Alhaidary and Majeed Iraqi Journal of Science, 2024, Vol. xx, No. x, pp: xx DOI: 10.24996/ijs.2024.65.12.29

 ISSN: 0067-2904

Results on Multiplicative (Generalized) (,)-reverse Derivation on Prime Rings

Zahraa S. M. Alhaidary¹*, Abdulrahman H. Majeed²

¹ Branch of Mathematics and computer Applications, Department of Applied Sciences ,University of Technology, Baghdad- Iraq.

²Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq.

Received: 20/10/2023 Accepted: 5/2/2024 Published: xx

Abstract

Let *R* be a 2-torsion-free prime ring, \mathbb{U} be non-zero square closed Lie ideal of *R*, α and β be automorphisms of *R*.A mapping $F: R \rightarrow R$ is called a multiplicative (generalized) (α, β) -reverse derivation if $F(ab) = F(b)\alpha(a) + \beta(b)d(a)$ for all $a, b \in R$ where $d: R \to R$ is any map. The purpose of this paper, is to give some important results of multiplicative (generalized) (α,β) -reverse derivation on square closed Lie ideals F that satisfying any one of the properties:

(i) $F(uv) + \alpha(uv) = 0$, (ii) $F(uv) + \alpha(vu) = 0$, (iii) $F(u)F(v) + \alpha(uv) = 0$ 0, (iv) $F(u)F(v) + \alpha(vu) = 0$, (v) $F(uv) = F(u)F(v)$, (vi) $F(uv) = F(v)F(u)$ and (vii) $F[u, v] = 0$ for all $u, v \in$ \mathbb{U} .

Keywords: Prime Ring, Multiplicative (Generalized) (α , β) Reverse-Derivation, Lie ideal.

نتائج عن مشتقات المعكوسة-(,) الضربيه)المعممه(على الحلقات االولية

2 زهراء سمير محمد الحيدري*¹ و عبد الرحمن حميد مجيد

فرع رياضيات وتطبيقات الحاسوب، قسم العلوم التطبيقية، جامعة التكنلوجيا، بغداد، العراق *1 2 قسم الرياضيات، كلية العلوم، جامعة بغداد، بغداد، العراق

الخالصة

 لتكن *ꭆ* حلقة اولية طليقة االلتواء من النوع ,2 مثالي لي مربع مغلق غير صفري من *ꭆ* , و $F(ab) = \text{I}$ i (معمم) (α, β) نشتق معكوس ضربي (α, β) مشتق معكوس ضربي ($d: R \to a, b \in R$ لكل $a, b \in R$ عندما $d: R \to d$ اي تطبيق. غرض هذا البحث اعطاء بعض النتائج المهمه للمشتق المعكوس الضربي (α,β) (معمم) على مثالي لي مربع مغلق غير صفري والتي تحقق احد هذه الخواص

(i)F(uv) $\pm \alpha(uv) = 0$, (ii) $F(uv) \pm \alpha(vu) = 0$, (iii) $F(u)F(v) \pm \alpha(uv) = 0$ 0, (iv) $F(u)F(v) \pm \alpha(vu) = 0$, (v) $F(uv) = F(u)F(v)$, (vi) $F(uv) = F(v)F(u)$ and (vii) $F[u, v] = 0 \forall u, v \in \mathbb{U}$.

1. Introduction

Let *R* will be denoted a ring with center $Z(P)$. For all $a, b \in R$, we denote the commentator $ab - ba$ by[a, b], and anti-commentator $ab + ba$ by $a \circ b$ [1]. A ring *R* is called a prime if $a \, \bar{r} = 0$ either $a = 0$ or $b = 0$. A ring \bar{r} is said to be 2-torsion free, if $2a = 0, a \in \bar{r}$ implies $a = 0$, [1]. An additive subgroup $\mathbb U$ of $\mathbb R$ is said to be Lie ideal of $\mathbb R$ if for all $a \in \mathbb U$, $r \in \mathbb R$ then [a, r] ∈ U, and the Lie ideal of U is known as square closed Lie ideal if $a^2 \in \mathbb{U}$, where $a \in \mathbb{Z}$ U [2]. If $\mathbb U$ is a square closed Lie ideal of *R*, then $2ab \in \mathbb U \forall a, b \in \mathbb U$. A derivation is an additive mapping with the property $d(ab) = d(a)b + ad(b)$ where $a, b \in R$.

