Iraqi Journal of Science, 2019, Vol.60, No.9, pp: 2043-2052 DOI: 10.24996/ijs.2019.60.9.19

ISSN: 0067-2904

T-Polyform Modules Inaam Mohammed Ali¹, Alaa A. Elewi²

¹Department of Mathematics University of Baghdad, College of Education for Pure Sciences (Ibn-Al-Haitham), University Of Baghdad, Baghdad, Iraq

²Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq

Abstract

We introduce the notion of t-polyform modules. The class of t- polyform modules contains the class of polyform modules and contains the class of t-essential quasi-Dedekind.

Many characterizations of t-polyform modules are given. Also many connections between these class of modules and other types of modules are introduced.

Keywords: Polyform, modules, essential submodule, t-essentially, quasi-Dedekind

المقاسات المتعددة الصيغ من النمط-T

الخلاصه

قدمنا مفهوم المقاسات المتعدده الصيغ من النمط-T .هذا الصنف من المقاسات المتعدده الصيغ من النمط-T يحتوي على صنف المقاسات المتعددة الصيغ ويحتوي على المقاسات شبه الديدكانديه من النمط-T.عدة تشخيصات للمقاسات المتعدده الصيغ من النمط-T قد اعطيت وكذلك عدة روابط بين هذا الصنف من المقاسات وانواع اخرى من المقاسات قد قدمت .

Introduction

Throughout the paper, rings will have a nonzero identity element and modules will be unitary right modules. We first briefly review some background materials relevant to the topics discussed in this paper.

Recall that, a submodule N of an R-module M is called essential submodule of M(briefly $N \leq M$) if for each nonzero submodule W of M, $N \cup W \neq 0$ [1]. Equivalently $N \leq M$ if whenever $W \leq M$, $N \cup W = (0)$ implies W = (0) [1] A submodule N of M is called closed (denoted by $N \leq M$) if has no proper essential extension in M; that is, if $N \leq W \leq M$, then N = W [1]. Ashari et. al in [2], introduced the concept of t-essential submodule, where a submodule N of M is called t-essential (briefly $N \leq W$) if whenever $W \leq M$, $N \cap W \subseteq Z_2(M)$, then $W \subseteq Z_2(M)$ where $Z_2(M)$ is the second singular submodule of M and defined by $Z\left(\frac{M}{Z(M)}\right) = \frac{Z_2(M)}{Z(M)}$ [1]. It is well known that $Z(M) = \{m : mI = 0, for someI \leq R\}$

^{*}Email: alaa.abbas.math@gmail.com

.Equivalentently $Z(M) = \{m \in M:ann(m) \leq R \}, [1]$ where $ann(m) = \{r \in R: mr = 0\}$. Similarly

 $Z_2(M) = \{m \in M : mI = 0, for some I \leq R\} = \{m \in M : ann(m) \leq R \\ tes$

Obviously, every essential submodule is t-essential, but not conversely, for example the submodule $(\overline{4})$ of the z-module Z_{12} is t-essential but not essential.

However, the two concepts are equivalent if M is nonsingular (ie Z(M)=0). A module M is called singular if Z(M)=M and is called Z_2 -torslon if $Z_2(M)=0$. If $A \le M$ then $Z_2(A) = Z_2(M) \cap A$

Asgari..etc, in [2], introduced the concept t-closed submodule where a submodule N of an R-Module M is t-closed (denoted by $N \leq M$ if N has no proper t-essential extension in M. It is clear that tc

every t –closed submodule is closed, but the converse is not true for example $(\bar{0})$ is closed in Z_8 as Z-module but it is not t-closed. The two concepts closed submodule and t-closed submodule are coincide in nonsignular modules.

An R-module M is called polyform if for each $L \leq M$ and for each $\phi: L \rightarrow M$, Ker $\phi \leq L$ implies $\phi=0$

(i.e if $\phi \neq 0$, then $\operatorname{Ker} \phi \leq L$). [3, 4].

Rizvi in [5] introduced the nation of k-nonsingular module, where an R-module M is called K-nonsingular if $\phi \in End(M)$, Ker $\phi \leq M$ implies $\phi=0$, where End(M) means the ring of endomorphism

on M.

It is clear that polyform module implies K-nonsingular but not conversely see [5].

Thaa'r in [4] gave the notion of essentially quasi- Dedekind modules as a generalization of quasi – Dedekind modules by restricting the definition of quasi-Dedekind modules (which is introduced in [6] on essential submodules, where an R-module M is called essentially quasi-Dedekind if $Hom(\frac{M}{N}, M) = 0$ for each $N \leq M$ (that is M is essentially quasi- Dedekind if every $N \leq M$, N is quasi-invertible. Thaa'r in [7]proved that k-nonsingular modules and essentially quasi-Dedekind are coincided.

F,S and Inaam in [8] introduced the notion of t-essentially quasi-Dedekind where an R- module M is called t-essentially quasi-Dedekind (Shortly t-ess.q-Ded) if $Hom(\frac{M}{N}, M) = 0$ for each $N \leq M$.

