

ISSN: 0067-2904

T-Polyform Modules Inaam Mohammed Ali ${ }^{1}$, Alaa A. Elewi ${ }^{2}$

${ }^{1}$ Department of Mathematics University of Baghdad, College of Education for Pure Sciences (Ibn-Al-Haitham), University Of Baghdad ,Baghdad, Iraq
${ }^{2}$ Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq

Abstract

We introduce the notion of t-polyform modules. The class of t - polyform modules contains the class of polyform modules and contains the class of t-essential quasi-Dedekind.

Many characterizations of t-polyform modules are given. Also many connections between these class of modules and other types of modules are introduced.

Keywords: Polyform, modules, essential submodule, t-essentially, quasiDedekind

> T-المقاسات المتعدة الصيغ من النمط

> انعام ححـعلي، الاء عباس عليوي*
> 1ـقسم الرياضيات، كلية التربيه ابن الهيثڭ، جامعة بغداد، بغداد، العراق
> 2ـقسم الرياضيات ، كلية العلوم، جامعة بغداد، بغداد، العراق

$$
\begin{aligned}
& \text { قدمنا مفهوم المقاسات المتعدده الصيغ من النمط-T .هذا الصنف من المقاسات المتعدده الصيغ من } \\
& \text { النمط-T يحتوي على صنف المقاسات المتعدة الصيغ ويحتوي على المقاسات شبه الديدكانديه من النمط- } \\
& \text { قدة تشخيصات للمقاسات المتعدده الصيغ من النمط-T اعطيت وكذلك عدة روابط بين هذا الصنف من }
\end{aligned}
$$

> المقاسات وانواع اخرى من المقاسات قد قدمت .

Introduction

Throughout the paper, rings will have a nonzero identity element and modules will be unitary right modules. We first briefly review some background materials relevant to the topics discussed in this paper.

Recall that, a submodule N of an R -module M is called essential submodule of M (briefly $\mathrm{N} \leq \mathrm{M}$) if for each nonzero submodule W of $M, N \cup W \neq 0$ [1]. Equivalently $N \underset{\text { ess }}{\leq M}$ if whenever $W \leq M$, $\mathrm{N} \cup \mathrm{W}=(0)$ implies $\mathrm{W}=(0)$ [1] A submodule N of M is called closed (denoted by $\underset{\mathrm{c}}{\mathrm{N} \leq \mathrm{M}}$) if has no proper essential extension in M ; that is, if $\mathrm{N} \leq \mathrm{W} \leq \mathrm{M}$, then $\mathrm{N}=\mathrm{W}$ [1]. Ashari et. al in [2], introduced the concept of t-essential submodule, where a submodule N of M is called t-essential (briefly $\mathrm{N} \leq \mathrm{W}$) if whenever $\mathrm{W} \leq \mathrm{M}, \mathrm{N} \cap \mathrm{W} \subseteq \mathrm{Z}_{2}(\mathrm{M})$, then $\mathrm{W} \subseteq Z_{2}(\mathrm{M})$ where $Z_{2}(\mathrm{M})$ is the second singular submodule of M and defined by $\mathrm{Z}\left(\frac{M}{Z(M)}\right)=\frac{Z_{2}(\mathrm{M})}{Z(M)}$ [1]. It is well known that $\mathrm{Z}(\mathrm{M})=\{\mathrm{m}: \mathrm{mI}=0$, forsome $\mathrm{I} \leq \mathrm{R}\}$

[^0].Equivalentently $Z(M)=\{m \in M: a n n(m) \quad \leq R \quad\},[1] \quad$ where $\quad \operatorname{ann}(m)=\{r \in R: m r=0\}$. Similarly $Z_{2}(M)=\{m \in M: m I=0$, forsome $I \underset{\text { tes }}{\leq R}\}=\{m \in M: \operatorname{ann}(m) \leq R$

Obviously, every essential submodule is t-essential, but not conversely, for example the submodule ($\overline{4}$) of the z-module Z_{12} is t-essential but not essential.

However, the two concepts are equivalent if M is nonsingular (ie $Z(M)=0$). A module M is called singular if $Z(M)=M$ and is called Z_{2}-torslon if $Z_{2}(M)=0$. If $A \leq M$ then $Z_{2}(A)=Z_{2}(M) \cap A$

Asgari..etc, in [2], introduced the concept t-closed submodule where a submodule N of an RModule M is t -closed (denoted by $\mathrm{N} \leq \mathrm{M}$ if N has no proper t-essential extension in M . It is clear that every t -closed submodule is closed, but the converse is not true for example ($\overline{0}$) is closed in Z_{8} as Z module but it is not t -closed. The two concepts closed submodule and t -closed submodule are coincide in nonsignular modules.

An R-module M is called polyform if for each $\mathrm{L} \leq \mathrm{M}$ and for each $\phi: \mathrm{L} \rightarrow \mathrm{M}, \operatorname{Ker} \phi \leq \mathrm{ess}$ implies $\phi=0$ (i.e if $\phi \neq 0$, then $\operatorname{Ker} \phi \not \underset{\text { ess }}{\nless}$). [3, 4].

Rizvi in [5] introduced the nation of k-nonsingular module, where an R-module M is called K nonsingular if $\phi \in \operatorname{End}(\mathrm{M}), \operatorname{Ker} \phi \leq \mathrm{M}$ implies $\phi=0$, where End (M) means the ring of endomorphism on M.

It is clear that polyform module implies K-nonsingular but not conversely see [5].
Thaa'r in [4] gave the notion of essentially quasi- Dedekind modules as a generalization of quasi Dedekind modules by restricting the definition of quasi-Dedekind modules (which is introduced in [6] on essential submodules, where an R -module M is called essentially quasi-Dedekind if $\operatorname{Hom}\left(\frac{M}{N}, M\right)=0$ for each $N \leq M$ ess (that is M is essentially quasi- Dedekind if every $N \leq M, N$ is quasiinvertible. Thaa'r in [7]proved that k-nonsingular modules and essentially quasi-Dedekind are coincided.

