3)) 

     We give many properties and characterizations of t-polyform modules which are analogous to that 

of polyform modules (See Rem 3.2(3),Th.3.6,Th.4.7) 

     Also, many connections between t-polyform module and other types of modules are presented (see 

Theorems 3.3,3.4,4.1 and 4.4). 

    Next note that our notion ((t-polyform modules)) is different from (st-polyform modules) which is 

appeared recently in [9] as we explain that in S.3, Note 3.5 

2-Preliminaries 

    We list some known results which are relevant for our work. 

Lemma 2.1 [2] 

    The following  statements are equivalent for a submodule A of an R-module M. 

1. MA
tes
  , 

2. A+ Z2(M) M
ess
  , 
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3.
(M)Z

M

(M)Z

(M)ZA

2ess2

2 


 

4. 
A

M
is Z2-torsion (i.e Z2(

A

M
) =

A

M
) 

Lemma 2.2 [10] 

     Let    be a submodule of    for each    . Then  

1.If   is a finite set and λ
tes

λ MA  , then λ
λtes

λ
λ

MA


  , 

2. λ
tes

λ
λ

MA 


 if and only if  λ,MA λ
tes

λ  

Lemma 2.3 [10] 

Let A B M. Then MA
tes
 if and only if MB and  BA

testes
  

Lemma 2.4 [2] 

    Let M  be an R-module. Then 

1. If MC
tc
  then           

2. M(0)
tc
   if and only if M is nonsingular. 

3. If A      , then MC
tc
 if and only if 

A

M

A

C

tc
  

Lemma 2.5 [2] 

    Let C be a submodule of an R-module M. Then the following statements are equivalent: 

1. There exists a submodule S such that C is a maximal with respect to the property C S is Z2-

torsion. 

2. MC
tc
 . 

3. C contain       and
(M)Z

M

(M)Z

C

2c2

  

4. C contains       and MC
c
  

5. C is a complement of a nonsingular submodule of M. 

6. 
C

M
 is nonsignular. 

Lemma 2.6 [2] 

     Let MMWhereMM αα
α




 for each    . Then )(MZ(M)Z 2
α

2 

   

3-  t-polyform Modules 

Definition 3.1: An R-module  M is called t-polyform if for each L   and :L→M,   0, then 

LKer
tes
 .  A ring R is said to be right t-polyform if the module RR is t-polyform.  

Remarks and Examples 3.2 

1.Every t-polyform module is polyform, since every essential submodule is t-essential. However, the 

converse is   

    not always true  for example: 

     Let M be the Z-module Z6 since M has no proper essential submodule, then M is polyform. 

But M is singular hence M is Z2-torsion and so every submodule, 0  L  M is Z2-torsion and hence 

Z2(L)=L. Now for each 0       Ker+ Z2(L)=Ker=L and hence  LKer
tes
  (by Lemma 2.1) 

Thus M=Z6  is not t-polyform       

2. It is known that every semisimple module is polyform,but it is not necessary t-polyform, see the 

example  

     in(1). 

3. It is clear that every t-polyform module is t-ess.q. Ded. However, the converse may be noted true in 

general, for  

    example: Let M=Zp  as Z-module, where P is a prime number. For each 0  f: Zp   Zp 
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Since f  , and M is simple so Kerf=(0) and hence by lemma 2.1,  Kerf=(0) M
tes
 ,Since  Kerf+ Z2 

(M)=M M
ees
 . Thus M is not t.polyform. But M is t-ess.q.Ded. Since for each f:M     with 0      

M
tes
  implies           and so f=0. 

4. Recall that every nonsingular module M( i.e Z(M)=0) is polyform. Also every nonsingular module 

M is t-   

     polyform 

Proof : Let L  ,:L M and   . Since M is polyform Ker M
tes
 . But M is nonsingular, hence 

Ker M
tes
 . 

In particular each of the Z- module: Z,Q,Z Z,Q  , Z[X] is t-polyform module, also for each prime 

number P, Zp as Zp- module is t-polyform. 

5. Every singular M( hence M is Z2-torsion (Z2(M)=M)) is not t-polyform  module 

Proof: Let L  , :L M and   . Hence Ker              MM
ees
 , so Ker M

tes
 by 

lemma    

        2.1. Thus M  is not t-polyform. 

6. Prime module need not be t-polyform, for example M       as Z-module is prime and M is not 

t- 

    polyform since M is singular. However evey prime faithful module is nonsingular, hence it is t-

polyform by   

     part (4). 