An additive mapping $F: B \to B$ is called a generalized derivation related with d if there exists a derivation $d: \eta \to \eta$ such that $F(ab) = F(a)b + ad(b)$ where $a, b \in \eta$ [3]. The concept of multiplicative derivation was first introduced by Daif [4]. A mapping $d : : B \to B$ is called a multiplicative derivation if it satisfies $d(ab) = d(a)b + ad(b)$ for all $a, b \in R$. Of course, these maps need not to be additive

In [5], a mapping $F: \eta \to \eta$, is said to be a multiplicative generalized derivation if $F(ab) =$ $F(a)b + ad(b)$ where $a, b \in R$, where d is a derivation from R to R . In [6], F is referred to a multiplicative (generalized) derivation if $F(ab) = F(a)b + ad(b)$ for all $a, b \in R$, where d is any map that is not an additive for necessity. Herstein, first time introduced the concept of reverse derivation in [7]; let *R* be a ring an additive mapping $d: R \to R$ is called a reverse derivation if d (ab) = $d(b)a + bd(a)$ for all $a, b \in R$. In [8], let *R* be a ring a mapping $d: R \to$ *R* will be said to a multiplicative left centralizer if $d(ab) = d(a)b$ for all $a, b \in R$, where d is not necessary additive. In [9]; a multiplicative left reverse α -centralizer of a ring β is a mapping that satisfies the condition $d(ab) = d(b)\alpha(a)$ and has the form $d: \beta \to \beta$ for each $a, b \in \beta$, where α be a mapping of β .

In [10], a mapping $F: \eta \to \eta$ is said to be a multiplicative (generalized)-reverse derivation of *R*, if $F(ab) = F(b)a + bd(a)$, for all $a, b \in R$, where d is any map. From the idea of a multiplicative (generalized)-reverse derivation, the author of [10] created a multiplicative (generalized) (α, β) -reverse derivation. If $F(ab) = F(b)\alpha(a) + \beta(b)d(a)$ for all $a, b \in R$, where α , β are automorphisms of *R*, the mapping $F: R \rightarrow R$ is known as a multiplicative (generalized) (α, β) -reverse derivation of *R* associated with a map *d* on *R*.

 The following identities related to multiplicative (generalized) derivation on Lie ideals in prime rings is investigated in [11]:

- 1) $F(uv) \pm uv = 0$,
- 2) $F(uv) \pm vu = 0$,
- 3) $F(u)F(v) \pm uv = 0$,
- 4) $F(u)F(v) \pm \nu u = 0$, for all $u, v \in \mathbb{U}$.

 The purpose of this paper is finding an important results for a 2-torsion free prime rings admitting a multiplicative (generalized) (α, β) -reverse derivation on square closed Lie ideal [for short we use m(g)(α , β)-rd].

Through this paper, we study the following identities:

- (i) $F(uv) \pm \alpha(uv) = 0$,
- (ii) $F(uv) \pm \alpha(vu) = 0$,
- (iii) $F(u)F(v) \pm \alpha(uv) = 0$,
- (iv) $F(u)F(v) \pm \alpha(vu) = 0$,
- (v) $F(uv) = F(u)F(v)$,
- (vi) $F(uv) = F(v)F(u)$ and
- (vii) $F[u, v] = 0 \,\forall u, v \in \mathbb{U}$.

Where U be a non-zero square closed Lie ideal of 2-torsion free prime ring, α and β be automorphisms of *ꭆ*.

We need the following lemmas to proof of our main results.

Lemma 1.1. [12]: Suppose *R* is a prime ring and F is an m (g)(α , β)- rd of *R* associated with a map $d: A \rightarrow B$, then either *B* is commutative or *d* is the multiplicative left α -centralizer.

Lemma 1.2. [13]: Let \mathbb{U} be a Lie ideal of *R* with $\mathbb{U} \nsubseteq Z(R)$ and *R* be a 2-torsion free prime ring. If $m, n \in R$ and $m \cup n = 0$, then either $m = 0$ or $n = 0$.

Lemma 1.3. [14]: Let *R* be a 2-torsionfree prime ring. U be a Lie ideal of *B*. If U is a commutative Lie ideal of *R*, then $\mathbb{U} \subseteq Z(R)$.