F,S and Inaam in [8] introduced the notion of t-essentially quasi-Dedekind where an R- module M is called t-essentially quasi-Dedekind (Shortly t-ess.q-Ded) if $\operatorname{Hom}\left(\frac{M}{N}, M\right)=0$ for each $N \leq M$. Equivalently M is t-ess. q-Ded if for each $\phi \in E n d(M)$ with $0 \neq \operatorname{Ker} \phi \leq M$ tes $\operatorname{implies} \phi=0$ [8].

It is obvious that every t-ess. q.Ded module is ess. q-Ded, but not conversely [8,Rem\&Ex.2.2(2)].
In the present paper, motivated by these works, we introduce and study t-polyform modules as follows: An R-module M is called t-polyform if for each $\mathrm{L} \leq \mathrm{M}$, and $\phi: \mathrm{L} \rightarrow \mathrm{M}$, $\operatorname{Ker} \phi \leq \mathrm{L}$ implies $\phi=0$. Then we have

If M is t-polyform then M is polyform model and if M is t -polyform then M is t -ess q -Ded module and none of these implications is reversible (see Rem\& Ex.3.2(1),(3))

We give many properties and characterizations of t-polyform modules which are analogous to that of polyform modules (See Rem 3.2(3),Th.3.6,Th.4.7)

Also, many connections between t-polyform module and other types of modules are presented (see Theorems 3.3,3.4,4.1 and 4.4).

Next note that our notion ((t-polyform modules)) is different from (st-polyform modules) which is appeared recently in [9] as we explain that in S.3, Note 3.5

2-Preliminaries

We list some known results which are relevant for our work.

Lemma 2.1 [2]

The following statements are equivalent for a submodule A of an R -module M .

1. $\mathrm{A} \leq \mathrm{M}$,
tes
2. $\mathrm{A}+\mathrm{Z}_{2}(\mathrm{M}) \underset{\text { ess }}{\leq} \mathrm{M}$,
3. $\frac{A+Z_{2}(M)}{Z_{2}(M)} \leq \frac{M}{\text { ess }} Z_{2}(M)$
4. $\frac{M}{A}$ is Z_{2}-torsion (i.e $\mathrm{Z}_{2}\left(\frac{M}{A}\right)=\frac{M}{A}$)

Lemma 2.2 [10]

Let A_{λ} be a submodule of M_{λ} for each $\lambda \in \wedge$. Then
1.If Λ is a finite set and $A_{\lambda} \leq M_{\lambda}$, then $\bigcap_{\lambda \in \Lambda} A_{\lambda} \leq \bigcap_{\text {tes } \lambda \in \Lambda} M_{\lambda}$,
2. $\underset{\lambda \in \wedge}{\oplus} \mathrm{A}_{\lambda} \underset{\text { tes }}{\leq} \oplus \mathrm{M}_{\lambda}$ if and only if $\mathrm{A}_{\lambda} \leq \mathrm{M}_{\lambda}, \forall \lambda \in \wedge$

Lemma 2.3 [10]

Let $\mathrm{A} \leq \mathrm{B} \leq \mathrm{M}$. Then $\mathrm{A} \underset{\text { tes }}{\leq \mathrm{M}}$ if and only if $\mathrm{A} \underset{\text { tes }}{\leq \mathrm{B}}$ and $\mathrm{B} \underset{\text { tes }}{\leq \mathrm{M}}$

Lemma 2.4 [2]

Let M be an R -module. Then

1. If $\underset{\mathrm{tc}}{\mathrm{C} \leq \mathrm{M}}$ then $Z_{2}(\mathrm{M}) \leq \mathrm{C}$
2. $(0) \leq M$ if and only if M is nonsingular.
3. If $A \leq C \leq M$, then $C \leq M$ if and only if $\frac{C}{A} \leq \frac{M}{A}$

Lemma 2.5 [2]

Let C be a submodule of an R -module M . Then the following statements are equivalent:

1. There exists a submodule S such that C is a maximal with respect to the property $C \cap S$ is $Z_{2^{-}}$ torsion.
2. $\mathrm{C} \leq \mathrm{M}$.
3. C contain $Z_{2}(M)$ and $\frac{C}{Z_{2}(M)} \leq \frac{M}{c}$
4. C contains $Z_{2}(M)$ and $C \leq M$
5. C is a complement of a nonsingular submodule of M .
6. $\frac{\mathrm{M}}{\mathrm{C}}$ is nonsignular.

Lemma 2.6 [2]

Let $\mathrm{M}=\underset{\alpha \in \wedge}{\oplus} \mathrm{M}_{\alpha}$ Where $\mathrm{M}_{\alpha} \leq \mathrm{M}$ for each $\alpha \in \wedge$. Then $Z_{2}(\mathrm{M})=\underset{\alpha \in \wedge}{\oplus} \mathrm{Z}_{2}\left(\mathrm{M}_{\alpha}\right)$

3- t-polyform Modules

Definition 3.1: An R-module M is called t-polyform if for each $\mathrm{L} \leq M$ and $\phi: \mathrm{L} \rightarrow \mathrm{M}, \phi \neq 0$, then $\operatorname{Ker} \phi \nsubseteq \mathrm{L}$. A ring R is said to be right t-polyform if the module R_{R} is t-polyform.

Remarks and Examples 3.2

1.Every t-polyform module is polyform, since every essential submodule is t-essential. However, the converse is
not always true for example:
Let M be the Z -module Z_{6} since M has no proper essential submodule, then M is polyform.
But M is singular hence M is Z_{2}-torsion and so every submodule, $0 \neq L \leq M$ is Z_{2}-torsion and hence $\mathrm{Z}_{2}(\mathrm{~L})=\mathrm{L}$. Now for each $0 \neq \phi: L \rightarrow \mathrm{M}, \operatorname{Ker} \phi+\mathrm{Z}_{2}(\mathrm{~L})=\operatorname{Ker} \phi=\mathrm{L}$ and hence $\operatorname{Ker} \phi \leq \mathrm{L}$ tes \quad (by Lemma 2.1)
Thus $\mathrm{M}=\mathrm{Z}_{6}$ is not t-polyform
2. It is known that every semisimple module is polyform, but it is not necessary t-polyform, see the example
in(1).
3. It is clear that every t-polyform module is t-ess.q. Ded. However, the converse may be noted true in general, for
example: Let $M=Z_{p}$ as Z-module, where P is a prime number. For each $0 \neq f: Z_{p} \rightarrow Z_{p}$