Equivalently M is t-ess. q-Ded if for each $\phi \in End$ (M) with $0 \neq \operatorname{Ker} \phi \leq M_{tes}$ implies $\phi = 0$ [8].

It is obvious that every t-ess. q.Ded module is ess. q-Ded, but not conversely [8,Rem&Ex.2.2(2)].

In the present paper, motivated by these works, we introduce and study t-polyform modules as follows: An R-module M is called t-polyform if for each $L \leq M$, and $\phi: L \rightarrow M$, $\text{Ker } \phi \leq L$ implies $\phi=0$.

Then we have

If M is t-polyform then M is polyform model and if M is t-polyform then M is t-ess q-Ded module and none of these implications is reversible (see Rem& Ex.3.2(1),(3))

We give many properties and characterizations of t-polyform modules which are analogous to that of polyform modules (See Rem 3.2(3),Th.3.6,Th.4.7)

Also, many connections between t-polyform module and other types of modules are presented (see Theorems 3.3,3.4,4.1 and 4.4).

Next note that our notion ((t-polyform modules)) is different from (st-polyform modules) which is appeared recently in [9] as we explain that in S.3, Note 3.5

2-Preliminaries

We list some known results which are relevant for our work.

Lemma 2.1 [2]

The following statements are equivalent for a submodule A of an R-module M. $1,A \leq M$,

 $1.A \leq M$ tes

2. A+Z_2(M) $\underset{ess}{\leq} M$,

3. $\frac{A + Z_2(M)}{Z_2(M)} \leq \frac{M}{Z_2(M)}$ 4. $\frac{M}{A}$ is Z₂-torsion (i.e Z₂($\frac{M}{A}$) = $\frac{M}{A}$)

Lemma 2.2 [10]

Let A_{λ} be a submodule of M_{λ} for each $\lambda \in \Lambda$. Then 1. If Λ is a finite set and $A_{\lambda} \leq M_{\lambda}$, then $\bigcap_{\lambda \in \Lambda} A_{\lambda} \leq \bigcap_{t \in \lambda \in \Lambda} M_{\lambda}$,

2. $\bigoplus_{\lambda \in \land} A_{\lambda} \underset{tes}{\leq} \oplus M_{\lambda} \text{ if and only if } A_{\lambda} \underset{tes}{\leq} M_{\lambda}, \ \forall \lambda \in \land$

Lemma 2.3 [10]

Let $A \leq B \leq M$. Then $A \leq M$ if and only if $A \leq B$ and $B \leq M$ tes

Lemma 2.4 [2]

Let M be an R-module. Then

- 1. If $C \le M$ then $Z_2(M) \le C$
- 2. $(0) \le M$ if and only if M is nonsingular.

3. If A \leq C \leq M, then C $\leq M$ if and only if $\frac{C}{A} \leq \frac{M}{tc}$

Lemma 2.5 [2]

Let C be a submodule of an R-module M. Then the following statements are equivalent:

- 1. There exists a submodule S such that C is a maximal with respect to the property C \cap S is Z2-torsion.
- 2. $C \leq M$.

3. C contain
$$Z_2(M)$$
 and $\frac{C}{Z_2(M)} \leq \frac{M}{c} \frac{M}{Z_2(M)}$

4. C contains $Z_2(M)$ and $C \leq M$

5. C is a complement of a nonsingular submodule of M.

6. $\frac{M}{C}$ is nonsignular.

Lemma 2.6 [2]

Let $M = \bigoplus_{\alpha \in \Lambda} M_{\alpha}$ Where $M_{\alpha} \leq M$ for each $\alpha \in \Lambda$. Then $Z_2(M) = \bigoplus_{\alpha \in \Lambda} Z_2(M_{\alpha})$

3- t-polyform Modules

Definition 3.1: An R-module M is called t-polyform if for each $L \le M$ and $\phi: L \to M$, $\phi \ne 0$, then $\operatorname{Ker} \phi \le L$. A ring R is said to be right t-polyform if the module R_R is t-polyform.

Remarks and Examples 3.2

1.Every t-polyform module is polyform, since every essential submodule is t-essential. However, the converse is

not always true for example:

Let M be the Z-module Z_6 since M has no proper essential submodule, then M is polyform.

But M is singular hence M is Z₂-torsion and so every submodule, $0 \neq L \leq M$ is Z₂-torsion and hence $Z_2(L)=L$. Now for each $0 \neq \phi : L \rightarrow M$, Ker $\phi + Z_2(L)=$ Ker $\phi = L$ and hence Ker $\phi \leq L$ (by Lemma 2.1)

Thus $M=Z_6$ is not t-polyform

2. It is known that every semisimple module is polyform, but it is not necessary t-polyform, see the example

in(1).