2. Main Results

Theorem 2.1

Let F be an m (g)(α , β)- rd on *R* related with a map d: $R \rightarrow R$. If $F(uv) \pm \alpha(uv) = 0$ for all $u, v \in \mathbb{U}$, then $d(\mathbb{U}) = 0$. **Proof:** Suppose that *R* is non-commutative and $\mathbb{U} \nsubseteq Z(R)$. We have $F(uv) - \alpha(uv) = 0$. (1) Exchange *v* by 2*vz* in (1), where $z \in \mathbb{U}$, gives $F(z)\alpha(uv) + \beta(z)d(uv) - \alpha(uvz) = 0.$ By using Lemma 1.1, it gives $F(z)\alpha(u)\alpha(v) + \beta(z)d(u)\alpha(v) - \alpha(uvz) = 0$. (2) On the other hand $F(vz)\alpha(u) + \beta(vz)d(u) - \alpha(uvz) = 0$, $F(z)\alpha(v)\alpha(u) + \beta(z)d(v)\alpha(u) + \beta(v)\beta(z)d(u) - \alpha(uvz) = 0.$ (3) Subtract Equation (3) from Equation (2), gives $F(z)\alpha[u, v] + \beta(z)(d(u)\alpha(v) - d(v)\alpha(u)) - \beta(v)\beta(z)d(u) = 0.$ (4) Substituting ν with $2\nu u$ in (4), and applying Lemma 1.1, this implies $F(z)\alpha[u, v]\alpha(u) + \beta(z)(d(u)\alpha(v)\alpha(u) - d(v)\alpha(u)\alpha(u)) - \beta(v)\beta(u)\beta(z)d(u) = 0.$ (5) By multiplying Equation (4) by $\alpha(u)$ on the right we have $F(z)\alpha[u, v]\alpha(u) + \beta(z)(d(u)\alpha(v) - d(v)\alpha(u))\alpha(u) - \beta(v)\beta(z)d(u)\alpha(u) = 0.$ (6) Subtract Equation (6) from Equation (5), gives $\beta(v)(\beta(z)d(u)\alpha(u) - \beta(u)\beta(z)d(u)) = 0$. (7) By putting $v = [v, r]$ in (7), and use it, where $r \in R$, we obtain $\beta(v)$ *R* ($\beta(z)d(u)\alpha(u) - \beta(u)\beta(z)d(u) = 0.$ $\beta(z)d(u)\alpha(u) - \beta(u)\beta(z)d(u) = 0$. (8) We substitute z by $2vz$ in (8), then $\beta(v)\beta(z)d(u)\alpha(u) - \beta(u)\beta(v)\beta(z)d(u) = 0$. (9) Left multiply Equation (8), by $\beta(v)$ and subtract it from Equation (9), then $\beta[v, u]\beta(z)d(u) = 0.$ Taking β^{-1} in above relation, gives $[v, u] z \beta^{-1}(d(u)) = 0.$ By Lemma 1.2, since $\mathbb{U} \not\subseteq Z(\mathbb{R})$ becomes, $d(\mathbb{U}) = 0$. On the other hand, if *R* is commutative, then $\mathbb{U} \subseteq Z(R)$. It is clear $\alpha(u)$, $\beta(u) \subseteq Z(R)$. From Equation (7), we have $\beta(v)(\beta(z)\alpha(u)d(u) - \beta(z)\beta(u)d(u)) = 0.$ $\beta(v)\beta(z)(\alpha(u)d(u) - \beta(u)d(u)) = 0$. (10) Exchange v by $[v, r]$, where $r \in R$ in (10), and using it, this yield $\beta(v)$ *R* $\beta(z)(\alpha(u)d(u) - \beta(u)d(u)) = 0.$ $\beta(z)(\alpha(u)d(u) - \beta(u)d(u)) = 0$. Change z by $[z, r]$ in above relation and using the same technique as above, we finally obtain $((\alpha - \beta)u)d(u) = 0$.