7. Every submodule N   of t-polyform module M is t-polyform. 

Proof: Let       and let f:L N,      Then, 0  iof: L   where i is the inclusion mapping 

from N into   

             M. 

Since M is t-polyform then  Ker(iof) L
tes
 . 

But it is easy to check that Kerf=Ker(iof) and hence Kerf 
 
   

 . Thus N is t-polyform. 

     In particular if  ̅ (quasi-injective hull of M) or E(M) (injective hull of M), then M is t-polyform. 

8. A homomorphic image of t-polyform module is not necessarily t-polyform, for example the Z-

module Z is t- 

    polyform. Let 6)6/(: ZZZ   where   is the natural epimorphism, but    is not t-polyform by 

part(1). 

9. If M is a t-polyform R-module and MN
tc
   then 

N

M
is t-polyform. 

Proof: Since MN
tc
  , 

N

M
 is nonsignular by lemma (2.5). Hence 

 

 
 is t-polyform by part (4). 

10.Recall that an R-module is Co-epi-retractable if for each N  , there exists K   such that 
N

M
 

   [11, 12]. 

    If M is t-polyform and Co-epi-retractable, then 
N

M
 is t-polyform, for each N  . 

Proof: it follows directly  

    The following theorem is a characterization of t-polyform modules. 

Theorem 3.3 An R-module M is t-polyform if for each 0     and 0     , LKerφ
tc
  

Proof: Suppose there exist 0     and 0         but LKerφ
tc
 . By definition of t-closed 

submodule, there exists U   such that U is a proper t-essential extension of kerf. 
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Then MU: i  where i is the inclusion mapping from U into L. Clearly  Ker)Ker(
tes
i  , so that 

U)Ker(
tes
i . Hence i =0 since M is t-polyform. It follows that 0)U(  ; that is  U  Kerf which is 

a contradiction. Thus LKer
tc
   

     Conversely, suppose there exist L  M and  0       with LfKer
tes
 . But LKer

tc
  by 

hypothesis, so Ker =L which implies     which is a contradiction. Thus LfKer
tes
 and So M is t-

polyform. 

     The following is another characterization of t-polyform modules 

Theorem 3.4  Let M be an R-module. Then M is t-polyform if and only if for each 0 M
tes
N  and for 

nonzero fHom (N,M), then Nkerf
tes
   

Proof:() it is clear 

()Let NM,  If MN
tes
  then nothing to prove if MN

tes
 , let f:        . Since MN

tes
 then MN

ess


. Hence there exists K (a relative complement) of N and so that MKN
ess
 . which implies MKN

tes


. Define g: N     by g(n+k)= f(n), n N, k k.g is well-defined and g  . By hypothesis, 

KNgker 
tes

  But Kerg=KerfK and so that Nfker
tes
 by lemma 2.2 (2). Thus M is t-polyform. 

    The notion of ((st-polyform modules)) appeared in [9], where an R-module M is called st-polyform  

if for each 0             Lfker
st.c
 . A submodule U of M is called st-closed( MU

st.c
 ) if   

has no proper semiessentiall extension of U , and a submodule U of M is called semi-essential in M if 

U has nonzero intersection with any nonzero prime submodule  

Note 3.5 

     The two concepts (t-polyform modules) and (st-polyform modules) are independent as we can see 

by the following examples. 

1. Z6 as Z-module is not t-polyform ( see Rem 3.2(1)) and it is is st-poly by [5,Rem.3(vii)] 

2. Z as Z-module is t-polyform (See Rem 3.2.(4)), and it is not st-polyform [see 5, Ex.5(ii)] 

  [4] gave the following; An R-module M is polyform if and only if every essential submodule is 

rational, where a submodule N of M is called rational in M( briefly MN
r
 )  if Hom M),

N

V
( =0for each 

N     [1]. 

     Note that every rational submodule is essential but not conversely [1] 

    We give the following: 

Theorem 3.6 An R-module M is t-polyform implies every nonzero t-essential submodule of M is 

rational. 

Proof: Assume   MN
tes
  and f Hom M),

N

V
( ,where        Then M)Hom(v,πf   where   is 

the natural epimorphism from V onto 
N

V
. Hence    ker(f ) , but MN

tes
  implies M)fker(

tes
  by 

lemma (2.3).So that V)ker(f
tes
  (since )ker(f   V)  . Since M is t-polyform , πf  =0, and hence 

f=0. Thus Hom M),
N

V
( =0  that is MN

r
 . 