3. It is clear that every t-polyform module is t-ess.q. Ded. However, the converse may be noted true in general, for

example: Let M=Z_p as Z-module, where P is a prime number. For each $0 \neq f: Z_p \rightarrow Z_p$

Since $f \neq 0$, and M is simple so Kerf=(0) and hence by lemma 2.1, Kerf=(0) $\leq M$, Since Kerf+ Z_2

 $(M)=M \leq M$. Thus M is not t.polyform. But M is t-ess.q.Ded. Since for each f:M \rightarrow M, with $0 \neq$ Kerf

 $\leq M$ implies Kerf = M and so f=0.

4. Recall that every nonsingular module M(i.e Z(M)=0) is polyform. Also every nonsingular module M is t-

polyform

Proof : Let $L \le M, \phi: L \to M$ and $\phi \ne 0$. Since M is polyform $\text{Ker}\phi \le M$. But M is nonsingular, hence

 $\operatorname{Ker} \phi \leq M \, .$

In particular each of the Z- module: $Z,Q,Z \oplus Z,Q \oplus Q, Z[X]$ is t-polyform module, also for each prime number P, Z_p as Z_p - module is t-polyform.

5. Every singular M(hence M is Z_2 -torsion ($Z_2(M)=M$)) is not t-polyform module

Proof: Let $L \le M$, $\phi: L \to M$ and $\phi \ne 0$. Hence $\operatorname{Ker}\phi + Z_2(M) = \operatorname{Ker}\phi + M = M \le M$, so $\operatorname{Ker}\phi \le M$ by

lemma

2.1. Thus M is not t-polyform.

6. Prime module need not be t-polyform, for example $M = Z_2 \oplus Z_2$ as Z-module is prime and M is not t-

polyform since M is singular. However evey prime faithful module is nonsingular, hence it is t-polyform by

part (4).

7. Every submodule $N \neq 0$ of t-polyform module M is t-polyform.

Proof: Let $0 \neq L \leq N$ and let $f:L \rightarrow N$, $f \neq 0$. Then, $0 \neq i$ of: $L \rightarrow M$ where *i* is the inclusion mapping from N into

M.

Since M is t-polyform then $\operatorname{Ker}(iof) \leq L$.

But it is easy to check that Kerf=Ker(iof) and hence Kerf $\underset{\text{tes}}{\overset{\text{\pounds}}{\overset{\text{ξ}}{\text{L}}}}$ L. Thus N is t-polyform.

In particular if \overline{M} (quasi-injective hull of M) or E(M) (injective hull of M), then M is t-polyform.

8. A homomorphic image of t-polyform module is not necessarily t-polyform, for example the Z-module Z is t-

polyform. Let $\pi: Z \to Z/(6) \approx Z_6$ where π is the natural epimorphism, but Z_6 is not t-polyform by part(1).

9. If M is a t-polyform R-module and $N \leq M$ then $\frac{M}{N}$ is t-polyform.

Proof: Since $N \leq M_{tc}$, $\frac{M}{N}$ is nonsignular by lemma (2.5). Hence $\frac{M}{N}$ is t-polyform by part (4).

10.Recall that an R-module is Co-epi-retractable if for each N \le M, there exists K \le M such that $\frac{M}{N}$

$$\simeq$$
 K [11, 12].

If M is t-polyform and Co-epi-retractable, then $\frac{M}{N}$ is t-polyform, for each N \leq M.

Proof: it follows directly

The following theorem is a characterization of t-polyform modules.

Theorem 3.3 An R-module M is t-polyform if for each $0 \neq L \leq M$ and $0 \neq \phi: L \rightarrow M$, $\text{Ker} \phi \leq L$

Proof: Suppose there exist $0 \neq L \leq M$ and $0 \neq \phi: L \rightarrow M$, but $\operatorname{Ker} \phi \leq L$. By definition of t-closed submodule, there exists $U \leq L$ such that U is a proper t-essential extension of kerf.

Then $\phi \circ i : U \to M$ where *i* is the inclusion mapping from U into L. Clearly $\operatorname{Ker}(i \circ \phi) \leq \operatorname{Ker} \phi$, so that $\operatorname{Ker}(\phi \circ i) \leq U$. Hence $\phi \circ i = 0$ since M is t-polyform. It follows that $\phi(U) = 0$; that is $U \leq \operatorname{Kerf}$ which is a contradiction. Thus $\operatorname{Ker} \phi \leq L$

Conversely, suppose there exist $L \le M$ and $0 \ne \phi: L \rightarrow M$ with Ker $f \le L$. But Ker $\phi \le L$ by hypothesis, so Ker $\phi = L$ which implies $\phi = 0$ which is a contradiction. Thus Ker $f \le L$ and So M is t-polyform.