Since $\mathrm{f} \neq 0$, and M is simple so $\operatorname{Kerf}=(0)$ and hence by lemma 2.1, $\operatorname{Kerf}=(0) \leq \mathrm{M}$,Since $\operatorname{Kerf}+\mathrm{Z}_{2}$ $(M)=M \underset{\text { ees }}{\leq} M$. Thus M is not t.polyform. But M is t-ess.q.Ded. Since for each $f: M \rightarrow M$, with $0 \neq \operatorname{Kerf}$ $\leq \mathrm{M}$ implies Kerf $=\mathrm{M}$ and so $\mathrm{f}=0$.
4. Recall that every nonsingular module $\mathrm{M}($ i.e $\mathrm{Z}(\mathrm{M})=0)$ is polyform. Also every nonsingular module M is t polyform
Proof : Let $L \leq M, \phi: L \rightarrow M$ and $\phi \neq 0$. Since M is polyform $\operatorname{Ker} \phi \underset{\text { tes }}{\not \leq M}$. But M is nonsingular, hence
$\operatorname{Ker} \phi \underset{\text { tes }}{\not \leq M}$.
In particular each of the Z - module: $\mathrm{Z}, \mathrm{Q}, \mathrm{Z} \oplus \mathrm{Z}, \mathrm{Q} \oplus \mathrm{Q}, \mathrm{Z}[\mathrm{X}]$ is t -polyform module, also for each prime number $\mathrm{P}, \mathrm{Z}_{\mathrm{p}}$ as Z_{p} - module is t-polyform.
5. Every singular M (hence M is Z_{2}-torsion $\left(\mathrm{Z}_{2}(\mathrm{M})=\mathrm{M}\right)$) is not t-polyform module

Proof: Let $\mathrm{L} \leq \mathrm{M}, \phi: \mathrm{L} \rightarrow \mathrm{M}$ and $\phi \neq 0$. Hence $\operatorname{Ker} \phi+Z_{2}(M)=\operatorname{Ker} \phi+\mathrm{M}=\mathrm{M} \underset{\text { ees }}{\leq} \mathrm{M}$, so $\operatorname{Ker} \phi \underset{\text { tes }}{\leq \mathrm{M}}$ by lemma
2.1. Thus M is not t -polyform.
6. Prime module need not be t-polyform, for example $\mathrm{M}=Z_{2} \oplus Z_{2}$ as Z -module is prime and M is not t-
polyform since M is singular. However evey prime faithful module is nonsingular, hence it is tpolyform by part (4).
7. Every submodule $\mathrm{N} \neq 0$ of t-polyform module M is t-polyform.

Proof: Let $0 \neq L \leq \mathrm{N}$ and let $\mathrm{f}: \mathrm{L} \rightarrow \mathrm{N}, f \neq 0$. Then, $0 \neq i \mathrm{of}: \mathrm{L} \rightarrow \mathrm{M}$ where i is the inclusion mapping from N into
M.

Since M is t-polyform then $\operatorname{Ker}($ iof $) \underset{\text { tes }}{\not \leq L}$.
But it is easy to check that $\operatorname{Kerf}=\operatorname{Ker}(\mathrm{iof})$ and hence $\operatorname{Kerf} \underset{\text { tes }}{\not \leq} \mathrm{L}$. Thus N is t-polyform.
In particular if \bar{M} (quasi-injective hull of M) or $E(M)$ (injective hull of M), then M is t-polyform.
8. A homomorphic image of t-polyform module is not necessarily t-polyform, for example the Zmodule Z is $\mathrm{t}-$
polyform. Let $\pi: Z \rightarrow Z /(6) \approx Z_{6}$ where π is the natural epimorphism, but Z_{6} is not t-polyform by part(1).
9. If M is a t-polyform R-module and $\underset{\text { tc }}{\mathrm{N} \leq M}$ then $\frac{M}{N}$ is t-polyform.

Proof: Since $N \underset{\mathrm{tc}}{\leq \mathrm{M}}, \frac{\mathrm{M}}{\mathrm{N}}$ is nonsignular by lemma (2.5). Hence $\frac{M}{N}$ is t-polyform by part (4).
10.Recall that an R-module is Co-epi-retractable if for each $N \leq M$, there exists $K \leq M$ such that $\frac{M}{N}$ $\simeq K[11,12]$.

If M is t-polyform and Co-epi-retractable, then $\frac{M}{N}$ is t-polyform, for each $N \leq M$.
Proof: it follows directly
The following theorem is a characterization of t-polyform modules.
Theorem 3.3 An R-module M is t-polyform if for each $0 \neq \mathrm{L} \leq \mathrm{M}$ and $0 \neq \phi: L \rightarrow \mathrm{M}, \operatorname{Ker} \varphi \leq \mathrm{L}$
Proof: Suppose there exist $0 \neq L \leq \mathrm{M}$ and $0 \neq \phi: L \rightarrow \mathrm{M}$, but $\operatorname{Ker} \varphi \underset{\text { tc }}{ \pm \mathrm{L}}$. By definition of t-closed submodule, there exists $\mathrm{U} \leq \mathrm{L}$ such that U is a proper t -essential extension of kerf.

Then $\phi \circ i: \mathrm{U} \rightarrow \mathrm{M}$ where i is the inclusion mapping from U into L . Clearly $\operatorname{Ker}(i \circ \phi) \leq \operatorname{Ker} \phi$, so that $\operatorname{Ker}(\phi \circ i) \leq \mathrm{U}$. Hence $\phi \circ i=0$ since M is t-polyform. It follows that $\phi(\mathrm{U})=0$; that is $\mathrm{U} \leq \operatorname{Kerf}$ which is a contradiction. Thus $\operatorname{Ker} \phi \leq \mathrm{L}$

Conversely, suppose there exist $\mathrm{L} \leq \mathrm{M}$ and $0 \neq \phi: \mathrm{L} \rightarrow \mathrm{M}$ with $\operatorname{Ker} \mathrm{f} \underset{\text { tes }}{\leq \mathrm{L}}$. But $\operatorname{Ker} \phi \leq \mathrm{L}$ by hypothesis, so $\operatorname{Ker} \phi=\mathrm{L}$ which implies $\phi=0$ which is a contradiction. Thus $\operatorname{Ker} \mathrm{f} \notin \mathrm{L}$ and So M is tpolyform.