Remark  3.7 The converse of theorem (3.6) is not true in general, for example: 

The Z-module Z6 is not t-polyform, but Z6 has only Z6 as t-essential submodule of Z6 and 6
r

6 ZZ  . 

      However, we have: 

Theorem 3.8 if M is an R-module such that every nonzero t-essential submodule is rational, then M is 

polyform. 



Ali and Elewi                                             Iraqi Journal of Science, 2019, Vol.60, No.9, pp: 2043-2052 

 

2048 

Proof: Let MN
ess
 , hence 0 MN

ess
 . Then by hypothesis  is MN

r
 . Thus every essential submodule 

is rational. It follows that M is polyform. 

     Recall a nonzero R-module M is called monoform if for each 0     and for each 0   
   (N,M),then ker f=0 , [9]. 

Equivalently a nonzero R-module M is monoform if for each nonzero submodule N of M, MN
r
 , [9]. 

     It is known that every monoform is polyform . Now we ask the following: Is there any relation 

between t-polyform modules and monoform? 

   Consider the following remarks 

Remarks 3.9 

1. t-polyform modules need not be monoform, for example: The Z-module      is t-polyform 

(Rem 3.2.(4)), but it is not monoform since there exists ZZZZf 2:  such that f(x,y)=(y,0) for 

each xZ, y2Z then Kerf=       zero submodule. 

2. Monoform module may be not t-polyform module, for example: The Z-module Zp, where p is a 

prime number, is monoform but it is not t-polyform. 

     We introduce the following 

Definition3.10  An R-module M is called t-essentialy monoform (shortly t-ess- mono) if for each 0

MN
tes
  and        (N,M) then kerf=0 . 

     Every simple module is t-ess mono and every monoform module is t-ess. mono. 

Proposition 3.11: Let M be a t-ess-mono. module. Then M is quasi-Dedekind and hence M is t-ess.q.-

Ded. 

Proof: Since MM
tes
 and M is t-ess-mono, the for each     End (M) implies kerf=0 Thus M is 

quasi-Dedekind by [6 ,Th1.5,p.26] and hence M is t-ess-q-Ded. 

By th.(3.6), We have: If M is t-polyform, then for each 0 MN
tes
   implies MN

r
 . 

     Now we give the following 

Proposition 3.12: If M is t-ess-mono. R-module, then for each 0 MN
tes
    implies MN

r
 . 

Proof: Suppose there exists 0 MN
tes
  but MN

r
  Hence there exists VN such that Hom M),

N

V
( 0 

,so Let f Hom M),
N

V
( ,f0.It follows that fo Hom M)(V, , where   is natural epimorphism from V 

onto 
N

V
, and fo0 (Since    ). But NV, hence MV

tes
  and since M is t-ess-mono, Ker(fo)=0. 

Since NKer(fo)=0 thus N=0 which is a contradiction therefore MN
r
 . 

Corollary 3.13: Let M be a t-ess-mono. Then M is polyform. 

Proof: It follows by prop.(3.12) and Th.(3.8) 

Proposition 3.14: Let M a quasi-injective R-module. I f M  is t-ess.q.Ded, then for each MN0
tes
  

implies MN
r
   

Proof: Let MN0
tes
  Since M is t-ess,q-Ded, Hom M),

N

M
( =0;that  is N is a quasi-invertible 

submodule of M. Since M is quasi-injective, then by [6,Th3.5 p.16], M is a rational extension of N; 

that is MN
r
  . 

Corollary 3.15:  Let  M be a quasi-injective if M is t-ess.q.Ded, then M is polyform 

Proof: It follows by prop .(3.14) and Th.( 3.7)  

We can Summarize results of S.3 by the following tables 
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$.4 More about t-polyform module 

     It is known that, for an R-module M, the following are equivalent:-  

1. Every essential submodule is rational (i.e. M is polyform) 

2. For each                  then kerf 
c
  N (i.e. All partial endomorphism of M have 

closed kernels in their domains) 

3. End( M ) is vonneuman regular  

4. For each MN
ess
 , Hom )M,

N

M
( =0  

Proof 

(1)   (2)   (3) [2 , 4.9.P.34] . 

(2)  (3)  (4) [13]. 

     Our aim is to give analogize property for t-polyform module. 

     In S.3 we prove that an R- module M is t-polyform if and only if  for each 0 ≠ MN , f: N→M, 

    implies Kerf 
tc
 M. 

    Now we prove the following: 

Theorem 4.1 An R- module M is t-polyform if and only if for each 0 ≠ MN
tes
 , Hom )M,

N

M
( =0 . 