The following is another characterization of t-polyform modules

Theorem 3.4 Let M be an R-module. Then M is t-polyform if and only if for each $0 \neq N \leq M$ and for

nonzero f \in Hom (N,M), then kerf $\leq N$

Proof: (\Box) it is clear

 $(\Box) \text{Let } N \leq M, \text{ If } \underset{tes}{N \leq M} \text{ then nothing to prove if } \underset{tes}{N \not\leq M}, \text{ let } f: N \rightarrow M, f \neq 0. \text{ Since } \underset{tes}{N \not\leq M} \text{ then } \underset{ess}{N \not\leq M}$

. Hence there exists K (a relative complement) of N and so that $N \oplus K \leq M$. which implies $N \oplus K \leq M$

. Define g: $N \oplus k \to M$ by g(n+k)= f(n), $n \in N$, $k \in k.g$ is well-defined and $g \neq 0$. By hypothesis, ker $g \leq N \oplus K$ But Kerg=Kerf $\oplus K$ and so that ker $f \leq N$ by lemma 2.2 (2). Thus M is t-polyform.

The notion of ((st-polyform modules)) appeared in [9], where an R-module M is called st-polyform if for each $0 \neq L \leq M, 0 \neq \phi: L \rightarrow M$ ker $f \leq L$. A submodule U of M is called st-closed($U \leq M$) if U st.c

has no proper semiessentiall extension of U, and a submodule U of M is called semi-essential in M if U has nonzero intersection with any nonzero prime submodule Nata 2.5

Note 3.5

The two concepts (t-polyform modules) and (st-polyform modules) are independent as we can see by the following examples.

1. Z_6 as Z-module is not t-polyform (see Rem 3.2(1)) and it is is st-poly by [5,Rem.3(vii)]

2. Z as Z-module is t-polyform (See Rem 3.2.(4)), and it is not st-polyform [see 5, Ex.5(ii)]

[4] gave the following; An R-module M is polyform if and only if every essential submodule is V

rational, where a submodule N of M is called rational in M(briefly $N \le M$) if Hom $(\frac{V}{N}, M) = 0$ for each

 $N \le V \le M [1].$

Note that every rational submodule is essential but not conversely [1]

We give the following:

Theorem 3.6 An R-module M is t-polyform implies every nonzero t-essential submodule of M is rational.

Proof: Assume $0 \neq N \leq M$ and $f \in Hom(\frac{V}{N}, M)$, where $N \leq V \leq M$. Then $f \circ \pi \in Hom(v, M)$ where π is

the natural epimorphism from V onto $\frac{V}{N}$. Hence $N \leq \ker(f \circ \pi)$, but $N \leq M_{tes}$ implies $\ker(f \circ \pi) \leq M_{tes}$ by lemma (2.3). So that $\ker(f \circ \pi) \leq V_{tes}$ (since $\ker(f \circ \pi) \subseteq V$). Since M is t-polyform, $f \circ \pi = 0$, and hence

f=0. Thus Hom $(\frac{V}{N}, M) = 0$ that is $N \leq M$.

Remark 3.7 The converse of theorem (3.6) is not true in general, for example:

The Z-module Z_6 is not t-polyform, but Z_6 has only Z_6 as t-essential submodule of Z_6 and $Z_6 \leq Z_6$.

However, we have:

Theorem 3.8 if M is an R-module such that every nonzero t-essential submodule is rational, then M is polyform.

Proof: Let $N \leq M$, hence $0 \neq N \leq M$. Then by hypothesis is $N \leq M$. Thus every essential submodule is rational. It follows that M is polyform.

Recall a nonzero R-module M is called monoform if for each $0 \neq N \leq M$ and for each $0 \neq f \in Hom(N,M)$, then ker f=0, [9].

Equivalently a nonzero R-module M is monoform if for each nonzero submodule N of M, $N \le M$, [9].

It is known that every monoform is polyform . Now we ask the following: Is there any relation between t-polyform modules and monoform?

Consider the following remarks

Remarks 3.9

1. t-polyform modules need not be monoform, for example: The Z-module $Z \oplus Z$ is t-polyform (Rem 3.2.(4)), but it is not monoform since there exists $f: Z \oplus 2Z \rightarrow Z \oplus Z$ such that f(x,y)=(y,0) for each $x \in Z$, $y \in 2Z$ then Kerf= $Z \oplus (0) \neq z$ ero submodule.

2. Monoform module may be not t-polyform module, for example: The Z-module Z_p , where p is a prime number, is monoform but it is not t-polyform.

We introduce the following

Definition3.10 An R-module M is called t-essentialy monoform (shortly t-ess- mono) if for each $0 \neq N \leq M$ and $0 \neq f \in \text{Hom}(N,M)$ then kerf=0.

Every simple module is t-ess mono and every monoform module is t-ess. mono.

Proposition 3.11: Let M be a t-ess-mono. module. Then M is quasi-Dedekind and hence M is t-ess.q.-Ded.

Proof: Since $M \leq M$ and M is t-ess-mono, the for each $0 \neq f \in End$ (M) implies kerf=0 Thus M is

quasi-Dedekind by [6, Th1.5, p.26] and hence M is t-ess-q-Ded.

By th.(3.6), We have: If M is t-polyform, then for each $0 \neq N \leq M$ implies $N \leq M$.