The following is another characterization of t-polyform modules
Theorem 3.4 Let M be an R-module. Then M is t-polyform if and only if for each $0 \neq N \leq \mathrm{M}$ and for nonzero $f \in \operatorname{Hom}(N, M)$, then $\operatorname{kerf} \not \leq N$

Proof: (\square) it is clear
 . Hence there exists K (a relative complement) of N and so that $N \oplus K \underset{\text { ess }}{\leq M}$. which implies $N \oplus K \underset{\text { tes }}{\leq M}$. Define $g: N \oplus k \rightarrow M$ by $g(n+k)=f(n), n \in N$, $k \in k . g$ is well-defined and $g \neq 0$. By hypothesis, $\operatorname{kerg} \underset{\text { tes }}{\not \leq \mathrm{N}} \oplus \mathrm{K}$ But $\operatorname{Kerg}=\operatorname{Kerf} \oplus \mathrm{K}$ and so that $\operatorname{ker} \mathrm{f} \underset{\text { tes }}{\neq \mathrm{N}}$ by lemma 2.2 (2). Thus M is t-polyform.
The notion of ((st-polyform modules)) appeared in [9], where an R-module M is called st-polyform if for each $0 \neq \mathrm{L} \leq \mathrm{M}, 0 \neq \phi: \mathrm{L} \rightarrow \mathrm{M}$ kerf $\leq \mathrm{L}$. A submodule U of M is called st-closed $(\mathrm{U} \leq \mathrm{M})$ if U has no proper semiessentiall extension of U, and a submodule U of M is called semi-essential in M if U has nonzero intersection with any nonzero prime submodule

Note 3.5

The two concepts (t-polyform modules) and (st-polyform modules) are independent as we can see by the following examples.

1. $\quad \mathrm{Z}_{6}$ as Z-module is not t-polyform (see Rem 3.2(1)) and it is is st-poly by [5,Rem.3(vii)]
2. $\quad \mathrm{Z}$ as Z-module is t-polyform (See Rem 3.2.(4)), and it is not st-polyform [see 5, Ex.5(ii)]
[4] gave the following; An R-module M is polyform if and only if every essential submodule is rational, where a submodule N of M is called rational in M (briefly $\underset{r}{N \leq M})$ if $\operatorname{Hom}\left(\frac{V}{N}, M\right)=0$ for each $\mathrm{N} \leq \mathrm{V} \leq \mathrm{M}[1]$.

Note that every rational submodule is essential but not conversely [1]
We give the following:
Theorem 3.6 An R-module M is t-polyform implies every nonzero t-essential submodule of M is rational.
Proof: Assume $0 \neq \mathrm{N} \leq \mathrm{M}$ tes and $f \in \operatorname{Hom}\left(\frac{V}{\mathrm{~N}}, \mathrm{M}\right)$, where $\mathrm{N} \leq \mathrm{V} \leq \mathrm{M}$. Then $\mathrm{f} \circ \pi \in \operatorname{Hom}(\mathrm{v}, \mathrm{M})$ where π is the natural epimorphism from V onto $\frac{V}{N}$. Hence $N \leq \operatorname{ker}(\mathrm{f} \circ \pi)$, but $\underset{\text { tes }}{\mathrm{N}} \mathrm{M} \operatorname{implies} \operatorname{ker}(\mathrm{f} \circ \pi) \leq \mathrm{M}$ by lemma (2.3). So that $\operatorname{ker}(\mathrm{f} \circ \pi) \leq \mathrm{V}($ since $\operatorname{ker}(\mathrm{f} \circ \pi) \subseteq \mathrm{V})$. Since M is t-polyform , $\mathrm{f} \circ \pi=0$, and hence $\mathrm{f}=0$. Thus $\operatorname{Hom}\left(\frac{\mathrm{V}}{\mathrm{N}}, \mathrm{M}\right)=0$ that is $\underset{\mathrm{r}}{\mathrm{N} \leq \mathrm{M}}$.
Remark 3.7 The converse of theorem (3.6) is not true in general, for example:
The Z -module Z_{6} is not t -polyform, but Z_{6} has only Z_{6} as t -essential submodule of Z_{6} and $\mathrm{Z}_{6} \leq \mathrm{Z}_{6}$.
However, we have:
Theorem 3.8 if M is an R-module such that every nonzero t-essential submodule is rational, then M is polyform.

Proof: Let $N \underset{\text { ess }}{\leq M}$, hence $0 \neq \underset{\text { ess }}{\mathrm{N}} \leq \mathrm{M}$. Then by hypothesis is $\underset{r}{\mathrm{~N} \leq \mathrm{M}}$. Thus every essential submodule is rational. It follows that M is polyform.

Recall a nonzero R-module M is called monoform if for each $0 \neq \mathrm{N} \leq \mathrm{M}$ and for each $0 \neq f \in$ $\operatorname{Hom}(\mathrm{N}, \mathrm{M})$,then $\operatorname{ker} \mathrm{f}=0$, [9].
Equivalently a nonzero R-module M is monoform if for each nonzero submodule N of $M, N \leq M$, [9].
It is known that every monoform is polyform . Now we ask the following: Is there any relation between t-polyform modules and monoform?
Consider the following remarks

Remarks 3.9

1. t-polyform modules need not be monoform, for example: The Z-module $Z \bigoplus Z$ is t-polyform (Rem 3.2.(4)), but it is not monoform since there exists $f: Z \oplus 2 Z \rightarrow Z \oplus Z$ such that $\mathrm{f}(\mathrm{x}, \mathrm{y})=(\mathrm{y}, 0)$ for each $x \in Z, y \in 2 Z$ then Kerf $=Z \oplus(0) \neq$ zero submodule.
2. Monoform module may be not t-polyform module, for example: The Z-module Z_{p}, where p is a prime number, is monoform but it is not t-polyform.