Proof:() suppose there exists  ( MN
tes
 ) ≠ 0 such that Hom )M,

N

M
( 0. Hence there exists M

N

M
:f    

and f ≠ 0, and so there exists     
N

M
        such that        m

/
≠ 0. Since MM

ess
 , 

there exists rR  with 0m
/
rM let m

/
r=x .Define                             for each 

         To show that  is well – defined: if               , then       

Nonsingular module 

Polyform 

module 
t-polyform module 

Every nonzero t-essential submodule  

Is rational  

t-essentailly  

quasi-Dede 

t-essentailly  

Monoform 

Monoform 

modules 

t-essentailly  

quasi-Dedekind 
Quasi-injective polyform 

+ 
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            . Hence                 [          ]   , this implies 0)mt(t /
12   and 

so 0)mt(t /
12  r  .Thus            

     So that         . It is clear that     

Now io: N + Rm → M where i: Rx→M is the inclusion i  ≠ 0. Hence Ker(i )= Ker .But N   

Ker and MN
tes
  implies MKer

tes
   , so that    M)K e r (

t e s
i . But RmN)Ker(

tes
i .Hence 

RmN)Ker(
tes

i  which is a contradiction with Th.(3.4). 

()Suppose that M is not t-polyform. Then there exists KM, f Hom M)(K, ,f0 and KKerf
tes
 . Since 

M is quasi – injective there exist         ̅  such that fjig     where      ̅      ̅ be the 

inclusion mappings  

Since    , then    . It is  clear  that            

Define by M
kerf

M
: g  by  ̅  ̅           ̅   for each  ̅   .Then it is easy to see that  ̅ is well 

– defined it follows that        Hom )M,
Kerf

M
( , where i1: 

kerf

M

kerf

M
  by hypothesis 01ig   . 

That is for each    ,  ̅            ̅               . Thus     which is a 

contradiction. Therefore KfKer
tes
  and M is a t-polyform module. 

     Recall that an R-module M is called Rickart if for each fEnd(M), MKerf


  [14 ,Def 2.11,P.20]. 

The following results is given in [14,Lemma 2.4.21.P.59]. 

Lemma 4.2  

    The following condition are equivalent for a right R-module M: 

1. M is a polyform module 

2. M is K-nonsingular (where M  is the quassi-injective hull of M. 

3. M is a Rickart module. 

    We prove the following characterization for t-polyform modules 

Theorem 4.3  

     An R-module M is t-polyform if and only if  ̅ is t-ess. q-Ded. 

Proof:() suppose there exists MK
tes
  and   Hom (K, M) with Kker

tes
 . To prove =0. Since

MM
ess
 , hence MM

tes
  .Thus MMKKer

testestes
  which implies MK and  MKer

testes
  by lemma (2.30. 

Now E(K)ME(K)KK
tes

   by lemma 2.2(1), where E(K) is the injective hull of K. Hence 

ME(K)M


  ,so XE(K))M(  M     for some MX   .Define  ψbyMXK:ψ  on k and   = 0 

on X. Since M  is quasi – injective, there exist ψoψsuch that MM:ψ  i  where         be the 

inclusion mapping. Since ψψ   on    , then ψ  on K and 0ψ  on X. 

     We can easily see that: XKerKer    but XX andKKer
testes
 , hence by lemma 2.2(1), 

XKKer
tes

  .On the other hand, MXK  so  ,  MK
testes
 . Therefore  MKer

tes
  .Also KerψψKer  . 

     It follows that MKer
tes
 , hence  ̅    since  ̅ is t-ess. q-Ded. However  ̅    implies  =0. 

Thus M is t-poly form.  

()To prove  ̅ is t-ess. q-Ded. Let fEnd (M) and f0. To show that MKerf
tes
 , we shall prove that 

MKerf
tc
  and hence MKerf

tes
   By [3, Lemma 2.3], there exists MK

tc
  such that KKerf

tes
 . Hence 

MK
c
  by Lemma 2.5, so that AKM   for some     ̅ . Define     ̅   ̅  by  |    and 

 |   |  . Hence Kerh = kerf  . But KKerf
tes
   AA

tes
 , implies 

tes
AKerfKerh  AK  by 
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Lemma 2.2(2). Now for any   End  ̅, Ker(ho) =   (Kerh). Since MKerh
tes
 , then MKerh

tes

-1 

by [10, 2014, cor. 1.2]. Thus )Ker(h    

MMMM
tes

   by Lemma (2.2). Then by Theorem (4.1), )Hom((h)M,
)Ker(h

M
Hom(0 







M

)M(M), and so        . Since           is arbitrary, 




)MEnd(α

0(M)h)Mh(   .Thus h=0 and 

MK  Kerf
tc
 . Thus M Kerf

tes
  . 