Now we give the following

Proposition 3.12: If M is t-ess-mono. R-module, then for each $0 \neq N \leq M$ implies $N \leq M$.

Proof: Suppose there exists $0 \neq N \leq M$ but $N \leq M$ Hence there exists $V \square N$ such that $Hom(\frac{V}{N}, M) \neq 0$

, so Let f∈ Hom $(\frac{V}{N}, M)$, f≠0. It follows that foπ∈ Hom (V, M), where π is natural epimorphism from V

onto $\frac{V}{N}$, and fo $\pi \neq 0$ (Since $f \neq 0$). But N V, hence V $\leq M$ and since M is t-ess-mono, Ker(fo π)=0.

Since N \subseteq Ker(fo π)=0 thus N=0 which is a contradiction therefore N \leq M.

Corollary 3.13: Let M be a t-ess-mono. Then M is polyform. **Proof:** It follows by prop.(3.12) and Th.(3.8)

Proposition 3.14: Let M a quasi-injective R-module. I f M is t-ess.q.Ded, then for each $0 \neq N \leq M$

implies $N{\leq}M$

Proof: Let $0 \neq N \leq M$ Since M is t-ess,q-Ded, Hom $(\frac{M}{N}, M) = 0$;that is N is a quasi-invertible submodule of M. Since M is quasi-injective, then by [6,Th3.5 p.16], M is a rational extension of N; that is $N \leq M$.

Corollary 3.15: Let M be a quasi-injective if M is t-ess.q.Ded, then M is polyform **Proof:** It follows by prop .(3.14) and Th.(3.7) We can Summarize results of S.3 by the following tables

\$.4 More about t-polyform module

It is known that, for an R-module M, the following are equivalent:-

1. Every essential submodule is rational (i.e. M is polyform)

2. For each $0 \neq N \leq M$, f: $N \rightarrow M$, f $\neq 0$, then kerf $\leq N$ (i.e. All partial endomorphism of M have

closed kernels in their domains)

3. End(\overline{M}) is vonneuman regular

4. For each
$$N \leq M$$
, Hom $(\frac{M}{N}, \overline{M}) = 0$

Proof

 $(1) \Leftrightarrow (2) \Leftrightarrow (3) [2, 4.9.P.34]$.

 $(2) \Leftrightarrow (3) \Leftrightarrow (4) [13].$

Our aim is to give analogize property for t-polyform module.

In S.3 we prove that an R- module M is t-polyform if and only if for each $0 \neq N \leq M$, f: N \rightarrow M, $f \neq 0$ implies Kerf \leq M.

Now we prove the following:

Theorem 4.1 An R- module M is t-polyform if and only if for each $0 \neq N \leq M$, Hom $(\frac{M}{N}, \overline{M}) = 0$.

Proof: (\Box) suppose there exists $(N \leq M) \neq 0$ such that $\operatorname{Hom}(\frac{M}{N}, \overline{M}) \neq 0$. Hence there exists $f: \frac{M}{N} \to \overline{M}$ and $f \neq 0$, and so there exists $m + N \in \frac{M}{N}$, $m + N \neq 0$ such that $f(m + N) = m \neq 0$. Since $M \leq \overline{M}$, there exists $r \in R$ with $0 \neq m' r \in M$ let m' r = x. Define $\phi: N + Rm \to Rx \subseteq M$, $\phi(n + tm) = tx$ for each $n \in N, t \in R$. To show that ϕ is well – defined: if $n_1 + t_1m = n_2 + t_2m$, then $n_1 - n_2 = m = 1$. $(t_2 - t_1)m \in N$. Hence $(t_2 - t_1) f(m + N) = f[(t_2 - t_1)m + N] = 0$, this implies $(t_2 - t_1)m' = 0$ and so $(t_2 - t_1)m'r = 0$. Thus $(t_2 - t_1)x = 0$

So that $a_2 x = a_1 x$. It is clear that $\phi \neq 0$

Now $io\phi: N + Rm \to M$ where $i: Rx \to M$ is the inclusion $i \circ \phi \neq 0$. Hence $Ker(i \circ \phi) = Ker\phi$. But $N \subseteq Ker\phi$ and $N \leq M$ implies $Ker\phi \leq M$, so that $K \in \dot{r}(\phi) \leq M$. But $Ker(i \circ \phi) \leq N + Rm$. Hence tes $Ker(i \circ \phi) \leq N + Rm$ which is a contradiction with Th.(3.4).

(□)Suppose that M is not t-polyform. Then there exists K≤M, f∈ Hom(K,M), f≠0 and Kerf ≤ K . Since

M is quasi – injective there exist $g \in End(\overline{M})$ such that $g \circ i = j \circ f$ where $i: K \to \overline{M}, j: M \to \overline{M}$ be the inclusion mappings

Since $f \neq 0$, then $g \neq 0$. It is clear that kerf \subseteq kerg

Define by $\overline{g}: \frac{\overline{M}}{\ker f} \to \overline{M}$ by $\overline{g}(\overline{m} + \ker f) = g(\overline{m})$ for each $\overline{m} \in M$. Then it is easy to see that \overline{g} is well

- defined it follows that $g \circ i_1 \in \text{Hom } (\frac{M}{\text{Kerf}}, \overline{M})$, where $i_1: \frac{M}{\text{kerf}} \to \frac{\overline{M}}{\text{kerf}}$ by hypothesis $\overline{g} \circ i_1 = 0$.