In the relationship above, if we multiply it by *r* on the left, we obtain,

$$
r(\alpha - \beta) (u)d(u) = 0.
$$

\n
$$
(\alpha - \beta)u R d(u) = 0.
$$

\nSince R is a prime ring, we get either $(\alpha - \beta) = 0$ or $d(\mathbb{U}) = 0$.
\nIf $\alpha = \beta$ on \mathbb{U} , from Equation (4), we obtain
\n
$$
\beta(z)d(u)\beta(v) - \beta(z)d(v)\beta(u) - \beta(v)\beta(z)d(u) = 0.
$$

\nLet $v = u$ in above relation, we have $\beta(u)\beta(z)d(u) = 0$.
\nBy taking β^{-1} in above equation, we get $u \, z \, \beta^{-1} (d(u)) = 0$.
\nMultiplying above equation by r on the left, then

$$
r u z \beta^{-1} (d(u)) = 0.
$$

$$
\beta^{-1} (d(u)) = 0.
$$

Again, multiplying above equation by r on the left, we find $r z \beta^{-1} (d(u)) = 0$.

$$
d(\mathbb{U})=0.
$$

For the case $F(uv) + \alpha(uv) = 0$ for all $u, v \in \mathbb{U}$, the same conclusion is reached using a similar approach.

Theorem 2.2

Let F be an m (g)(α , β)- rd on *R* related with a map $d: R \to R$. If $F(uv) \pm \alpha(vu) = 0$ for all $u, v \in \mathbb{U}$, then $d(\mathbb{U})=0$.

Proof:

Suppose that $\mathbb{U} \nsubseteq Z(R)$.

$$
F(uv) - \alpha(vu) = 0.
$$
 (11)

Replace *u* by u^2 in Equation (11), and using it, and taking β^{-1} , we get $u v \beta^{-1} (d(u)) = 0.$ (12)

Using Lemma 1.2, implies β^{-1} ($d(u)$)=0. Since β is an automorplism of β , then becomes $d(\mathbb{U}) = 0.$

Now, if $\mathbb{U} \subseteq Z(R)$. By multiplying the left side of Equation (12), by *r*, we obtain

$$
r u v \beta^{-1}(d(u)) = 0.
$$

Since $\mathbb{U} \subseteq Z(q)$, we get $u r v \beta^{-1}(d(u)) = 0$ and then
 $v \beta^{-1}(d(u)) = 0$.
These $n = [x \, x]$ in (13) for all $x \in R$ and use Equation (13) then $\beta^{-1}(d(u)) = 0$. (13)

Place $v = [v, r]$ in (13), for all $r \in R$, and use Equation (13), then $\beta^{-1}(d(u)) = 0$. Since β is an automorphism of *R*, we have $d(\mathbb{U}) = 0$.

For the case $F(uv) + \alpha(vu) = 0$ for all $u, v \in \mathbb{U}$, the same conclusion is reached by using a similar approach.

Theorem 2.3

Let *F* be an m (g)(α , β)- rd on *R* related with a map d: $R \rightarrow R$. If $F(u)F(v) \pm \alpha(uv) = 0$ for all $u, v \in \mathbb{U}$, then $\mathbb{U} \subseteq Z(R)$.

Proof:

Assume that *is non-commutative.*

$$
F(u)F(v) - \alpha(uv) = 0.
$$
 (14)

Substituting
$$
2vz
$$
 for v in Equation (14), where $z \in \mathbb{U}$, implies\n
$$
F(u)F(z)\alpha(v) + F(u)\beta(z)d(v) - \alpha(uvz)
$$

$$
u'(x)g(z)d(v) - \alpha(uvz) = 0
$$
\n⁽¹⁵⁾

Substitute 2*vg* for *v* in Equation (15), where
$$
g \in \mathbb{U}
$$
, and by applying Lemma 1.1, we get

$$
F(u)F(z)\alpha(v)\alpha(g) + F(u)\beta(z)d(v)\alpha(g) - \alpha(uvgz) = 0.
$$
 (16)

Multiplying right side of Equation (15), by $\alpha(g)$, this gives $F(u)F(z)\alpha(v)\alpha(g) + F(u)\beta(z)d(v)\alpha(g) - \alpha(uvz)\alpha(g) = 0.$ (17)

Comparing Equation
$$
(16)
$$
 and Equation (17) , to get

 $\alpha(uv)\alpha[z, q] = 0$.