Corollary 4.4  

     Let M be a quasi-injective module then M is t-poly form if and only if M is t-ess-q-Ded  

Proof:   It follows directly by Th. (4.3). 

     Recall that an R-module M is called a t-Rickart if      
          is a direct summand of M 

for every End (M)[1,Def2.1]. 

     Note that every nonsingular Rickart module is t-Rickart, every extending module and every 

   torsion module (i.e a module M for which          is t-Rickart. A Rickart module need not 

be t-Rickart, see[1, Ex.2.10]  

     We prove that 

Theorem 4.5  

     If M is a t-polyform module, then  ̅ is t-Rickart 

Proof: 

     Since
)M(Z

M

2

 is nonsingular, M)M(Z
tc

2    and hence M)M(Z
C

2  . But  ̅ is quasi-injective (hence 

extending) so that     ̅  is a direct summand of  ̅  Thus  ̅      ̅    for some    ̅ . But

)M(Z

M

2

C  which is nonsingular, so C is nonsingular. But M is t-polyform, hence  ̅ is t-ess. Quasi-

Ded by Theorem 4.3. Thus  ̅ is K-nonsingular (i.e ess. q-Ded) . On other,  ̅ is quasi-injective, so  ̅ is 

extending. But  ̅ is K-nonsingular extending module implies  ̅ is Baer which implies Rickart by [15, 

Lemma 2.2.4, r.13]. 

Since MC


 , then C is Rickart. Thus  ̅ is t- Rickart by [11,Th2.6.1 (12)]  

Remarks 4.6 

1.  The converse of Th.(4.5) is not true if     ̅    

Proof: 

Since  ̅ is t-Rickart,  ̅      ̅    , for some nonsingular Rickart submodule C of  ̅.If     ̅   , 

then there       ̅   , where i is the inclusion mapping, and i0. Thus ker f = (0). But 

)M(Z)M(Z(0) 2
ess

2  ,thus 

)M(Z(0) 2
ess
 . That is )M(ZKerf 2

tes
  and so  ̅ is not t-polyform therefore   ̅  is not t-ess.q-Ded by 

cor (4.4) 

2. If     ̅    and M is t-Rickart, then M is t-polyform.  

Proof: As in (1) , C)M(ZM 2  where C is nonsingular Rickart. Since     ̅   , then  ̅   ; that 

is  ̅ is nonsingular, hence  ̅ is t-polyform thus M is t-polyform by Rem & Ex.2.2.(7) 

     Now we have: 

Theorem 4.7  

     Let M be a t-polyform extending module. Then  ̅    is t-Rickart module. 

Proof: Since M is extending, M is t-Rickart. Also M is t-polyform implies  ̅ is t-Rickart by (4.4). By 

[1, Th.2.6.1]          , A is nonsingular Rickart sub- module of M,  ̅      ̅   , B is a 

nonsingular Rickart sub module of  ̅ . Hence 

 ̅       ̅                  ̅           by Lemma 2.6 hence     is a nonsingular 

submodule of  ̅   since MA


 , then A is t-polyform and extending and so A is polyform and 
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extending MB


  and  ̅  is quasi-injective, hence B is a quasi-injective. On the other hand,   
        implies  ̅       ̅̅ ̅̅ ̅̅ ̅̅   ̅      ̅   ̅. But  ̅      ̅   , So    ̅  Thus      ̅   

and hence by [14 , prop 2.4.22, p.60],     is Rickart and then by [11, Th 2.6.1],  ̅   is t-Rickart . 

     It is well-known that a sub module N of M is fully invariant if for each                   . 

Also recall the following basic fact: if N is a fully invariant sub module of         then   
              
Proposition 4.8  

     For an R-module M. if E (M) (injective hull of M) is t-poly form, then        is a direct summand 

of M.  

Proof: Since E(M) is t-polyform, then     ̅̅ ̅̅ ̅̅ ̅ is t-Rickart by Th.(4.5). But     ̅̅ ̅̅ ̅̅ ̅      , hence E (M) 

is t-Rickart. Then by [1 , Th.2.6.1]               , A is a nonsingular Rickart submodule of E 

(M) since M is a fully invariant submodule of E(M), then                    , but 

                . Thus               therefore M(M)Z2



 . 
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