We introduce the following
Definition3.10 An R-module M is called t-essentialy monoform (shortly t-ess- mono) if for each $0 \neq$ $\mathrm{N} \leq \mathrm{M}$ and $0 \neq f \in \operatorname{Hom}(\mathrm{~N}, \mathrm{M})$ then kerf=0.
tes
Every simple module is t-ess mono and every monoform module is t-ess. mono.
Proposition 3.11: Let M be a t-ess-mono. module. Then M is quasi-Dedekind and hence M is t-ess.q.Ded.
Proof: Since $M \leq M$ and M is t-ess-mono, the for each $0 \neq f \in E n d(M)$ implies kerf $=0$ Thus M is quasi-Dedekind by [6, Th1.5,p.26] and hence M is t-ess-q-Ded.
By th.(3.6), We have: If M is t-polyform, then for each $0 \neq \mathrm{N} \leq \mathrm{M}$ implies $\underset{\mathrm{t}}{\mathrm{N} \leq \mathrm{M}}$.
Now we give the following
Proposition 3.12: If M is t-ess-mono. R-module, then for each $0 \neq N \underset{\text { tes }}{\leq M} \underset{r}{\text { implies }} \underset{\mathrm{N}}{\mathrm{N}} \leq \mathrm{M}$.
Proof: Suppose there exists $0 \neq \underset{\text { tes }}{\leq} \leq M$ but $\underset{r}{\mathrm{~N}} \underset{\mathrm{M}}{\operatorname{m}}$ Hence there exists $\mathrm{V} \square \mathrm{N}$ such that $\operatorname{Hom}\left(\frac{\mathrm{V}}{\mathrm{N}}, \mathrm{M}\right) \neq 0$,so Let $\mathrm{f} \in \operatorname{Hom}\left(\frac{\mathrm{V}}{\mathrm{N}}, \mathrm{M}\right), \mathrm{f} \neq 0$.It follows that fo $\pi \in \operatorname{Hom}(\mathrm{V}, \mathrm{M})$, where π is natural epimorphism from V onto $\frac{\mathrm{V}}{\mathrm{N}}$, and fo $\pi \neq 0$ (Since $f \neq 0$). But $\mathrm{N} \subseteq \mathrm{V}$, hence $\mathrm{V} \leq \mathrm{M}$ and since M is t -ess-mono, $\operatorname{Ker}($ fo $\pi)=0$. Since $\mathrm{N} \subseteq \operatorname{Ker}($ fo $\pi)=0$ thus $\mathrm{N}=0$ which is a contradiction therefore $\mathrm{N} \leq \mathrm{M}$.

Corollary 3.13: Let M be a t-ess-mono. Then M is polyform.
Proof: It follows by prop.(3.12) and Th.(3.8)
Proposition 3.14: Let M a quasi-injective R-module. I f M is t-ess.q.Ded, then for each $0 \neq N \leq M$ implies $\underset{\mathrm{r}}{\mathrm{N}} \leq \mathrm{M}$
Proof: Let $0 \neq \underset{\text { tes }}{N \leq M}$ Since M is t-ess,q-Ded, $\operatorname{Hom}\left(\frac{M}{N}, M\right)=0$;that is N is a quasi-invertible submodule of M. Since M is quasi-injective, then by [6,Th3.5 p.16], M is a rational extension of N; that is $\underset{\mathrm{N}}{\mathrm{N}} \leq \mathrm{M}$.
Corollary 3.15: Let M be a quasi-injective if M is t-ess.q.Ded, then M is polyform
Proof: It follows by prop .(3.14) and Th. (3.7)
We can Summarize results of S. 3 by the following tables

\$. 4 More about t-polyform module

It is known that, for an R -module M , the following are equivalent:-

1. Every essential submodule is rational (i.e. M is polyform)
2. For each $0 \neq N \leq M, f: N \rightarrow M, f \neq 0$, then $\operatorname{kerf} \leq N$ (i.e. All partial endomorphism of M have closed kernels in their domains)
3. $\operatorname{End}(\overline{\mathrm{M}})$ is vonneuman regular
4. For each $N \leq M, \operatorname{Hom}\left(\frac{M}{N}, \bar{M}\right)=0$

Proof

$(1) \Leftrightarrow(2) \Leftrightarrow(3)[2,4.9$. P. 34$]$.
$(2) \Leftrightarrow(3) \Leftrightarrow$ (4) [13].
Our aim is to give analogize property for t-polyform module.
In $S .3$ we prove that an R - module M is t-polyform if and only if for each $0 \neq N \leq M, f: N \rightarrow M$, $f \neq 0$ implies Kerf $\underset{\text { tc }}{\leq}$ M.

Now we prove the following:
Theorem 4.1 An R- module M is t-polyform if and only if for each $0 \neq N \leq M, \operatorname{Hom}\left(\frac{M}{N}, \bar{M}\right)=0$.
Proof:($\square)$ suppose there exists $(\underset{\text { tes }}{\leq} \leq M) \neq 0$ such that $\operatorname{Hom}\left(\frac{M}{N}, \bar{M}\right) \neq 0$. Hence there exists f $: \frac{M}{N} \rightarrow \bar{M}$ and $f \neq 0$, and so there exists $m+N \in \frac{M}{N}, m+N \neq 0$ such that $f(m+N)=m^{\prime} \neq 0$. Since $M \leq \bar{M}$, there exists $\mathrm{r} \in \mathrm{R}$ with $0 \neq \mathrm{m}^{\prime} \mathrm{r} \in \mathrm{M}$ let $\mathrm{m}^{\prime} \mathrm{r}=\mathrm{x}$. Define $\phi: \mathrm{N}+\mathrm{Rm} \rightarrow \mathrm{Rx} \subseteq \mathrm{M}, \phi(\mathrm{n}+\mathrm{tm})=\mathrm{tx}$ for each $n \in N, t \in R$. To show that ϕ is well - defined: if $n_{1}+t_{1} m=n_{2}+t_{2} m$, then $n_{1}-n_{2}=$
$\left(t_{2}-t_{1}\right) m \in N$. Hence $\left(t_{2}-t_{1}\right) f(m+N)=f\left[\left(t_{2}-t_{1}\right) m+N\right]=0$, this implies $\left(t_{2}-t_{1}\right) m^{\prime}=0$ and so $\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right) \mathrm{m}^{\prime} r=0$.Thus $\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right) \mathrm{x}=0$