That is for each $m \in M$, $\overline{g} \circ i(m + \text{Kerf}) = \overline{g}(m + \text{Kerf}) = g(m) = 0$. Thus g = 0 which is a contradiction. Therefore Ker $f \leq K$ and M is a t-polyform module.

Recall that an R-module M is called Rickart if for each $f \in End(M)$, Kerf $\leq M$ [14, Def 2.11, P.20]. The following results is given in [14, Lemma 2.4.21. P.59].

Lemma 4.2

The following condition are equivalent for a right R-module M:

- 1. M is a polyform module
- 2. \overline{M} is K-nonsingular (where \overline{M} is the quassi-injective hull of M.
- 3. \overline{M} is a Rickart module.
- We prove the following characterization for t-polyform modules

Theorem 4.3

An R-module M is t-polyform if and only if \overline{M} is t-ess. q-Ded.

Proof: (\Box) suppose there exists $K \leq M$ and $\phi \in Hom (K, M)$ with $\ker \phi \leq K$. To prove $\phi=0$. Since $M \leq \overline{M}$, hence $M \leq \overline{M}$. Thus $\ker \phi \leq K \leq M \leq \overline{M}$ which implies $\ker \phi \leq \overline{M}$ and $K \leq \overline{M}$ by lemma (2.30.

 $\overline{M} \cap E(K) \leq \overline{M}$, so $\overline{M} = (\overline{M} \cap E(K)) \oplus X$ for some $X \leq \overline{M}$. Define $\psi : K \oplus X \to \overline{M}$ by $\psi = \phi$ on k and $\phi = 0$ on X. Since \overline{M} is quasi – injective, there exist $\overline{\psi} : \overline{M} \to \overline{M}$ such that $\overline{\psi} \circ i = \psi$ where $i: K \oplus X \to M$ be the inclusion mapping. Since $\overline{\psi} = \psi$ on $K \oplus X$, then $\overline{\psi} = \phi$ on K and $\overline{\psi} = 0$ on X.

We can easily see that: $\operatorname{Ker} \psi = \operatorname{Ker} \phi \oplus X$ but $\operatorname{Ker} \phi \leq K$ and $X \leq X$, hence by lemma 2.2(1),

 $\operatorname{Ker} \psi \leq \operatorname{K} \oplus \operatorname{X} \text{ .On the other hand, } \operatorname{K} \leq \overline{\operatorname{M}} \text{ , so } \operatorname{K} \oplus \operatorname{X} \leq \overline{\operatorname{M}} \text{ . Therefore } \operatorname{Ker} \psi \leq \overline{\operatorname{M}} \text{ .Also } \operatorname{Ker} \overline{\psi} \supseteq \operatorname{Ker} \psi \text{ .}$

It follows that $\operatorname{Ker} \overline{\psi} \leq \overline{M}$, hence $\overline{\psi} = 0$ since \overline{M} is t-ess. q-Ded. However $\overline{\psi} = 0$ implies $\phi = 0$. Thus M is t-poly form.

(□)To prove \overline{M} is t-ess. q-Ded. Let $f \in End (M)$ and $f \neq 0$. To show that $\operatorname{Kerf} \leq \overline{M}$, we shall prove that $\operatorname{Kerf} \leq \overline{M}$ and hence $\operatorname{Kerf} \leq \overline{M}$ By [3, Lemma 2.3], there exists $K \leq \overline{M}$ such that $\operatorname{Kerf} \leq K$. Hence $\operatorname{tc} K \leq \overline{M}$ by Lemma 2.5, so that $\overline{M} = K \oplus A$ for some $A \leq \overline{M}$. Define h: $\overline{M} \to \overline{M}$ by h|_A = 0 and h|_k = f|_k. Hence $\operatorname{Kerh} = \operatorname{kerf} \oplus A$. But $\operatorname{Kerf} \leq K$, $A \leq A$, implies $\operatorname{Kerh} = \operatorname{Kerf} \oplus A \leq K \oplus A$ by Lemma 2.2(2). Now for any $\alpha \in \text{End } \overline{M}$, Ker(ho α) = α^{-1} (Kerh). Since Kerh $\leq \overline{M}$, then α^{-1} Kerh $\leq \overline{M}$

by [10, 2014, cor. 1.2]. Thus Ker($h \circ \alpha$)