By taking α^{-1} in above Equation, we find

$$
u v [z, g] = 0. \tag{18}
$$

Replace *u* by [*u*, *r*] in (18), and use it, where $r \in R$, we get $v [z, q] = 0$. (19) Exchange v by $[v, r]$ in (19), and use it, implies $\nu R[z, q] = 0.$ By using Lemma 1.3, we get $\mathbb{U} \subseteq Z(R)$. If *is commutative, we get our result.* For the case $F(u)F(v) + \alpha(uv) = 0$ for all $u, v \in \mathbb{U}$, the same conclusion is reached by using the similar approach. **Theorem 2.4** Let F be an m (g)(α , β)- rd on *R* related with a map d: $R \rightarrow R$. If $F(u)F(v) \pm \alpha(vu) = 0$ for all $u, v \in \mathbb{U}$, then $\mathbb{U} \subseteq Z(R)$. **Proof:** Assume that *is non-commutative* $F(u)F(v) - \alpha(vu) = 0.$ (20) Taking 2vz instead of v in (20), where $z \in \mathbb{U}$, we obtain $F(u)F(z)\alpha(v) + F(u)\beta(z)d(v) - \alpha(vzu) = 0.$ (21) By substituting 2vg for v in Equation (21), where $g \in \mathbb{U}$, by using Lemma 1.1, then $F(u)F(z)\alpha(v)\alpha(g) + F(u)\beta(z)d(v)\alpha(g) - \alpha(vgzu) = 0.$ (22) Multiplying right side of Equation (21), by $\alpha(g)$, then $F(u)F(z)\alpha(v)\alpha(g) + F(u)\beta(z)d(v)\alpha(g) - \alpha(vzu)\alpha(g) = 0.$ (23) Comparing (22) and (23), we get $\alpha(v)\alpha[zu, q] = 0.$ By taking α^{-1} in above relation, gives $v [zu, g] = 0$. (24) Replacing ν by [ν , r], in (24), and using (24), becomes $z[u,g] + [z, g]u = 0.$ (25) Exchange u by 2ui in (25), where $i \in \mathbb{U}$, implies $zu[i, g] + z[u, g]i + [z, g]ui = 0$ (26) Multiplying Equation (25) , by *i* on the right then $z[u, g]$ $i + [z, g]$ $ui = 0$. (27) Comparing (27) and (26), becomes $z u [i, g] = 0$. By putting $z = [z, r]$ in the relationship above and using it, we have $u[i, g] = 0$. Putting $u = [u, r]$ in above equation and using it, for all $r \in R$, then $[i, g] = 0$. By using Lemma 1.3, we conclude $\mathbb{U} \subseteq Z(R)$. If *is commutative, we get our result.* For the case $F(u)F(v) + \alpha(vu) = 0$ for all $u, v \in U$, the same conclusion is reached by using

the similar approach.

Theorem 2.5

Let F acts as a homomorphism and be an m $(g)(\alpha, \beta)$ - rd on *R* related with a map $d: R \to R$, then $d(\mathbb{U}) = 0$ or $\mathbb{U} \subseteq Z(p)$.

Proof:

Since $\mathbb{U} \not\subseteq Z(\mathfrak{h})$, then \mathfrak{h} is non-commutative.

Since F acts as a homomorphism on *R*, then $F(uv) = F(u)F(v)$. $F(v)\alpha(u) + \beta(v)d(u) = F(u)F(v)$. (28)

We substitute v by
$$
2zv
$$
 in (28), where $z \in U$, to get
\n
$$
F(v)\alpha(z)\alpha(u) + \beta(v)d(z)\alpha(u) + \beta(z)\beta(v)d(u) - F(u)F(v)\alpha(z) - F(u)\beta(v)d(z) = 0.
$$
\n(29)