So that $\mathrm{a}_{2} \mathrm{x}=\mathrm{a}_{1} \mathrm{x}$. It is clear that $\phi \neq 0$
Now $i o \phi: \mathrm{N}+\mathrm{Rm} \rightarrow \mathrm{M}$ where $i: \mathrm{Rx} \rightarrow \mathrm{M}$ is the inclusion $i \circ \phi \neq 0$. Hence $\operatorname{Ker}(i \circ \phi)=\operatorname{Ker} \phi . \operatorname{But} \mathrm{N} \subseteq$
 $\operatorname{Ker}(i \circ \phi) \leq \mathrm{N}+\mathrm{Rm}$ which is a contradiction with Th.(3.4).
(\square)Suppose that M is not t -polyform. Then there exists $\mathrm{K} \leq \mathrm{M}, \mathrm{f} \in \operatorname{Hom}(\mathrm{K}, \mathrm{M}), \mathrm{f} \neq 0$ and $\operatorname{Kerf} \leq \mathrm{K}$. Since M is quasi - injective there exist $g \in$ End (\bar{M}) such that $g \circ i=j \circ f \quad$ where $i: K \rightarrow \bar{M}, j: M \rightarrow \bar{M}$ be the inclusion mappings
Since $f \neq 0$, then $g \neq 0$. It is clear that kerf $\subseteq \operatorname{kerg}$
Define by $\bar{g}: \frac{\overline{\mathrm{M}}}{\operatorname{kerf}} \rightarrow \overline{\mathrm{M}}$ by $\overline{\mathrm{g}}(\overline{\mathrm{m}}+\operatorname{kerf})=\mathrm{g}(\overline{\mathrm{m}})$ for each $\overline{\mathrm{m}} \in \mathrm{M}$. Then it is easy to see that \bar{g} is well - defined it follows that $\mathrm{g} \circ i_{1} \in \operatorname{Hom}\left(\frac{\mathrm{M}}{\operatorname{Kerf}}, \overline{\mathrm{M}}\right)$, where $i_{1}: \frac{\mathrm{M}}{\operatorname{kerf}} \rightarrow \frac{\overline{\mathrm{M}}}{\operatorname{kerf}}$ by hypothesis $\bar{g} \circ i_{1}=0$.

That is for each $m \in M, \overline{\mathrm{~g}} \circ \mathrm{i}(\mathrm{m}+\mathrm{Kerf})=\overline{\mathrm{g}}(\mathrm{m}+\mathrm{Kerf})=\mathrm{g}(\mathrm{m})=0$. Thus $\mathrm{g}=0$ which is a contradiction. Therefore $\operatorname{Ker} \mathrm{f} \underset{\text { tes }}{\not \leq \mathrm{K}}$ and M is a t-polyform module.

Recall that an R-module M is called Rickart if for each $f \in \operatorname{End}(M)$, $\operatorname{Kerf} \leq M \quad$ [14 ,Def 2.11,P.20].
The following results is given in [14,Lemma 2.4.21.P.59].

Lemma 4.2

The following condition are equivalent for a right R-module M :

1. M is a polyform module
2. $\overline{\mathrm{M}}$ is K-nonsingular (where $\overline{\mathrm{M}}$ is the quassi-injective hull of M .
3. $\overline{\mathrm{M}}$ is a Rickart module.

We prove the following characterization for t-polyform modules

Theorem 4.3

An R-module M is t -polyform if and only if $\overline{\mathrm{M}}$ is t -ess. q -Ded.
Proof:(\square) suppose there exists $K \leq M$ and $\phi \in \operatorname{Hom}(K, M)$ with $\operatorname{ker} \phi \leq K$. To prove $\phi=0$. Since

Now $K=K \cap E(K) \leq \bar{M} \cap E(K)$ by lemma 2.2(1), where $E(K)$ is the injective hull of K. Hence
$\overline{\mathrm{M}} \cap \mathrm{E}(\mathrm{K}) \stackrel{\oplus}{\leq} \overline{\mathrm{M}}$, so $\overline{\mathrm{M}}=(\overline{\mathrm{M}} \cap \mathrm{E}(\mathrm{K})) \oplus \mathrm{X}$ for some $\mathrm{X} \leq \overline{\mathrm{M}}$. Define $\psi: \mathrm{K} \oplus \mathrm{X} \rightarrow \overline{\mathrm{M}}$ by $\psi=\phi$ on k and $\phi=0$ on X. Since \bar{M} is quasi - injective, there exist $\bar{\psi}: \bar{M} \rightarrow \bar{M}$ such that $\bar{\psi} o i=\psi$ where $i: K \oplus X \rightarrow M$ be the inclusion mapping. Since $\bar{\psi}=\psi$ on $\mathrm{K} \oplus \mathrm{X}$, then $\bar{\psi}=\phi$ on K and $\bar{\psi}=0$ on X .

We can easily see that: $\operatorname{Ker} \psi=\operatorname{Ker} \phi \oplus X$ but $\operatorname{Ker} \phi \leq \operatorname{Kand} X \leq X$, hence by lemma 2.2(1),

It follows that $\operatorname{Ker} \bar{\psi} \leq \overline{\mathrm{M}}$, hence $\bar{\psi}=0$ since \bar{M} is t-ess. q-Ded. However $\bar{\psi}=0$ implies $\phi=0$. Thus M is t -poly form.
(\square)To prove \bar{M} is t-ess. q-Ded. Let $\mathrm{f} \in \operatorname{End}(\mathrm{M})$ and $\mathrm{f} \neq 0$. To show that $\operatorname{Kerf} \not \approx \overline{\mathrm{M}}$, we shall prove that $\underset{\text { tc }}{\operatorname{Kerf}} \leq \overline{\mathrm{M}}$ and hence Kerf $\underset{\text { tes }}{ \pm \pm \bar{M}}$ By [3, Lemma 2.3], there exists $\underset{\text { tc }}{K \leq \bar{M}}$ such that Kerf $\underset{\text { tes }}{\leq K}$. Hence $\mathrm{K} \leq \overline{\mathrm{M}}$ by Lemma 2.5 , so that $\overline{\mathrm{M}}=\mathrm{K} \oplus \mathrm{A}$ for some $A \leq \bar{M}$. Define $\mathrm{h}: \overline{\mathrm{M}} \longrightarrow \overline{\mathrm{M}}$ by $\left.\mathrm{h}\right|_{\mathrm{A}}=0$ and