 $\bigcap_{\substack{\text{tes}}} \overline{M} \cap M = M \text{ by Lemma (2.2). Then by Theorem (4.1), } 0 = \text{Hom}(\frac{M}{\text{Ker}(h \circ \alpha) \cap M}, \overline{M}) \approx \text{Hom}((h \circ \alpha) (M), \overline{M}) \text{ and so } h(\alpha(M) = 0. \text{ Since } \alpha \in \text{End } (M) \text{ is arbitrary, } h(\overline{M}) = \sum_{\alpha \in \text{End}(\overline{M})} h\alpha(M) = 0 \text{ .Thus } h=0 \text{ and } M = 0 \text{ and } M = 0 \text{ .Thus } h=0 \text{ and } M = 0 \text{ .Thus } h=0 \text{ and } M = 0 \text{ .Thus } h=0 \text{ and } M = 0 \text{ .Thus } h=0 \text{ and } M = 0 \text{ .Thus } h=0 \text{ and } M = 0 \text{ .Thus } h=0 \text{ and } M = 0 \text{ .Thus } h=0 \text{ and } M = 0 \text{ .Thus } h=0 \text{ and } M = 0 \text{ .Thus } h=0 \text{ and } M = 0 \text{ .Thus } h=0 \text{ and } M = 0 \text{ .Thus } h=0 \text{ and } M = 0 \text{ .Thus } h=0 \text{ and } M = 0 \text{ .Thus } h=0 \text{ and } M = 0 \text{ .Thus } h=0 \text{ .Thus } h=0 \text{ and } M = 0 \text{ .Thus } h=0 \text{ and } M = 0 \text{ .Thus } h=0 \text{ .Thu$

 $Kerf = K \mathop{\leq}\limits_{tc} \overline{M}$. Thus $Kerf \mathop{\leq}\limits_{tes} \overline{M}$.

Corollary 4.4

Let M be a quasi-injective module then M is t-poly form if and only if M is t-ess-q-Ded **Proof:** It follows directly by Th. (4.3).

Recall that an R-module M is called a t-Rickart if $t_M(\phi) = \phi^{-1}(Z_2(M))$ is a direct summand of M for every $\phi \in End(M)[1,Def2.1]$.

Note that every nonsingular Rickart module is t-Rickart, every extending module and every Z_2 -torsion module (i.e a module M for which $Z_2(M) = M$) is t-Rickart. A Rickart module need not be t-Rickart, see[1, Ex.2.10]

We prove that

Theorem 4.5

If M is a t-polyform module, then \overline{M} is t-Rickart

Proof:

Since $\frac{\overline{M}}{Z_2(\overline{M})}$ is nonsingular, $Z_2(\overline{M}) \leq \overline{M}$ and hence $Z_2(\overline{M}) \leq \overline{M}$. But \overline{M} is quasi-injective (hence extending) so that $Z_2(\overline{M})$ is a direct summand of \overline{M} Thus $\overline{M} = Z_2(\overline{M}) \oplus C$ for some $C \leq \overline{M}$. But $C \approx \frac{\overline{M}}{Z_2(\overline{M})}$ which is nonsingular, so C is nonsingular. But M is t-polyform, hence \overline{M} is t-ess. Quasi-

Ded by Theorem 4.3. Thus \overline{M} is K-nonsingular (i.e ess. q-Ded). On other, \overline{M} is quasi-injective, so \overline{M} is extending. But \overline{M} is K-nonsingular extending module implies \overline{M} is Baer which implies Rickart by [15, Lemma 2.2.4, r.13].

Since $C \leq \overline{M}$, then C is Rickart. Thus \overline{M} is t- Rickart by [11,Th2.6.1 (1 \rightarrow 2)]

Remarks 4.6

1. The converse of Th.(4.5) is not true if $Z_2(\overline{M}) \neq 0$

Proof:

Since \overline{M} is t-Rickart, $\overline{M} = Z_2(\overline{M}) \oplus C$, for some nonsingular Rickart submodule C of \overline{M} . If $Z_2(\overline{M}) \neq 0$, then there $i: Z_2(\overline{M}) \to M$, where *i* is the inclusion mapping, and $i \neq 0$. Thus ker f = (0). But $(0) + Z_2(\overline{M}) \leq Z_2(\overline{M})$, thus

(0) $\leq_{\text{ess}} Z_2(\overline{M})$. That is Kerf $\leq_{\text{tes}} Z_2(\overline{M})$ and so \overline{M} is not t-polyform therefore (\overline{M}) is not t-ess.q-Ded by cor (4.4)

2. If $Z_2(\overline{M}) = 0$ and \overline{M} is t-Rickart, then M is t-polyform.

Proof: As in (1), $\overline{M} = Z_2(\overline{M}) \oplus C$ where C is nonsingular Rickart. Since $Z_2(\overline{M}) = 0$, then $\overline{M} = C$; that is \overline{M} is nonsingular, hence \overline{M} is t-polyform thus M is t-polyform by Rem & Ex.2.2.(7)

Now we have:

Theorem 4.7

Let M be a t-polyform extending module. Then $\overline{M} + M$ is t-Rickart module.