Multiplying (28), by $\alpha(z)$ on the right, gives $F(v)\alpha(u)\alpha(z) + \beta(v)d(u)\alpha(z) - F(u)F(v)\alpha(z) = 0.$ (30) We subtracting Equation (30) from Equation (29), we have $F(v)\alpha[z, u] + \beta(v)d(z)\alpha(u) + \beta(z)\beta(v)d(u) - F(u)\beta(v)d(z) - \beta(v)d(u)\alpha(z) = 0.$ (31) Subsisting $2zu$ in the place of z in Equation (31), by applying Lemma 1.1, then $F(v)a[z, u]a(u) + \beta(v)d(z)a(u)a(u) + \beta(z)\beta(u)\beta(v)d(u) - F(u)\beta(v)d(z)a(u) \beta(v)d(u)\alpha(z)\alpha(u) = 0.$ (32) Multiplying right side of Equation (31), by $\alpha(u)$, gives $F(v)a[z, u]a(u) + \beta(v)d(z)a(u)a(u) + \beta(z)\beta(v)d(u)a(u) - F(u)\beta(v)d(z)a(u)$ $\beta(v)d(u)\alpha(z)\alpha(u) = 0$. (33) From Equation (32) and Equation (33), we get $\beta(z)(\beta(v)d(u)\alpha(u) - \beta(u)\beta(v)d(u)) = 0$. Putting $z = [z, r]$ in the relationship above and using it, results in $\beta(z)\beta(r)(\beta(v)d(u)\alpha(u) - \beta(u)\beta(v)d(u)) = 0.$ Since β is an automorphism of η , then $\beta(v)d(u)\alpha(u) - \beta(u)\beta(v)d(u) = 0$. (34) Substituting v for $2nv$ in (34), where $n \in \mathbb{U}$, we get $\beta(n)\beta(v)d(u)\alpha(u) - \beta(u)\beta(n)\beta(v)d(u) = 0$. (35) Multiplying Equation (34), by $\beta(n)$, on the left and compare Equation (35), gives $\beta[u, n]\beta(v)d(u) = 0$. By taking β^{-1} in above relation, we get $[u, n]v \beta^{-1} (d(u)) = 0$. By using Lemma 1.2, and since $\mathbb{U} \not\subseteq Z(p)$, we have $\beta^{-1}(d(u)) = 0$, we get $d(\mathbb{U}) = 0$. If $\mathbb{U} \subseteq Z(R)$, we achieve our goal. **Theorem 2.6** Let F acts as anti- homomorphism and be an m (g)(α , β)- rd on *R* related with a map d: $R \rightarrow R$, then either $d(\mathbb{U}) = 0$ or $\mathbb{U} \subseteq Z(R)$. **Proof:** Since $\mathbb{U} \not\subseteq Z(\mathbb{R})$, then \mathbb{R} is non-commutative. Since F acts as anti-homomorphism of *, then* $F(uv) = F(v)F(u)$. (36) Substitute 2zu for u in Equation (36), where $z \in \mathbb{U}$, to give $F(v)\alpha(zu) + \beta(v)d(zu) = F(v)F(u)\alpha(z) + F(v)\beta(u)d(z).$ By applying Lemma 1.1 $F(v)\alpha(z)\alpha(u) + \beta(v)d(z)\alpha(u) - F(v)F(u)\alpha(z) - F(v)\beta(u)d(z) = 0.$ (37) On the other hand $F(v)a(u)a(z) + \beta(v)d(u)a(z) + \beta(u)\beta(v)d(z) - F(v)F(u)a(z) F(v)\beta(u)d(z) = 0$. (38)

Subtract Equation (38) from Equation (37), gives $F(v)\alpha[z, u] + \beta(v)d(z)\alpha(u) - \beta(v)d(u)\alpha(z) - \beta(u)\beta(v)d(z) = 0.$ (39) By putting $u = 2uz$ in (39), so by applying Lemma 1.1, we have $F(v)\alpha[z, u]\alpha(z) + \beta(v)d(z)\alpha(u)\alpha(z) - \beta(v)d(u)\alpha(z)\alpha(z)$

$$
(z) + \beta(\nu)a(z)a(u)a(z) - \beta(\nu)a(u)a(z)a(z) - \beta(u)\beta(z)\beta(\nu)d(z) = 0.
$$
\n(40)

Equation (39) is multiplied by $\alpha(z)$ on the right, it implies $F(v)\alpha[z, u]\alpha(z) + \beta(v)d(z)\alpha(u)\alpha(z) - \beta(v)d(u)\alpha(z)\alpha(z) \beta(u)\beta(v)d(z)\alpha(z) = 0$ (41)

Subtracted Equation (41) from Equation (40), then $\beta(u)(\beta(v)d(z)\alpha(z) - \beta(z)\beta(v)d(z)) = 0.$ Putting $u = [u, r]$ in the relationship above and using it, then $\beta(u)$ R $(\beta(v)d(z)\alpha(z) - \beta(z)\beta(v)d(z) = 0.$ $\beta(v)d(z)\alpha(z) - \beta(z)\beta(v)d(z) = 0$.

Let $z = u$ in over equation, gives

 $\beta(v)d(u)\alpha(u) - \beta(u)\beta(v)d(u) = 0$.