Lemma 2.2(2). Now for any $\alpha \in$ End $\bar{M}, \operatorname{Ker}(\operatorname{ho\alpha })=\alpha^{-1}$ (Kerh). Since Kerh $\underset{\text { tes }}{\leq \bar{M}}$, then $\alpha^{-1} \operatorname{Kerh} \underset{\text { tes }}{\leq} \bar{M}$ by [10, 2014, cor. 1.2]. Thus $\operatorname{Ker}(\mathrm{h} \circ \alpha$)
$\cap \mathrm{M} \underset{\text { tes }}{\leq} \overline{\mathrm{M}} \cap \mathrm{M}=\mathrm{M}$ by Lemma (2.2). Then by Theorem (4.1), $0=\operatorname{Hom}\left(\frac{\mathrm{M}}{\operatorname{Ker}(\mathrm{h} \circ \alpha) \cap M}, \overline{\mathrm{M}}\right) \approx \operatorname{Hom}((\mathrm{h} \circ \alpha)$ $(M), \bar{M})$ and so $h\left(\alpha(M)=0\right.$. Since $\alpha \in$ End (M) is arbitrary, $h(\bar{M})=\sum_{\alpha \in \operatorname{End}(\bar{M})} h \alpha(M)=0$.Thus $h=0$ and Kerf $=\underset{\text { tc }}{K \leq \bar{M}}$. Thus Kerf $\underset{\text { tes }}{\not \leq \bar{M}}$.

Corollary 4.4

Let M be a quasi-injective module then M is t-poly form if and only if M is t -ess-q-Ded
Proof: It follows directly by Th. (4.3).
Recall that an R-module M is called a t-Rickart if $t_{M}(\phi)=\phi^{-1}\left(Z_{2}(M)\right)$ is a direct summand of M for every $\phi \in \operatorname{End}(\mathrm{M})[1, \operatorname{Def} 2.1]$.

Note that every nonsingular Rickart module is t-Rickart, every extending module and every Z_{2}-torsion module (i.e a module M for which $Z_{2}(M)=M$) is t-Rickart. A Rickart module need not be t-Rickart, see[1, Ex.2.10]

We prove that

Theorem 4.5

If M is a t-polyform module, then \bar{M} is t-Rickart

Proof:

Since $\frac{\bar{M}}{Z_{2}(\bar{M})}$ is nonsingular, $Z_{2}(\overline{\mathrm{M}}) \leq \overline{\mathrm{M}}$ ($\mathrm{M} \quad$ and hence $\mathrm{Z}_{2}(\overline{\mathrm{M}}) \leq \overline{\mathrm{M}}$. But $\overline{\mathrm{M}}$ is quasi-injective (hence extending) so that $Z_{2}(\bar{M})$ is a direct summand of \bar{M} Thus $\overline{\mathrm{M}}=\mathrm{Z}_{2}(\overline{\mathrm{M}}) \oplus \mathrm{C}$ for some $\mathrm{C} \leq \overline{\mathrm{M}}$. But $C \approx \frac{\overline{\mathrm{M}}}{\mathrm{Z}_{2}(\overline{\mathrm{M}})}$ which is nonsingular, so C is nonsingular. But M is t -polyform, hence $\overline{\mathrm{M}}$ is t-ess. Quasi-
Ded by Theorem 4.3. Thus \bar{M} is K-nonsingular (i.e ess. q-Ded). On other, \bar{M} is quasi-injective, so \bar{M} is extending. But $\overline{\mathrm{M}}$ is K-nonsingular extending module implies $\overline{\mathrm{M}}$ is Baer which implies Rickart by [15, Lemma 2.2.4, r.13].
Since $\stackrel{\oplus}{\leq} \leq \overline{\mathrm{M}}$, then C is Rickart. Thus $\overline{\mathrm{M}}$ is t - Rickart by [11,Th2.6.1 $(1 \rightarrow 2)$]

Remarks 4.6

1. The converse of Th.(4.5) is not true if $Z_{2}(\bar{M}) \neq 0$

Proof:

Since \bar{M} is t-Rickart, $\bar{M}=Z_{2}(\bar{M}) \oplus C$, for some nonsingular Rickart submodule C of \bar{M}.If $Z_{2}(\bar{M}) \neq 0$, then there $i: \mathrm{Z}_{2}(\overline{\mathrm{M}}) \longrightarrow \mathrm{M}$, where i is the inclusion mapping, and $\mathrm{i} \neq 0$. Thus ker $\mathrm{f}=(0)$. But $(0)+Z_{2}(\overline{\mathrm{M}}) \leq \underset{\text { ess }}{\mathrm{Z}_{2}(\overline{\mathrm{M}}) \text {, thus }}$
(0) $\underset{\text { ess }}{\leq} \mathrm{Z}_{2}(\overline{\mathrm{M}})$. That is $\operatorname{Kerf} \underset{\text { tes }}{\leq \mathrm{Z}_{2}(\overline{\mathrm{M}})}$ and so $\overline{\mathrm{M}}$ is not t-polyform therefore (\bar{M}) is not t-ess.q-Ded by cor (4.4)
2. If $Z_{2}(\bar{M})=0$ and \bar{M} is t-Rickart, then M is t-polyform.