Proof: Since M is extending, M is t-Rickart. Also M is t-polyform implies \overline{M} is t-Rickart by (4.4). By [1, Th.2.6.1] $M = Z_2(M) \oplus A$, A is nonsingular Rickart sub- module of M, $\overline{M} = Z_2(\overline{M}) \oplus B$, B is a nonsingular Rickart sub- module of \overline{M} . Hence $\overline{M} \oplus M = Z_2(\overline{M}) \oplus Z_2(M) \oplus (B \oplus A) = Z_2(\overline{M} \oplus M) \oplus (B \oplus A)$ by Lemma 2.6 hence $B \oplus A$ is a nonsingular submodule of $\overline{M} \oplus M$ since $A \stackrel{\oplus}{\leq} M$, then A is t-polyform and extending and so A is polyform and

extending $B \leq M$ and \overline{M} is quasi-injective, hence B is a quasi-injective. On the other hand, $M = Z_2(M) \oplus A$ implies $\overline{M} = \overline{Z_2(M)} \oplus \overline{A} = Z_2(\overline{M}) \oplus \overline{A}$. But $\overline{M} = Z_2(\overline{M}) \oplus B$, So $B = \overline{A}$. Thus $B \oplus A = \overline{A} \oplus A$ and hence by [14, prop 2.4.22, p.60], $B \oplus A$ is Rickart and then by [11, Th 2.6.1], $\overline{M} \oplus M$ is t-Rickart.

It is well-known that a sub module N of M is fully invariant if for each $f \in End(M), f(N) \subseteq N$. Also recall the following basic fact: if N is a fully invariant sub module of $M = M_1 \bigoplus M_2$ then $N = (N \cap M_1) \bigoplus (N \cap M_2)$

Proposition 4.8

For an R-module M. if E (M) (injective hull of M) is t-poly form, then $Z_2(M)$ is a direct summand of M.

Proof: Since E(M) is t-polyform, then $\overline{E(M)}$ is t-Rickart by Th.(4.5). But $\overline{E(M)} = E(M)$, hence E (M) is t-Rickart. Then by [1, Th.2.6.1] $E(M) = Z_2(E(M) \oplus A, A \text{ is a nonsingular Rickart submodule of E}(M)$ since M is a fully invariant submodule of E(M), then $M = (Z_2(E(M) \cap M) \oplus (A \cap M), but$

 $Z_2(M) = Z_2(E(M)) \cap M$. Thus $M = Z_2(M) \bigoplus (A \cap M)$ therefore $Z_2(M) \stackrel{\oplus}{\leq} M$.

References

- 1. Gooderl K.R. 1976. *Ring theory, Nonsingular Rings and Module Theorey*, Marcel Dekker, Inc. New York and Basel.
- Asgari, Sh., and Haghany, A. 2011. t-extending Modules and t-Baer Modules, *Comm. Algebra*, 39: 1605 1623.
- 3. Dung, N. V., Huynh, D. V. and Smith P.F. 1996. Wisbauer Extending Modules, John wiely & sons, Inc. New York 1996.
- **4.** Zelmanowitze, J. M **1986.** Representation of ring with faithful polyform modules, *Comm In Algebra*, **14**(6):1141 1169.
- 5. Rizvi, S. T. and Roman, C. S. 2007. On K-nonsingular modules and applications, Comm Algebra, 35: 2960.
- 6. Mijbass A.S. 1997. Quasi-Dedkind modules, Ph. D. thesis, college of science, university of Baghdad.
- 7. Ghawi, Th. Y. 2010. Some Generalizations of Quasi-Dedekind modules. M.Sc. Thesis, College of Education Ibn AL-Haitham, University of Baghdad
- 8. Shyaa, F. D., Alaeashi, S. N. and Hadi, I. M. A. 2018.T-essentially Quasi-Dedekind modules, accepted for publication in *Journal of AL-Qadisya*, 2018.
- **9.** Ahmed, M. A. **2018.** St-Polyform Modules and Related Concepts, *Baghdad Science Journal*, **5**: 335 343.
- **10.** Asgari, Sh., and Haghany, A. **2014.** Modules whose t-closed sub modules have summand as a complement, *Comm. Algebra*, **42**(2014): 5299 5318.
- 11. Asgari, Sh., and Haghany A. 2015. t-Rick art and Dual t-Rick art Modules, *Algebra colloquium*, 22: 849 870.
- 12. Ghorbani, A. 2010. Co-epi-retractable modules and Co-pri-rings, Comm Algebra, 38: 3589 3596.
- **13.** Weakly W. D. **1983.** modules whose proper sub modules are finitely generated, *J. Algebra*, 189 219.
- 14. Gongyoung. Lee, M. S. 2010. Theory of Rickart modules, Ph. D. Thesis. The ohio state university.
- **15.** Rizvi, S. T. and Roman, C. S. **2004.** Baer and quasi-Baer modules. *Comm. Algebra*, **32**(1): 103 123.