The proof follows from the Theorem 2.5, after the Equation (34) and we get the result then either $\mathbb{U} \subseteq Z(R)$ or $d(\mathbb{U}) = 0$.

Theorem 2.7

Let F be an m (g)(α , β)- rd on *R* related with a map d: $R \rightarrow R$. If F[u , v] = 0 for all $u, v \in \mathbb{U}$, then either $d(\mathbb{U}) = 0$ or $\mathbb{U} \subseteq Z(R)$.

Proof:

Suppose that $\mathbb{U} \not\subseteq Z(R)$.

$$
F[u, v] = 0.
$$
\n⁽⁴²⁾

Taking 2uv instead of ν in (42), and using it, it gives

$$
\beta[u, v]d(u) = 0.
$$
\n(43)

Substituting 2zv for *v* in (43), and using it, we have, $\beta[u, z]\beta(v)d(u) = 0$. $\beta^{-1} (\beta[u, z] \beta(v) d(u)) = 0.$

$$
[u,z] \mathsf{U} \beta^{-1}(d(u)) = 0.
$$

By using Lemma 1.2, and because $\mathbb{U} \not\subseteq Z(q)$ implies that $\beta^{-1}(d(u)) = 0$. Since β is an automorphism of *R*, we get $d(\mathbb{U}) = 0$. If $\mathbb{U} \subseteq Z(R)$ then, we get our result.

References

- **[1]** I. N. Herstein, ''Topics in ring theory,'' University of Chicago Press, 1969.
- **[2]** M . Ashraf, N. Rehman, and Sh. Ali, "On Generalized (α, β)-Derivations in prime rings,'' *Algebra Colloquium*, vol. 17, pp. 865-874, 2010.
- **[3]** M. Brešar, "On the distance of the composition of two derivation to the generalized derivations, '' *Glasgow. Math. J*., vol. 33, no. 1, pp. 89-93, 1991.
- **[4]** M. N. Daif, "When is a multiplicative derivation additive,'' *Int. J. Math. Math. Sci.,* vol. 14, no. 3, pp. 615-618, 1991.
- **[5]** M. N. Daif, and M.S. Tammam El-Sayiad, "Multiplicative generalized derivation, which are additive,'' *East-west J. Math*., vol. 9, no. 1, pp. 31-37, 1997.
- **[6]** B. Dhara, and S. Ali, "On multiplicative (generalized) derivation in prime and semi prime rings,'' *Aequat. Math.*, vol. 86, no. (1-2), pp. 65-79, 2013.
- **[7]** I. N. Herstein, "Jordan derivation of prime rings*,*'' *Proc. Amer.Math.Soc.,* vol. 8, pp. 1104-1110, 1957.
- **[8]** M. N. Daif, and M.S. Tammam El-Sayiad and V. D. Filippis, "Multiplicative of left centralizers forcing additivity*,'' Bol. Soc. Parana. Mat*., vol. 32, no. 1, pp. 61-69, 2014.
- **[9]** Z.S.M. Alhaidary and A.H. Majeed, '' Square Closed Lie Ideals and Multiplicative (Generalized) (α, β) Reverse Derivation of Prime Rings ,'' *journal of Discrete Mathematical Science & cryptography*, 2021.
- **[10]** S.k. Tiwari, R.K. Sharma, and B. Dhara, "Some theorems of commutativity on semiprime ring with mapping,'' *Southeast Asian Bull. Math*., vol. 42, no. 2, pp. 279-292, 2018.
- **[11]** S.Ali, B.Dhara, N. Dar and A.N.Khan, ''On Lie ideals with multiplicative (generalized)-derivation in prime and semiprime rings,'' *Beitr Algebra Geon*., 56(2),pp. 325-337, 2015.
- **[12]** Z.S.M. Alhaidary and A.H. Majeed, "Commutatively Results for Multiplicative (Generalized) (α, β) Reverse Derivations on Prime Rings**,''** *Iraq journal of science*, vol. 62, no. 9, pp.3102- 3113, 2021.
- **[13]** J. Bergen, I. N. Herstein, and J. W. Kerr, "Lie ideals and derivations of prime rings,'' *Journal of Algebra*, vol. 71, pp. 259-267, 1981.
- **[14]** N. Rehman, "On Commutativity of prime rings with generalized derivations,'' *Math. J. Okayama University,* vol. 44, pp. 43-49, 2002.