Proof: As in (1), $\bar{M}=Z_{2}(\bar{M}) \oplus C$ where C is nonsingular Rickart. Since $Z_{2}(\bar{M})=0$, then $\bar{M}=C$; that is \bar{M} is nonsingular, hence \bar{M} is t-polyform thus M is t-polyform by Rem \& Ex.2.2.(7)

Now we have:

Theorem 4.7

Let M be a t-polyform extending module. Then $\bar{M}+M$ is t-Rickart module.
Proof: Since M is extending, M is t-Rickart. Also M is t-polyform implies \bar{M} is t-Rickart by (4.4). By [1, Th.2.6.1] $M=Z_{2}(M) \oplus A, A$ is nonsingular Rickart sub- module of $M, \bar{M}=Z_{2}(\bar{M}) \oplus B, B$ is a nonsingular \quad Rickart module of $\bar{M} \quad$. Hence $\overline{\mathrm{M}} \oplus \mathrm{M}=\mathrm{Z}_{2}(\overline{\mathrm{M}}) \oplus \mathrm{Z}_{2}(\mathrm{M}) \oplus(\mathrm{B} \oplus \mathrm{A})=\mathrm{Z}_{2}(\overline{\mathrm{M}} \oplus \mathrm{M}) \oplus(\mathrm{B} \oplus \mathrm{A})$ by Lemma 2.6 hence $\mathrm{B} \oplus A$ is a nonsingular submodule of $\bar{M} \oplus M$ since $A \stackrel{\oplus}{\leq} M$, then A is t-polyform and extending and so A is polyform and
extending $\mathrm{B} \stackrel{\oplus}{\leq} \mathrm{M}$ and $\overline{\mathrm{M}}$ is quasi-injective, hence B is a quasi-injective. On the other hand, $\mathrm{M}=$ $\mathrm{Z}_{2}(\mathrm{M}) \oplus \mathrm{A}$ implies $\overline{\mathrm{M}}=\overline{\mathrm{Z}_{2}(\mathrm{M})} \oplus \overline{\mathrm{A}}=\mathrm{Z}_{2}(\overline{\mathrm{M}}) \oplus \overline{\mathrm{A}}$. But $\overline{\mathrm{M}}=\mathrm{Z}_{2}(\overline{\mathrm{M}}) \oplus \mathrm{B}$, So $\mathrm{B}=\overline{\mathrm{A}}$. Thus $\mathrm{B} \oplus \mathrm{A}=\overline{\mathrm{A}} \oplus \mathrm{A}$ and hence by [14, prop 2.4.22, p.60], $\mathrm{B} \oplus \mathrm{A}$ is Rickart and then by [11, Th 2.6.1], $\overline{\mathrm{M}} \oplus \mathrm{M}$ is t -Rickart .

It is well-known that a sub module N of M is fully invariant if for each $f \in \operatorname{End}(M), f(N) \subseteq N$. Also recall the following basic fact: if N is a fully invariant sub module of $M=M_{1} \oplus M_{2}$ then $N=$ $\left(\mathrm{N} \cap \mathrm{M}_{1}\right) \oplus\left(\mathrm{N} \cap \mathrm{M}_{2}\right)$

Proposition 4.8

For an R-module M. if $E(M)$ (injective hull of M) is t-poly form, then $Z_{2}(M)$ is a direct summand of M.
Proof: Since $E(M)$ is t-polyform, then $\overline{E(M)}$ is t-Rickart by Th.(4.5). But $\overline{E(M)}=E(M)$, hence $E(M)$ is t-Rickart. Then by [1, Th.2.6.1] $\mathrm{E}(\mathrm{M})=\mathrm{Z}_{2}(\mathrm{E}(\mathrm{M}) \oplus \mathrm{A}, \mathrm{A}$ is a nonsingular Rickart submodule of E (M) since M is a fully invariant submodule of $E(M)$, then $M=\left(Z_{2}(E(M) \cap M) \oplus(A \cap M)\right.$, but $Z_{2}(M)=Z_{2}(E(M)) \cap M$. Thus $M=Z_{2}(M) \oplus(A \cap M)$ therefore $Z_{2}(M) \leq M$.

References

1. Gooderl K.R. 1976. Ring theory, Nonsingular Rings and Module Theorey, Marcel Dekker, Inc. New York and Basel.
2. Asgari, Sh., and Haghany, A. 2011. t-extending Modules and t-Baer Modules, Comm. Algebra, 39: 1605-1623.
3. Dung, N. V., Huynh, D. V. and Smith P.F. 1996. Wisbauer Extending Modules, John wiely \& sons, Inc. New York 1996.
4. Zelmanowitze, J. M 1986. Representation of ring with faithful polyform modules, Comm In Algebra, 14(6):1141-1169.
5. Rizvi, S. T. and Roman, C. S. 2007. On K-nonsingular modules and applications, Comm Algebra, 35: 2960.
6. Mijbass A.S. 1997. Quasi-Dedkind modules, Ph. D. thesis, college of science, university of Baghdad.
7. Ghawi, Th. Y. 2010. Some Generalizations of Quasi-Dedekind modules. M.Sc. Thesis, College of Education Ibn AL-Haitham,University of Baghdad
8. Shyaa, F. D., Alaeashi, S. N. and Hadi, I. M. A. 2018.T-essentially Quasi-Dedekind modules, accepted for publication in Journal of AL-Qadisya, 2018.
9. Ahmed, M. A. 2018. St-Polyform Modules and Related Concepts, Baghdad Science Journal, 5: 335-343.
10. Asgari, Sh., and Haghany, A. 2014. Modules whose t-closed sub modules have summand as a complement, Comm. Algebra, 42(2014): 5299 - 5318.
11. Asgari, Sh., and Haghany A. 2015. t-Rick art and Dual t-Rick art Modules, Algebra colloquium, 22: 849 - 870 .
12. Ghorbani, A. 2010. Co-epi-retractable modules and Co-pri-rings, Comm Algebra, 38: 3589 3596.
13. Weakly W. D. 1983. modules whose proper sub modules are finitely generated, J. Algebra, 189 219.
14. Gongyoung. Lee, M. S. 2010. Theory of Rickart modules, Ph. D. Thesis. The ohio state university.
15. Rizvi, S. T. and Roman, C. S. 2004. Baer and quasi-Baer modules. Comm. Algebra, 32(1): 103 123.

[^0]: *Email: alaa.abbas.math@ gmail.com

